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ABSTRACT 

Language and culture preservation is a serious challenge both socially and technologically. This paper proposes 
a novel, data augmentation approach to using machine learning to translate low-resource languages. Since low-
resource languages, such as Aymara and Quechua, do not have many available translations that machine learn-
ing software can use as reference, machine translation models frequently err when translating to and from low-
resource languages. Because models learn the syntactic and lexical patterns underlying translations through 
processing the training data, an insufficient amount of data hinders them from producing accurate translations. 
In this paper, I propose the novel application of a generative-adversarial network (GAN) to automatically aug-
ment low-resource language data. A GAN consists of two competing models, with one learning to generate 
sentences from noise and the other trying to tell if a given sentence is real or generated. My experiments show 
that even when training on a very small amount of language data (< 20,000 sentences) in a simulated low-
resource setting, such a model is able to generate original, coherent sentences, such as "ask me that healthy 
lunch im cooking up,” and “my grandfather work harder than your grandfather before.” The first of its kind, 
this novel application of a GAN is effective in augmenting low-resource language data to improve the accuracy 
of machine translation and provides a reference for future experimentation with GANs in machine translation. 

Introduction 

Although technology has become a staple of daily life, even society’s best-performing computing systems 
struggle in basic translation tasks, failing to reflect the world’s diversity in languages. Current state-of-the-art 
translation models frequently err when translating to and from “low-resource languages” (Gu et al., 2018), 
which are languages that do not have much digital data that the machine learning algorithms underlying the 
software can use as reference.  

While vast and detailed language data exists for high-resource languages such as English and Spanish, 
low-resource languages, including many American indigenous languages like Aymara and Quechua (Zheng et 
al., 2021), are underrepresented in data sets, and consequently, models trained on them often generate incorrect 
translations (Zoph et al., 2016).  

Although other approaches have been formulated to improve on translation models or augment the 
low-resource data, few have truly solved the issue. Previous approaches have focused on bridging the gaps 
between high-resource and low resource languages (Gu et al., 2018) (Zoph et al., 2016) (Zheng et al., 2021), 
which have limited efficacy depending on the similarity between the high-resource and low-resource languages 
being used. On the other hand, the direction of data augmentation with completely original sentences has not 
been fully explored (Fadaee et al., 2017) and holds promise for breakthrough, as data augmentation directly 
addresses the challenge of lacking training data.  
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In contrast to the human labor of creating new sentences in low-resource languages by hand, a gener-
ative-adversarial network (GAN) is capable of autonomously generating as much new data in a low-resource 
language as needed. Prior work has been done with GANs in Machine Translation as the Yang et al. (2018a) 
model directly uses GANs for language translation, and other models (Zhang et al., 2018) (Yang et al., 2018b) 
(Rashid et al., 2019) have implemented its model as a tool and improved upon it. However, no previous models 
have used GANs to tackle the issue of translating low-resource languages.  

Using a simulated low-resource setting, I propose the novel application of a GAN to low resource 
language data augmentation in order to improve machine translation quality. 
 

Background 
 
Preliminaries on NMT 
 
In machine translation, software systems are used for translating between two different languages. Neural Ma-
chine Translation (NMT) is a type of MT that uses neural networks for translations (Yang et al., 2018a), and 
the most common model consists of an end-to-end encoder-decoder (Ranathunga et al., 2021). A sequence-to-
sequence encoder decoder framework (Cho et al., 2014) consists of one long short-term memory (LSTM) layer 
(Hochreiter and Schmidhuber, 1997), that translates the words into latent space (encoding) and another LSTM 
layer that translates them from la tent space into the other language (decoding). The latent space represents the 
core meaning of the sentence, and sequence-to-sequence refers to one LSTM that feeds its sequential predictions 
into the second LSTM. LSTMs are a type of neural network that can operate on a sequence of words, but 
because they evaluate from left to right, the encoder decoder does not examine the context that appears after a 
word. As a result, these networks require multiple instances of words appearing in diverse contexts in order to 
create vectors that accurately represent the context needed for these words in the latent space (Fadaee et al., 
2017), causing NMT to frequently err with low-resource pairs (Zoph et al., 2016). NMT models based on 
Transformers (Vaswani et al., 2017) have also risen in popularity, as the Transformer framework uses attention 
to improve parallelizability of training. After implementing both the RNNSearch and the Transformer on their 
GAN model, Yang et al. (2018a) found that both architectures could be applied with similar performances. 
 
Data Augmentation for Low-Resource NMT  
 
Other models and software have tried to tackle this issue, using multilingual, transfer-learning approaches 
(Zheng et al., 2021) (Gu et al., 2018) (Zoph et al., 2016) and a data augmentation approach (Fadaee et al., 2017). 
The transfer-learning approach trains the model on high-resource pairs and then transfers learning to low-re-
source languages, but it involves finding high resource languages that are very close to the language at hand, 
which is difficult depending on the language family. While the Germanic language family has more related 
high-resource languages such as German and Danish (Tchistiakova et al., 2021) (Chen and Abdul-Mageed, 
2021), African languages have only more unrelated languages to learn from, such as English and French (Dione, 
2021). The Fadaee et al. (2017) data augmentation method alters translation data containing rare words to di-
versify con texts, but it helps with specific words rather than generating completely new sentences.  
 
Preliminaries on GANs  
 
Commonly used in image generation and computer vision (Yang et al., 2018a), GANs combine two machine 
learning models (Goodfellow et al., 2014). The first one is called the generator, a model that takes in input and 
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generates samples, which are then fed into the discriminator, the second machine learning model. The discrim-
inator is given samples either from the real data or from the generator, and it must determine if this sample is 
real or generated. If it correctly predicts, this indicates that it is improving. If it incorrectly predicts, this indicates 
that the generator is improving. Then, depending on how well the discriminator predicted, both models tweak 
their weights to continue this cycle. The generator “wins” when the discriminator cannot tell the two samples 
apart, and the discriminator “wins” if it can tell them apart. Both models want to win against the other, so each 
one keeps improving by learning from the other until they finally reach equilibrium, where both models are 
performing optimally.  
 
GANs in NLP  
 
In the past, the Betti et al. (2020) and Ahamad (2019) models were successful in generating synthetic text 
through adversarial training. The Yang et al. (2018a) study used GANs for machine translation. The generator 
learned to translate a source language sentence into its target-language translation while the discriminator tried 
to distinguish between real and generated translations. Continuing with this research, they implemented two 
GANs to use as tools to ensure the efficacy of their encoder models in weight sharing for latent space embed-
dings (Yang et al., 2018b). The Zhang et al. (2018) model introduced bidirectional GANs to improve translation 
quality by creating another generator model to act as the discriminator, and the Rashid et al. (2019) study used 
a latent space based GAN to translate bidirectionally in both a supervised and unsupervised setting. 
 
Unexplored Area  
 
My model also applies GANs to NMT, but I focus on improving translations for specifically low resource 
languages through data augmentation. This approach is the first to implement GANs for low-resource language 
data augmentation. In this paper, I experiment with the structure of the Yang et al. (2018a) model, but rather 
than directly translating between languages with a GAN, my model generates new synthetic language data for 
low resource languages. 
 

Data  
 
Simulated Low-Resource Setting  
 
In order to investigate the GAN model’s ability to augment low-resource language data, I mimicked the char-
acteristics of low-resource languages in English and Spanish. In my English to Spanish data set, I reduced the 
amount of data and used only 20,000 of the data set’s 253,726 sentence pairs to train and test the model. As a 
result, I was able to replicate the effect on low-resource languages and evaluate the model’s effectiveness after 
it was trained on 20,000 sentences.  
 
Training Data 
 
The English to Spanish data set I used to train the model is from Tatoeba1 and has been pre-processed and 
cleaned by a third party2 who downloaded the original file from Tatoeba. Founded by Trang Ho in 2006, Ta-
toeba is a database containing collections of parallel translations contributed by thousands of members. It offers 

1 https://tatoeba.org/en/ 
2 http://www.manythings.org/  
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data for 419 languages that are easy to download. 19,000 sentence pairs of the 20,000 in the dataset were used 
to train the encoder-decoder.  
 
Table 1. Characteristics of Training Data  
 

Characteristic English Spanish 
Average Sentence Length 4.72 4.52 

Max Sentence length 8 11 
Mean 204.38 300.87 

Standard Deviation 595.44 1055.53 
 

Within the training data, 1,000 sentence pairs were separated to be used as a test during each epoch of 
training to display validation accuracy and indicate overfitting of the encoder-decoder.  
 
Test Data  
 
The last 1,000 sentence pairs in the 20,000 sentence English to Spanish data set from Tatoeba were not seen by 
the encoder-decoder and were used as test data, given to the encoder-decoder after it finished training to evaluate 
the model’s efficacy.  
 
Table 2. Characteristics of Test Data  
 

Characteristic English Spanish 
Average Sentence Length 4.71 4.53 

Max Sentence length 7 9 
Mean 213.62 337.18 

Standard Deviation 662.48 1285.73 
 
Preprocessing  
 
I began by removing punctuation from the language data and converting it to lowercase in order to standardize 
it and retain only the words themselves. I then tokenized the sentence data using Keras’s built-in Tokenizer, 
which split each sentence into a list of probabilities representing its constituent words. Because not all of the 
sentences had the same number of words, I found the longest sentence and padded the rest with zeros so that 
every sentence would be the same length.  
 

Model Architecture  
 
My design consists of two models: an encoder decoder and a GAN, which also contains a generator and dis-
criminator. It uses layers imported from the Keras Python library (Chollet et al., 2015).  
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Figure 1. Model Workflow  
 

Figure 1 describes the workflow of the model. First, the encoder-decoder learns to translate from Span-
ish to English using the training data. Once the encoder-decoder finishes training, the GAN trains, using the 
encoder-decoder as a tool. The generator takes in a batch of random noise, a list of randomly generated numbers 
between -1 to 1 which by themselves had no meaning. Then, the generator tries to generate sentence meanings 
out of them by transforming them into latent space representations. Next, a batch of Spanish sentences from the 
data set are fed into the trained encoder, and it generates “real” latent space representations. The encoder’s 
output is labeled with a 1 and the generator’s output with a 0 before both latent space representations are fed 
into the discriminator. Without looking at the label, the discriminator tries to identify from which model a given 
encoding comes and should return 1 for the encoder and 0 for the generator. Then, the discriminator compares 
its prediction with the actual label for the encoding to find out its accuracy. Depending on the discriminator’s 
success or failure, the generator adjusts itself and learns to create encodings more similar to the encoder’s in 
order to fool the discriminator.  
 

 
 
Figure 2. Encoder-Decoder  
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Shown in Figure 2, the encoder-decoder uses a LSTM architecture to encode the Spanish data into 
latent space representations and then decode the latent space into English. In between the major LSTM layers, 
the embedding layer learns to map words with analogous meanings to similar numerical vectors, the repeat 
vector copies each latent space representation into the decoder, and the logits layer maps numerical outputs into 
probabilities.  
 

 
 
Figure 3. Generator  
 

Shown in Figure 3, the generator consists of a dense layer, which is a layer of fully connected units. 
The generator’s main purpose is to learn through trial and error to mimic the encoder’s encodings despite only 
being given noise as input.  
 

 
 
Figure 4. Discriminator  
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Shown in Figure 4, the discriminator consists of three dense layers and then a one-unit dense layer, 

which allows it to produce a prediction of whether the input is from the encoder or the generator. Using trial-
and-error, the discriminator learns how to differentiate encodings of natural Spanish data (from the encoder) 
from synthetic encodings (from the generator).  

The combined GAN model feeds its input to the generator and the generator’s output into the discrim-
inator.  

While the encoder receives sentences from training data and generates encodings representing their 
meanings, the generator receives language noise and generates its own, novel encodings. The discriminator 
receives both types of encodings and tries to differentiate them, learning from its success and failure. Mean-
while, the generator learns from the discriminator’s results and tries to fool the discriminator by generating 
encodings more similar to the encoder’s.  

The training and test data is used as input for only the encoder-decoder while the GAN takes in only 
noise and the encoder-decoder’s output.  
 

Experimental Setting  
 
The encoder-decoder’s two LSTM layers each contained 64 units with weight decay and dropout to minimize 
overfitting. The encoder’s LSTM had an L2 regularization of 5e-5 and dropout 0.5, the decoder’s LSTM had 
an L2 regularization of 1e-5 and dropout 0.5, and the logits layer included a dropout of 0.5. The model used a 
softmax activation function and was compiled with a categorical cross entropy loss function and an Adam 
optimizer (Kingma and Ba, 2017) with a learning rate of 2e-3 and decay rates of 0.7 for beta1 and 0.97 for 
beta2. It trained in batches of 30 sentences for 400 epochs on the training data.  

The generator’s dense layer contained 64 units and a linear activation function. The model used a reLu 
activation function and was compiled with a categorical cross entropy loss function and an Adam optimizer 
with learning rate 4e-4.  

The discriminator’s three dense layers each had 1024 units and reLu activation functions. It used a 
sigmoid activation function out of its single-unit dense layer, which categorized its prediction into a 1 (for the 
encoder) or 0 (for the generator). It was compiled with a binary cross entropy loss function and an Adam opti-
mizer with a learning rate of 1e-4.  

The GAN compiles with a binary cross entropy loss function and an Adam optimizer with a learning 
rate of 1e-4. Using a batch size of 1900, the GAN trained across 8000 epochs.  

Once the generator and discriminator were performing optimally, the decoder was run on the genera-
tor's encodings, converting their meanings into probabilities. Each probability mapped to the closest word in 
the tokenizer’s dictionary of probability word pairs, forming English sentences.  
 
Hyperparameter Tuning  
 
In order to find the hyperparameters for the most optimal results, I first varied the values by a factor of either 2 
or 10 and tested every combination of the values with each other. To optimize time, I used 5,000 sentences and 
80 epochs. For the learning rates of the encoder-decoder, generator, discriminator, and GAN as well as the L2 
regularizers, I tried a range of values from 1e-1 to 1e-8 decreasing in magnitude by a factor of 10 each time. 
When varying the number of units and batch sizes for the encoder-decoder’s LSTM layers, the generator’s 
dense layer, and the discriminator’s dense layers, I chose powers of 2 between 16 and 2048. For the encoder-
decoder’s dropouts, I tried a range from 0.5 to 0.8.  

After finding the approximate values to optimize performance, I tested more specific values within the 
ideal range I found, isolating each of the models and incrementing values by around 1 to 10. I continued this 

Volume 12 Issue 4 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 7



process until I found the most optimal parameters and then increased the amount of training data and epochs, 
further improving the performance of the models.  
 
Table 3. Hyperparameter Values 
 

Hyperparameter Value 
Epochs (Encoder-Decoder)  400 

Batch Size (Encoder-Decoder)  30 

LSTM Units (Encoder-Decoder)  256 

LSTM Dropout (Encoder)  0.5 

LSTM Dropout (Decoder)  0.5 

Logits Dropout (Encoder-Decoder)  0.5 

L2 Regularizer (Encoder)  5e-5 

L2 Regularizer (Decoder)  1e-5 

Learning Rate (Encoder-Decoder)  2e-3 

Beta1 Decay (Encoder-Decoder)  0.7 

Beta2 Decay (Encoder-Decoder)  0.97 

Epochs (GAN)  8000 

Batch Size (GAN)  1900 

Learning Rate (GAN)  1e-4 

Dense Units (Generator)  256 

Learning Rate (Generator)  4e-4 

Dense Units (Discriminator)  1024 

Learning Rate (Discriminator)  1e-4 
 
 

Results  
 
Encoder-Decoder Performance  
 
The encoder-decoder performed with a final training accuracy of 92.8%. On validation data, it had a peak ac-
curacy of 71.4%. Figure 5 shows the progression of training and validation loss and accuracy through epochs.  
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Figure 5. Loss and Accuracy of the Encoder-Decoder during Training  

 
On the test data, the encoder-decoder had a final accuracy with 69.3%. This accuracy is respectable, 

considering the 50-60% baseline performance of other MT models with low-resource languages (Durrani and 
Ar shad, 2021). Making this result even more remarkable is the fact that the model was trained on less than 
20,000 sentences, which is less than one-tenth of the size of other low-resource language data sets, whose sizes 
are between 0.2 to 1 million (Ranathunga et al., 2021) (Zoph et al., 2016).  

As this paper focuses more on the data augmentation aspect than the machine translation part of this 
research, accuracy was used instead of BLEU scores (Papineni et al., 2002). Using accuracy, the value of in-
complete yet coherent translations could be considered and did not affect results as strongly as BLEU scores 
would have caused it to. In the future, I plan to use BLEU scores evaluation as I shift the research to more end-
to-end translation performance.  
 
GAN Performance  
 
Shown in Figure 6, while training, the GAN’s loss values plateaued for both the generator and the discriminator, 
indicating that the models reached convergence and were both performing optimally against each other. Its final 
loss values hovered around 0.581 for the generator and 0.438 for the discriminator.  
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Figure 6. Loss of the GAN  
 

When the GAN performed with the test data, it was able to generate successful, coherent sentences 
shown in the first three rows of Table 4. Upon manual inspection, I found that each sentence generally centered 
around its own cohesive theme, which is an indication of the model’s successful understanding of word mean-
ings. While some sentences were food-related, another centered around hiking, and others talked about a family 
member. From random noise, the generator was able to create its own completely new and logical sentences, a 
significant feat considering the lack of training data.  
 
Error Analysis  
 
While the GAN was successfully able to generate some coherent sentences from scratch, the GAN made a 
significant number of errors. I qualitatively observed that the severity of the errors decreased as the GAN trained 
for more epochs. Thus, future models may train for a larger number of epochs to examine whether the frequency 
and severity of errors are able to reduce significantly further.  
 
Repeated Words  
Frequently, the GAN generated sentences with repeating words, shown in Table 4. I hypothesize that this issue, 
which occurs in most MT models (Fu et al., 2021), is due to the fact that the model is trying to generate words 
that are close in context to each other, which is necessary in order for a sentence to make sense. However, the 
model may not know or weigh in if it already used a word or not and ends up repeating that same word. It likely 
tries to find a word that is close in context to the prior word, and because related words have closer probabilities, 
it generates a probability very close to the previous word’s probability. Then, after the decoder translates the 
latent space representations into probabilities, the close probabilities may be reduced to the same word because 
the words with the highest close probabilities are chosen to represent the probabilities the GAN returned. There 
may not be enough words with intricate probabilities close to a given one, so that one is chosen for all words 
with probabilities in a certain range around it. Fu et al. (2021) theorize that the issue is in the nature of languages 
themselves, as some words tend to predict themselves as the next word in context. Some incoherencies in the 
generated sentences could also be due to the fact the model may not fully understand the grammatical structure 
of sentences and resorts to repeating words it does know how to represent in order to fill up space. Potential 
solutions would be to train the model to remember the previous probabilities it generated and to vary its gener-
ated probabilities more to ensure that it does not repeat very similar ones.  
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Sample Generated Sentences Qualitative Evaluation my grandfather work harder than your grandfa-
ther before good to consider quit job is this dream man good ask me that healthy lunch im cooking up good 
maryam discovered hes hes am am are are repetition home actually was everything everything listen actually 
everything repetition cheerful weird yourself punished music alone everybody everybody nonsensical those in 
so friends so complicated english comes nonsensical stressed gloves eating eating worried online online online 
unrelated  
 
Table 4. Sample Sentences Generated by the GAN 
 

Sample Generated Sentences Qualitative Evaluation 
my grandfather work harder than your grandfather before  good 

to consider quit job is this dream man  good 

ask me that healthy lunch im cooking up  good 

maryam discovered hes hes am am are are  repetition 

home actually was everything everything listen actually everything  repetition 

cheerful weird yourself punished music alone everybody everybody  nonsensical 

those in so friends so complicated english comes  nonsensical 

stressed gloves eating eating worried online online online  unrelated 
 
Nonsensical Grammar  
Other sentences contained minimal repetition but were still grammatically incorrect or nonsensical, shown in 
Table 4. I believe that these sentences contain relatively randomly-placed words because the model has not 
learned about these words with enough context to know where to place them grammatically. Because it has 
seen these well-known yet complex words, it can generate them but is un sure of how many to generate, where 
to place them, or which words to surround them with. The model also may have mistakenly generated words 
with similar probabilities in search of words with close context. For example, “cheerful” and “weird” are both 
adjectives that describe “yourself,” so their probabilities may be similar enough for the model to generate them 
together. However, the model does not understand that these words have parallel meanings, and that only one 
should be used. A possible avenue for future work is to explore training the model on the difference between 
probabilities of words parallel in meaning and probabilities of related words that are required to be together in 
order to form a sentence.  
 
Unrelated Words  
Although the model generally uses related words like “studies” and “novels” together, it occasionally groups 
unrelated words together, shown in Table 4. I hypothesize that this is because it has not seen a word (like 
“gloves”) enough to understand its usual context (being put on people’s hands). However, it does understand 
that gloves is a noun and has previously seen nouns (such as people) being stressed, eating, worrying, and going 
online. A potential future path to explore would be incorporating a dictionary of words into the model’s training 
so that it better understands the words’ meanings. 
 

Conclusion  
 
Language and culture preservation is a serious problem, both socially and technologically. My proposal is the 
first of its kind, a generative-adversarial approach to low-resource language translation via data augmentation. 
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Experiments show promising results. Using less than 20,000 sentences, my model is able to generate unlimited, 
coherent sentences. These completely new sentences can be used to improve the accuracy of machine transla-
tion. This innovative approach will bring about more robust language translations for minority populations. 

Because of its ability to generate an unlimited amount of original sentences despite being trained on 
minimal data, this GAN architecture can be used as an effective tool to augment low-resource language data, 
allowing translation software to train on more sentences and therefore generate more accurate translations. In 
addition, my novel application of a GAN to low-resource language translation serves as a reference for future 
work that combines GANs and Natural Language Processing, specifically MT. Improvements can be made on 
this research to increase the comprehensiveness when evaluating the model’s performance and to minimize the 
repetition and incoherence in many of the generated sentences. One promising future direction is to train the 
model to understand the previous words it has generated and to remember the grammatical relationship between 
a word and others of similar probabilities.  
 

Limitations  
 
As the model was trained in a simulated low resource setting, its performance on real low resource languages 
would depend on these languages' similarities to English and Spanish. Specifically, isolating languages, which 
have limited morphology, would work better with this model. For the encoder-decoder, as the small amount of 
data lends itself to severe overfitting, further research could be done to minimize overfitting through reducing 
model capacity, implementing L1 regularization in addition to the current L2 regularization being used, exper-
imenting with stronger dropout, and applying cross-validation. As mentioned in 6.1, I plan to use BLEU scores 
for more effective evaluation of sentence meaning as this research becomes more end-to-end. Thoroughly dis-
cussed in 6.3, various directions also exist to improve the accuracy and reliability of the GAN’s generated 
sentences, from remembering previous probabilities to training the model to distinguish words parallel in mean-
ing.  

While this model contributes to machine translation by augmenting monolingual data and the use of 
monolingual corpuses is becoming increasingly prevalent in NMT models (Cai et al., 2021), extending this 
research to generate parallel translations would allow for a larger impact, as most NMT models take in parallel 
data rather than monolingual corpuses. Also, future software can be developed to clean the generated sentences 
from the GAN and extract only the coherent ones in order to add them to data sets. Reinserting punctuation and 
capitalization serves as another future area for exploration.  
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