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ABSTRACT 
 
Landau Kleffner Syndrome (LKS) is a rare genetic disorder that presents in the form of auditory verbal agnosia and 
aphasia (loss of ability to interpret and express language) as well as electroencephalographic abnormalities, which 
present in children from the ages of 2 to 8. The disorder is classified as developmental/epileptic encephalopathy with 
spike wave activation on sleep (DEE-SWAS), with 70% of affected patients having epileptic seizures. The disorder is 
diagnosed based on language regression in addition to severe EEG abnormalities during non-REM sleep. Sometimes 
patients with epileptiform disorders can sense when a seizure is imminent and alert caretakers of the situation so they 
can be safely situated when the seizure occurs. This period is called the preictal period or prodrome in which patients 
can sometimes detect changes in mood and behavior. However, in disorders such as LKS, the loss of verbal expression 
proves difficult for expression of needs, and could lead to dangerous situations along with a constant need for such 
patients to be monitored. In this study, machine learning techniques are utilized to analyze several hours of ictal and 
preictal EEG data from 23 patients in order to predict the onset of a seizure. This study aims to promote patient safety 
and reduce need for constant monitoring by predicting when a seizure will occur. Several machine learning models 
have been constructed and their accuracies have been analyzed and compared to those of other studies to create an 
optimized program which can accurately interpret EEG data. 
 

Introduction 
 
Children affected by Landau Kleffner Syndrome (LKS) have trouble recognising speech and speaking (aphasia and 
agnosia). Their inability to recognise voices and interpret speech is often mistaken for hearing loss, but hearing loss 
is not associated with LKS. As the disease progresses, children may lose the ability to recognise non-language sounds 
like a horn beeping, clapping, etc. Eventually, the child may lose their ability to speak and may have difficulty reading 
and writing. Behavioral hyperactivity and attention deficit are also commonly associated with LKS. These symptoms 
interfere with the child’s ability to learn in a classroom setting and form social relationships with peers. Landau 
Kleffner Syndrome (LKS) is a rare genetic syndrome in childhood that manifests in the form of loss of verbal and 
auditory function and epileptic activity. The disease occurs in children from the age of 2 to 8 and is twice as prevalent 
in male patients. The underlying causes of this disorder remain unknown, but it has been linked to genetic abnormal-
ities. The rare pediatric disease is considered to be a subtype of developmental/epileptic encephalopathy.  It is gener-
ally followed by progressive neuropsychological impairment and is characterized by the appearance of paroxysmal 
electroencephalograph (EEG). Additionally, epileptic seizures develop in 70% of patients with LKS.  

During a seizure, loss of motor control and sudden jerking movements can pose a significant threat to the 
patients with epileptic disorders. In the first stages of a seizure, a patient can usually detect the impending event, and 
alert caretakers, or position themselves such that their surroundings are conducive to their safety for the duration of 
the seizure. However, often it is not possible for patients with LKS to communicate their needs, especially because 
the disease presents in young children, and due to language regression. Patients with LKS often are subject to frequent 
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hospital visits due to injuries from seizure events. Consequently, caretakers often need to constantly monitor the pa-
tient.  

In order to prevent this, machine learning can be harnessed to predict seizure onset in combination with at-
home EEG devices. Machine learning is a branch of artificial intelligence in which a computer is able to learn based 
on the mistakes it makes on a certain amount of training data, without being explicitly programmed. The resulting 
model can be used to predict other data with high accuracy, even when variables are changed. 
 

 
 
Figure 1. Images from the EEG of a 6-year-old male patient. In figure 1a, 1b, and 1c sagittal T1-weighted images 
from the right and left hemispheres shows perisylvian clustering of spike activity in Wernicke's area (speech compre-
hension area. 1d shows MEG wave forms from the left hemisphere, right hemisphere, and concurrent EEG. (Image 
taken from Sobel et al. AJNR Am J Neuroradiol 2000, 21 (2) 301-307) 
 

LKS is diagnosed by performing an EEG. Along with significant loss of language comprehension, presence 
of severe epileptic discontinuities is required for diagnosis. Additionally, a magnetoencephalogram can be used for 
detection of epileptic activity. Magnetic resonance imaging (MRI) can be used to make sure that symptoms are not 
due to other underlying causes. Other testing includes behavioral and/or brainstem evoked audiometry and standard-
ized psychometric and speech/language testing to exclude hearing loss and provide the basis for therapies to aid in 
recovery. The cause of LKS remains unknown, but LKS along with other epileptic disorders have been linked with 
mutations in the GRIN2A gene. It has been speculated that the disease could also be linked with the RELN, BSN, 
EPHB2 and NID2 genes. Due to some patients responding well to immunosuppressive medication, autoimmune mech-
anisms have also been proposed. Treatments usually include a combination of antiepileptic drugs and speech therapy. 
Due to deteriorating communication skills, patients with this disorder may be unable to communicate their needs, and 
could get injured during a seizure if not in a safe environment. In this study, we intend to compare different machine 
learning models to predict the onset of seizures in these patients, in order to promote patient safety. 
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Seizures 
 
Seizures are uncontrolled bursts of electrical activity in the brain which cause a variety of symptoms including loss of 
consciousness and uncontrollable muscle jerking. Patients with LKS generally develop focal motor seizures and tonic-
clonic seizures, and often have to go to the hospital because of resulting injuries. During a seizure, the patient might 
bite the inside of their mouth and draw blood, or have trouble breathing due to stiffness of chest muscles. A seizure is 
composed of four phases, during which the patient experiences different symptoms. The prodromal phase is often not 
considered part of the seizure, but occurs hours or days before the seizure occurs. In this phase, patients may feel a 
sense of irritability or confusion. The period directly before the seizure is called the preictal phase or the aura, in which 
a variety of symptoms are experienced, including dizziness, nausea, and a bitter taste in the mouth. The preictal stage 
is the first time when the patient can sense that a seizure is imminent. Not all patients experience this phase, but activity 
can be detected on the EEG. Finally, the ictal and post ictal phases are those during and after the seizure respectively. 
 

 
 
Figure 2. EEG electrode placement. The diagram shows placement of the electrodes on the scalp for a total of 39 
electrodes. Eight electrodes over or close to the motor cortex are shown in bold circles (C1, C2, C3, C4, FC3, FC4, 
CP3, and CP4). (Picture taken from Schroder et al. EURASIP Journal on Applied Signal Processing 2005:19, 3103–
3112) 
 

EEGs are a noninvasive technique used to monitor electrophysiological activity in the brain. It can be used 
during surgery to monitor the amount of anesthesia required. For those with epilepsy, rapid spiking motion is visible 
during the ictal period of the seizure. A number of electrodes are placed on the scalp to monitor electrical activity. 
The EEG measures polarity between different electrodes to generate a voltage-time graph. Machine learning can be 
used to interpret the series of amplitudes in the graph at any given time to determine whether the patient is in the 
preictal stage, so that caretakers can be alerted. 

 
Related Literature 
 
The intention of this study is to use data from the ictal and preictal stages of seizure from various patients through use 
of machine learning models. The resulting models will be able to be generalized to various epileptic disorders, includ-
ing LKS. Proper preprocessing is required for optimal accuracy of the generated models, and to improve on findings 
of other studies. 
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Landau Kleffner Syndrome  
 
A study by Pearl et al. describes the symptoms, EEG characteristics, and treatments for the disorder. The paper states 
that epileptiform discharges are triggered by sleep onset and occur throughout non-REM sleep. Pearl et al. further 
explores the connection between Autism Spectrum Disorder (ASD) and LKS, stating epileptiform tendencies in pa-
tients with ASD. The study found that 19% of the 894 patients with ASD had epileptiform potential. Due to high 
potential for relapse, patients with LKS need extensive care from parents, speech/language therapists, neuropsycholo-
gists, and neurologists. 
  
EEG Data Analysis with Machine Learning 
 
Classification analysis of EEG signals with machine learning techniques has been demonstrated by several studies. 
SVM and KNN models were shown to perform proficiently in most studies. Usman et al. developed an SVM algorithm 
with 92.23% sensitivity using the CHB-MIT dataset to predict onset of seizures. The 23 channels were converted into 
a single signal. In addition, empirical mode decomposition was performed to increase the signal to noise ratio.  
Yoo et al. used similar EEG data to predict cognitive load using adaptive boost and gradient boosting algorithms. 
These algorithms had accuracies and F1 scores ranging from 60-70%. Their highest performing model was the bi-
LSTM model with 87.10% accuracy. 

In addition, Zandi et al. and Teixeira et al. have also used similar techniques for prediction of seizure onset. 
Zandi et al. have proposed a SVM model using 18 EEG channels for predicting seizures using scalp EEG signals and 
a Bayesian Gaussian mixture model. The proposed model had 91.11% accuracy. 

Teixeira et al. have proposed a model for prediction of seizures by using only six EEG channels, and have 
extracted 22 linear univariate features for each channel. The overall feature space expands to 132 dimensions. The use 
of fewer EEG channels is in order to minimize discomfort for the patient, so that only 6 electrodes have to be attached 
to the patient’s scalp. The accuracy of the model was 73.5%.  

Aljalal et al. have used EEG signals in detection of Parkinson’s Disease, discrete wavelet transform, different 
entropy measures, and machine learning techniques. Features are extracted from wavelet packet-derived reconstructed 
signals using log energy entropy, Shannon entropy, threshold entropy, sure entropy, and norm entropy. The accuracy 
of the DWT + TShEn and KNN classifier was 99.89%, using a small number of EEG channels. Limitations for all 
papers include a lack of publicly available EEG data for reproducibility of results. 
  

Methods 
 
Dataset 
 
The CHB-MIT Scalp EEG Database contained data from a period of 4096 seconds of both ictal and preictal data from 
24 patients. In the full preprocessed data, there are 23 channels of EEG data with the last column being the outcome 
column, with ‘0’ indicating that the data was taken from the preictal stage of a seizure, and ‘1’ indicating that the 
measured EEG signal was from the ictal stage of the seizure. The initial dimensions of the data were 2097150 x 24, 
where there was exactly the same amount of ictal and preictal seizure data. The 2D dataset was extracted from the raw 
‘.edf’ files to give the ‘.csv’ classification data. 
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Figure 3. Ictal and preictal EEG from CHB-MIT dataset. Figure 3a shows the preictal EEG graph for 3 EEG Channels 
(C3-P3, C4-P4, CZ-PZ). Figure 3b shows the ictal EEG graph for the 3 given channels. It can be observed that in the 
ictal period there is a rapid spiking motion, which distinguishes the seizure phase from other phases. 
 
Exploratory Data Analysis And Data Preprocessing 
 
Exploratory Data Analysis 
 
Exploratory data analysis (EDA) was used to visualize the data and identify data distribution. In order to do this, 
several plots were generated to assess data correlation and distribution. From the correlation matrix it was noted that 
there was a lack of correlation between features in general, but columns ‘F3-C3’ and ‘F7-T7’ had moderately high 
positive correlation with ‘FZ-CZ.’ From histogram plots, scatterplots, and boxplots, it was found that the data was 
clustered around 0, and formed a symmetric bell shaped curve for all features. In order to remove noise from the data, 
any values that lied more than 3 standard deviations from the mean were removed. 
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Figure 4. Histograms representing data distribution from 16 EEG channels. It can be observed that data cluster around 
0 and are symmetric. 
 
Data Preprocessing 
 
Data preprocessing is an extremely crucial step needed to remove any values or features which could negatively impact 
the accuracy of the model. In this stage, null values, outliers, correlated data, etc. are removed from the dataset in 
order to reduce chance of overfitting or underfitting. Feature importance scores were calculated using scikit learn and 
all columns with importance scores of less than 0.03 were removed from the dataset.  
 

 
 
Figure 5. Feature Importance Scores. The features were analyzed to determine their importance in determining the 
outcome. As a result, labels with feature importance scores of less than 0.03 were dropped from the dataset. 
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Additionally, multicollinearity was assessed using the variance inflation factor. Multicollinearity occurs when there 
are multiple independent variables with strong correlation, which may interfere with model performance. The formula 
for the variance inflation factor is shown in Equation 1, where 𝑅𝑅2 is the coefficient of determination. 
 
Equation 1: Variance inflation factor used for testing multicollinearity: 
 

𝑉𝑉𝑉𝑉𝑉𝑉 =  
1

1 − 𝑅𝑅2
 

 
All columns with variance inflation factor greater than 5 were removed from the dataset, as they indicated high cor-
relation with other independent variables. 
 

 
 
Figure 6. Collinearity Analysis. Correlation of independent variables is shown above. In figure 6a, the heatmap shows 
the correlation of the independent variables toward each other. Figure 6b shows the graphed variance inflation factor 
for each parameter. Features with VIF higher than 5 were removed. 
 
Using scikit learn’s train_test_split function, the data was randomly split into training and testing data, where 80% of 
the data was used as training data, and the remaining 20% was used as testing data. As a result of preprocessing, 17 
features were retained to be used in classification models. 
 
Model fitting 
 
Samples were classified as precital or interictal using a variety of models. Models classified a sample as preictal or 
interictal based on the sequence of amplitudes over a period of 2 seconds. 7 models were created to analyze the data. 
Metrics measured for all models included accuracy, F1 score, and AUC score, where F1 score is the accuracy after 
being penalized for false positives and negatives. AUC score is the area under the Receiver Operating Characteristics 
(ROC) curve, which indicates the ability of the model to distinguish between classes. Confusion matrices were also 
generated for all models. 
 
K Nearest Neighbors 
 
K Nearest Neighbors (kNN) is a nonlinear supervised learning model that can be utilized for both classification and 
regression. Each datapoint in the model, as observed in Figure 7 is analyzed by determining its nearest values and 
using them to predict the outcome of the datapoint.  
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Figure 7. KNN model functionality. Class labels for each data point are determined based on the n neighbors closest 
to them.  
 
The length of the vector between data points is computed by using the Euclidean formula (Equation 2), in which the 
distance between two points is computed by taking the square root of the sum of squared differences in each dimen-
sion. 
 
Equation 2: Euclidean formula used to compute norm of distance vectors: 
 

𝑑𝑑(𝑎𝑎, 𝑏𝑏)  =  �(𝑎𝑎1 − 𝑏𝑏1)2 + (𝑎𝑎2 − 𝑏𝑏2)2+. . . +(𝑎𝑎𝑛𝑛 − 𝑏𝑏𝑛𝑛)2 
 
In this study, the model was fitted to the data and used the 3 nearest neighbors to predict outcomes. The accuracy was 
assessed by using the root mean square error (rmse). 
 
Support Vector Machine 
Support Vector Machine (SVM) algorithms are supervised machine learning models used for classification and re-
gression. The model utilizes discriminative classification to find a curve that separates outcomes. The curve has a 
margin of a certain width and is drawn up to the nearest point to separate the different classes, as shown in Figure 8. 
The curve that allows for the greatest margin is used in the model to guide predictions. The points that lie on the 
margins are known as the support vectors and essentially dictate the structure and function of the model. 

 
Figure 8. SVM Model Functionality. The SVM model functions through discriminative classification in which bound-
aries between labels are drawn with a margin, and the model is optimized by maximizing the number of data points 
that lie on the margin. As seen in figure 8a, the points can be classified into two categories by several curves. In figure 
8b, the optimized model is shown with maximum margin size and with the support vectors lying on the margin. 
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Decision Tree 
 
Decision tree classifiers are flowcharts that are composed of several nodes to output a final classification. There are 
three types of nodes: root node, internal node, and leaf node, where the leaf node contains the overall outcome. Sam-
ples go down the decision tree cascade and are assigned a label based on the leaf node they arrive at. The tree is built 
by assessing which features are best for outcome prediction. Figure 9 shows the general structure of a decision tree 
model. 

 
 
Figure 9. A basic decision tree with one root node, two internal nodes, and four leaf nodes. 
 
Determining the importance of features is done by calculating the Gini impurity of each sample, which is a number 
between 0 and 0.5 that determines the probability of misclassifying a random datapoint. As a result, the root node is 
the feature with the lowest impurity score, and the leaf nodes are the ones with the highest impurity scores in order to 
optimize the classification cascade. Equation 3 shows how the Gini impurity is calculated, where K is the number of 
class labels. 
 
Equation 3: Gini Impurity formula: 
 

Gini Impurity(𝑑𝑑𝑑𝑑)  =  1 − ∑ (𝑝𝑝𝑖𝑖)2𝑘𝑘
𝑖𝑖=0  

 
Random Forest 
 
Random forest classifiers use the same principle as decision trees, but instead of one tree, the classifier takes the input 
of multiple different trees to generate an output. The classifier takes datapoints at random to create a bootstrapped 
dataset, and generate a decision tree. This process is repeated to make hundreds of decision trees, and is called bagging. 
The result of using multiple decision trees is a far more accurate classification tool than a singular decision tree. 
 
AdaBoost 
 
AdaBoost is another decision tree based algorithm in which several weak learners are combined to make a stronger 
classifier. Each tree in the AdaBoost model consists of only a root node and two leaf nodes (a stump), and has a 
different amount of influence on the final classification. As shown in Figure 10, the outcomes of the stumps depend 
on the previous stumps. Each stump is made based on the errors that the previous stump made in classifying the 
sample. If a certain sample is incorrectly classified, its weight is increased in order to emphasize the need to properly 
classify it in the next stump.  
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Figure 10. A random forest with AdaBoost. As shown, each stump takes input from the previous stumps to optimize 
classification. 
 
Sample weights determine the amount of say each stump has on the final classification. All sample weights are initially 
equal to the reciprocal of the number of total samples, and adjusted as the algorithm learns. Based on the total error, 
each sample has a different amount of say, in accordance with Equation 4, where a is the amount of say, and x is the 
total error. 
 
Equation 4: Amount of say for each stump: 
 

𝑎𝑎 =  
1
2
⋅ 𝑙𝑙𝑙𝑙𝑙𝑙(

1 − 𝑥𝑥
𝑥𝑥

) 

 
Following the above equation, the amount of say is zero when the total error is ½, as it would be no different from 
flipping a coin. Above a total error of ½, the amount of say becomes increasingly negative, and below ½ the amount 
of say is increasingly positive. In addition, sample weights for each stump are adjusted by multiplying the initial 
sample weight by 𝑒𝑒𝑎𝑎 or 𝑒𝑒−𝑎𝑎 depending on whether the stump classified the sample correctly or incorrectly.  
 
Gradient Boosted Regression Tree 
 
Gradient boosted regression trees (GBRTs) are similar to AdaBoost, but use trees with larger depth instead of stumps. 
This algorithm generates regression trees instead of classification trees, and predicts residuals instead of class labels. 
The split for each tree is determined by finding the Mean Squared Error (MSE), and using the one with the lowest 
MSE as calculated by Equation 5. 
 
Equation 5: Mean Squared Error: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�(
𝑛𝑛

𝑖𝑖 = 1

𝑂𝑂𝑏𝑏𝑂𝑂𝑒𝑒𝑂𝑂𝑂𝑂𝑒𝑒𝑑𝑑𝑖𝑖 − 𝑃𝑃𝑂𝑂𝑒𝑒𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑖𝑖)2 

 
After the performance of the tree is evaluated, the process is repeated to generate the next tree.  
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Multilayer Perceptron 
 
The Multilayer Perceptron (MLP) Classifier is a deep learning model that optimizes the log-loss function using sto-
chastic gradient descent. The model trains using backpropagation, and is able to fit non linear data. The constructed 
model had 2 hidden layers, and used cross entropy to measure loss over 100 iterations. Figure 11 shows the MLP 
model that was constructed in this study with the appropriate number of neurons and layers. 
 

 
 
Figure 11. Multilayer Perceptron Classifier with 1 hidden layer. 
 
Neural Network (Sequential Model) 
 
A neural network was created in order to accurately predict new values using multiple different parameters. Neural 
networks consist of many different layers which continue in a chain-like manner until an output is produced. Depend-
ing on how important a given parameter is to the final result, each node is assigned weights and biases. The result 
from each node influences the result in the subsequent nodes, and is thus well suited for dealing with non-linearities. 
Cycles of back and forward propagation allow for the model to be trained effectively. The model was constructed 
using keras, and consisted of 5 dense layers (Figure 12). 
 

Volume 12 Issue 4 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 11



 
 
Figure 12. Artificial Neural Network with 3 hidden layers. As shown in the figure, the input layer has 12 neurons, 
each of the hidden layers has 8 neurons, and the output layer consists of 1 neuron. 
 
The model was optimized with the adam optimizer, and used ReLU and sigmoid activation and accuracy was assessed 
using binary cross entropy. Training was observed over 200 epochs. 
 

Results 
 
In order to identify a suitable model, 8 different machine learning models have been compared. After analysis of the 
8 different models, the following results were obtained. The Artificial Neural Network was selected due to its high 
accuracy of 97.76%. The accuracy and loss for the first 50 epochs are plotted in Figure 13, and indicate the learning 
rate of the model. The first 7 models took 5-10 minutes to be fitted, while the neural network took over 250 minutes 
to compile. 

 
 
Figure 13. Loss and accuracy over the first 50 epochs of training for the ANN model. Figure 13a shows the decrease 
in loss over the training period. Figure 13b shows the increase in accuracy over the training period. 
 
The two highest performing models (KNN and ANN)  have shown higher accuracy than those produced by Usman et 
al., Zandi et al., and Teixeira et al. Comparison between the proposed models is shown in Table 1. 
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Table 1. Comparison of accuracy between proposed models 

Model Dataset EEG Signal Type 
Number of 

EEG channels 
Number of 
Subjects 

Accuracy % 

Teixeira et al. EPILEPSIAE Scalp EEG 6 227 73.5 

 
Zandi et al. 

VGH Scalp EEG 18 17 91.11 

CHB-MIT Scalp EEG 23 3 83.81 

Usman et al. CHB-MIT Scalp EEG 23 24 92.23 

Proposed Model CHB-MIT Scalp EEG 17 23 97.76 

 
The accuracies of the remaining 7 models were assessed. It was found that the KNN model also performed 

well (94.53%), while all tree classification models performed with around 80% accuracy, with the basic decision tree 
performing the best. The F1 scores were calculated to be very close to the accuracy scores, which indicates that there 
were not many false positives and negatives. Confusion matrices were plotted (Figure 14) to assess the true/false 
positive/negative rate for all four tree models. This showed that the basic decision tree model had the lowest false 
negative and positive rate, which is also reflected in the F1 and AUC score metrics. 
 

 
 
Figure 14. Confusion matrices for 4 decision tree based models. The basic decision tree produced the highest accuracy 
and thus has a comparatively low false negative/positive rate. The top left and bottom right represent the number of 
true positives and true negatives respectively, while the top right and bottom left represent the false positives and false 
negatives respectively. False negatives are the most dangerous in the context of seizure prediction, because this means 
the patient will not be alerted even though they are about to have a seizure. 
 

Volume 12 Issue 4 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 13



Table 2 shows all calculated metrics for the 8 models, and Figure 15 plots the accuracies of all models. 
Although the MLP classifier utilized dense learning techniques, the accuracy was lower than any other model, as it 
was only trained for 12 epochs, and had only one hidden layer. Furthermore, the F1 and AUC scores were observed, 
and the results indicate that there was high sensitivity due to low number of false positives and negatives, and the 
model was able to effectively distinguish between ictal and preictal states, as shown in the AUC scores. 
 
Table 2. Accuracy scores and other metrics for 8 constructed models. 

Model Name Accuracy (%) F1 Score AUC score 

K Nearest Neighbors (KNN) 94.53 0.95 0.974 

Support Vector Machine (SVM) 77.81 0.78 0.760 

Decision Tree Classifier 79.82 0.80 0.791 

Random Forest Classifier 69.29 0.69 0.813 

AdaBoost Classifier 75.97 0.76 0.836 

Gradient Boosted Regression Tree 
(GBRT) 

76.10 0.76 0.837 

MLP Classifier 58.95 0.59 0.500 

 

 
 
Figure 15. Comparison of accuracy for 8 constructed models. As shown, the KNN and ANN algorithms performed 
the best out of the constructed models with 94.53% and 97.76% accuracies respectively. 
 
It is evident that the proposed model(s) have higher accuracy than currently proposed models and thus could poten-
tially be used as a tool for patients with LKS and other epileptic disorders. 
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Discussion 
 
The study was performed to generate 8 machine learning models for the prediction of epileptic seizures. The intended 
use of these models is to use them in diagnosis of LKS and other epileptic disorders. The models performed with 
suitable accuracy, and can be generalized to patients with other epileptic disorders. In comparison to models from 
other studies who performed similar classification analysis on EEG data, the proposed model performed better in 
terms of accuracy. The two selected models for the most optimal epileptic seizure prediction in this study were the 
KNN (94.53%) and ANN (97.76% over 200 epochs) models. Zandi et al. and Usman et al. both produced SVM models 
with highest accuracy out of their other constructed models. It was found that the SVM model produced in this study 
did not have comparable accuracy to those of other studies (58.95% over 100 epochs), but the KNN and ANN models 
showed higher accuracy than other models for epileptic seizure prediction. Use of 17 channels proved to perform 
better than models using a smaller number of channels. Usman et al. similarly used input from several channels, and 
performed empirical mode decomposition to combine input from 23 channels. Furthermore, the tree models including 
the decision tree, random forest, AdaBoost model, and Gradient Boosted Regression tree model performed similarly 
to those of Yoo et al (70-80%). 
 

Conclusion 
 
In this study, we have used ictal and preictal data from 23 patients from the CHB-MIT dataset in order to predict 
seizure onset. The intended use of the constructed models is to create a tool for LKS patients that can alert caretakers 
about seizures prior to the event. The data was rigorously preprocessed, and 8 models were constructed to analyze the 
EEG data and determine whether the patient was about to have a seizure. Of these 8 models, the MLP Classifier 
consisting of 2 dense layers performed the worst (58.95% over 100 epochs), the 4 tree algorithms performed with 
acceptable accuracy (70-80%), and the KNN (94.53%) and Artificial Neural Network with 5 dense layers (97.76% 
over 200 epochs) performed the best, and surpassed accuracy scores of other existing studies. These models can be 
used in combination with available at-home EEG technologies for patients with diseases like LKS in order to ensure 
patient safety. In the future, we hope to construct a similarly accurate model which can take into account more factors 
to generate predictions. As the neural network was shown to perform the best, it may be useful to explore other types 
of neural networks or to add layers to the existing model to enhance accuracy. In the future this model can be fitted 
with data from more patients, and those with different types of seizures in order to produce more useful and accurate 
outputs. 
 

Limitations 
 
In order to enhance the models, a larger amount of data from various individuals is required. Also to be improved is 
the time complexity of the programs, which greatly hinders efficiency in the training stage. 
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