
Extended Kalman Filter State Estimation for
Autonomous Competition Robots

Ethan Kou1 and Acshi Haggenmiller2#

1 Henry M Gunn High School, Palo Alto, CA, USA
2 University of Michigan
Advisor

ABSTRACT

Autonomous mobile robot competitions judge based on a robot’s ability to navigate the game field quickly and accu-
rately. This means accurate localization is crucial for creating an autonomous competition robot. Two common local-
ization methods are odometry and computer vision landmark detection. Odometry provides frequent velocity meas-
urements, while landmark detection provides infrequent position measurements. The state can also be predicted with
a physics model. These three types of localization can be “fused” to create a more accurate state estimate using an
Extended Kalman Filter (EKF). The EKF is a nonlinear full-state estimator that approximates the state estimate with
the lowest covariance error when given the sensor measurements, the model prediction, and their variances. In this
paper, we demonstrate the effectiveness of the EKF by implementing it on a 4-wheel mecanum-drive robot simulation.
The position and velocity accuracy of fusing together various combinations of these three data sources are compared.
We also discuss the assumptions and limitations of an EKF.

I. Introduction

The First Tech Challenge (FTC) is a robotics competition hosted by the non-profit organization called For Inspiration
and Recognition of Science and Technology (FIRST). The competition field (Figure 1) is a flat area measuring 12 ft
x 12. Obstacles may be present to increase difficulty. The field is enclosed by a wall, which has multiple navigation
images taped to it. Images can be detected by the robot’s camera.

Figure 1: 2021-2022 FTC Season Competition Field [1]

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 1

Figure 2: Robot bottom view: The robot being described in this paper drives with four mecanum wheels (wheels with
small rollers attached at a 45-degree angle). The top of the figure is the front of the robot. There are three dead-wheel
encoders (wheels that track how far they spun) on the drivetrain of the robot, two vertical and one horizontal. There
is also a camera attached to the top of the robot.

A competition match in FTC consists of two parts: a two-minute driver-controlled period and a thirty-second
autonomous period. Points are scored by transporting objects from one location to another. In the 2021-2022 FTC
challenge, points are scored by transporting objects from the warehouse to the shipping hub (Figure 1). This makes a
robot’s ability to accurately traverse the field crucial to scoring points. Odometry and computer vision landmark de-
tection are localization methods that each have benefits and drawbacks. Odometry provides new data hundreds of
times per second and measures velocity, but error in velocity will accumulate in position. Computer vision provides
position data only when a wall image is in the robot’s camera view.

An Extended Kalman Filter can be used to combine odometry’s frequent updates with landmark detection’s
position accuracy to improve the state estimate. The Extended Kalman Filter is a full-state estimator, meaning that it
can estimate state values even if they aren’t being directly measured. This can be used to give an accurate position
estimate, even when a wall image is not in the camera’s view.

In this paper, we demonstrate the effectiveness of the Extended Kalman Filter for the mecanum-drive robot shown in
Figure 2, using a Python simulation.

II. Statistics Primer

A. Gaussian Distributions

Let X be a continuous random variable. A Gaussian distribution is the same as a normal distribution, which is a
probability density function defined by the variable’s mean μ and standard deviation σ. In a Gaussian distribution,
E(X) = μ. The Gaussian distribution density function has equation (1) and its graph is Figure 3.

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
1
2�
𝑥𝑥−𝜇𝜇
𝜎𝜎 �

2

 (1)

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 2

Figure 3: Standard Normal Distribution: μ = 0 and σ = 1

For all Gaussian Distributions, the probability that a randomly generated number is in the interval [x1, x2] is
∫ 𝑓𝑓(𝑥𝑥)𝑥𝑥2
𝑥𝑥1 𝑑𝑑𝑥𝑥. The total area under Gaussian distribution is always 1.

B. Variance and Covariance

The variance of a Gaussian random variable X is:

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸[𝑋𝑋])2] = 𝜎𝜎2 (2)

The covariance matrix of an n x 1 multivariate Gaussian is an n x n diagonal matrix such that the element in column
and row i equals the variance of the Gaussian in index i of the multivariate Gaussian. For 2 Gaussians, X and Y, the
following equations hold true:

𝐸𝐸[𝑋𝑋 + 𝑌𝑌] = 𝐸𝐸[𝑋𝑋] + 𝐸𝐸[𝑌𝑌] (3)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋  ±  𝑌𝑌) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)  (4)

The variance formula only holds if X and Y are independent.

III. Localization

A. The Kalman Filter

1) System Model

Kalman Filters (KF) are widely used in the robotics industry, especially for localization. This is because a KF can fuse
multiple types of localization data to create a more accurate estimate. The KF operates in three steps. First, the KF
predicts the state using a mathematical model. Then, it measures the state with sensors. Finally, it uses the measure-
ment to correct the predicted state to produce the estimated state. It is assumed that the prediction, measurement, and
estimation are all multivariate Gaussians, which are characterized by a mean vector and a covariance matrix. Noise is
a multivariate Gaussian distribution with μ = 0. The KF calculates the estimate by performing a weighted average
between the prediction and measurement, where lower variances are given higher weight. The KF is a perfect linear
state estimator because the estimation has the minimum possible error covariance. Figure 4 illustrates the state esti-
mation process.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 3

Figure 4: Visualization of state estimation: The distributions of prediction, measurement, and estimation are shown.
The estimation is weighted towards the measurement because it has a lower variance.

It is also assumed that the system can be modelled linearly. In a linear model, the transformation from the state to the
prediction and measurement must be linear combinations of the state values. A linear model can’t multiply state values
or take the sines/cosines of state values.

The prediction and measurement are:

𝑥𝑥𝑎𝑎,𝑡𝑡 = 𝐴𝐴𝑥𝑥𝑎𝑎,𝑡𝑡−1 + 𝐵𝐵𝑢𝑢𝑡𝑡 + 𝑞𝑞𝑡𝑡 (5)

𝑧𝑧𝑡𝑡 = 𝐻𝐻𝑥𝑥𝑎𝑎,𝑡𝑡 + 𝑉𝑉𝑡𝑡 (6)

(5) is the prediction/dynamics model. xa,t (n x 1) represents the true state at time step t. ut (k x 1) is the control vector
at time step t, which is used to move the robot. A (n x n) is the state transition matrix, and B (n x k) is the control
matrix. qt (n x 1) is prediction Gaussian noise with covariance matrix Q. In the linear Kalman Filter, A and B
are constant. In our simulation, we add artificial noise qt when simulating the robot’s true state since on a physical
robot, there will always be some randomness.

(6) is the measurement model. zt (m x 1) represents the measured state at time t. H (m x n) is the state-to-measurement
matrix, which picks out the values in the state that are being measured because H is a matrix of 0s and 1s. Gaussian
noise rt (m x 1) with covariance matrix R is measurement noise.

2) State Estimation

xa,t and zt are predicted based on the most recent belief/estimation. The estimated state at time step t is denoted as xt.
Subscript p denotes prediction.

𝑥𝑥𝑝𝑝 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑢𝑢𝑡𝑡 (7)

𝑧𝑧𝑝𝑝 = 𝐻𝐻𝑥𝑥𝑝𝑝 (8)

The mean value is predicted as it has the highest probability of being the actual value. The covariance matrix of the
state x is P, which is predicted with the following equation:

𝑃𝑃𝑝𝑝 = 𝐴𝐴𝑃𝑃𝑡𝑡−1𝐴𝐴𝑇𝑇 + 𝑄𝑄 (9)

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 4

The covariance matrices are used to compute the Kalman Gain, which is denoted as K (n x m):

𝐾𝐾 = 𝑃𝑃𝑝𝑝𝐻𝐻𝑇𝑇�𝐻𝐻𝑃𝑃𝑝𝑝𝐻𝐻𝑇𝑇 + 𝑅𝑅�−1 (10)

The Kalman Gain determines how much the measurement should be trusted by utilizing the variance of the measure-
ment, the prediction, and the latest estimation. If the Kalman Gain is higher, the estimate will be weighted more
towards the measurement. Finally, The Kalman Gain is used to compute the final estimation.

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑝𝑝 + 𝐾𝐾�𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑝𝑝� (11)

𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑝𝑝 − 𝐾𝐾𝐻𝐻𝑃𝑃𝑝𝑝 (12)

3) Limitations of Linearity

The KF requires a completely linear model, which has many limitations. The robot state contains the robot's heading,
and since the ut vector represents movement in body coordinates and the position state is in global coordinates, a
rotation must be present in the prediction model. A rotation requires taking the sines/cosines of the robot's angle state,
making the system nonlinear. As a result, we must use the Extended Kalman Filter to handle the nonlinearity of the
system.

B. The Extended Kalman Filter

The Extended Kalman Filter (EKF) performs state estimation on a nonlinear system, but it isn't optimal. The reason
for its suboptimal estimation will be explained shortly. The EKF equations are very similar to the KF equations.

𝑥𝑥𝑎𝑎,𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑎𝑎,𝑡𝑡−1,𝑢𝑢𝑡𝑡) + 𝑞𝑞𝑡𝑡 (13)
𝑧𝑧𝑡𝑡 = ℎ(𝑥𝑥𝑎𝑎,𝑡𝑡) + 𝑉𝑉𝑡𝑡 (14)
𝑥𝑥𝑝𝑝 = 𝑓𝑓(𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡) (15)
𝑧𝑧𝑝𝑝 = ℎ(𝑥𝑥𝑝𝑝) (16)

f is the state transition function, and h is the state-to-measurement function. Both can be nonlinear. To calculate the
Kalman gain, which uses the same equation as the KF, we obtain linear matrix approximations of functions f and h
with Jacobians A and H respectively.

 𝐴𝐴 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑡𝑡−1
 (17)

 𝐻𝐻 = 𝜕𝜕ℎ

𝜕𝜕𝑥𝑥𝑝𝑝
 (18)

A Jacobian is a matrix of partial derivatives. If we let xi be the ith element of the function's input and yi be the ith
element of the function's output, the element in the Jacobian at row r and column c is 𝜕𝜕𝑦𝑦𝑟𝑟

𝜕𝜕𝑥𝑥𝑐𝑐
. This linear approximation

is what makes an EKF non-optimal. Jacobians A and H also need to be recalculated at each time step. For more KF
and EKF resources, visit [2], [3], and [4].

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 5

IV. Simulation System Model

A. System Overview

We will be using the EKF because the robot's system is nonlinear. The Δt of the true state is 0.001s and the Δt of the
EKF is 0.01s. All variables used in the mathematics for the prediction model and measurement model are labelled in
Figure 5, which also illustrates the coordinate system. Instead of denoting the robot's state as xt, we denote it as st.
This is done to avoid confusion between the state and the x position. The robot's state st consists of its x, y, and θ
positions as well as its velocity in body coordinates. Body velocity is used instead of global velocity because body
velocity tends to be less nonlinear, resulting in improved localization accuracy.

Figure 5: The diagram is a top view of the robot's drivetrain. The robot is x-forwards and y-left. Angle (radians)
increases when rotating counter clockwise. Since the FTC field is based off inches, the position state is in inches and
the velocity state is in inches/second. The red outlines are mecanum wheels, and the direction of the rollers are shown.
The blue outlines are encoders for odometry. EL and ER are vertical encoders (turn when moving forward/backward),
and Ea is a horizontal encoder (turn when moving left/right). Yellow lines represent constant lengths. Including a
subscript for a matrix or vector means that the subscript applies to all elements in the matrix/vector if applicable.

𝑠𝑠𝑡𝑡 = [𝑥𝑥 𝑦𝑦 𝜃𝜃 �̇�𝑥 �̇�𝑦 �̇�𝜃]𝑡𝑡𝑇𝑇 (19)

The control vector contains the velocities of the four mecanum wheels in radians per second:

𝑢𝑢𝑡𝑡 = [𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4]𝑇𝑇 (20)

A positive mecanum wheel velocity means that the wheel will spin in a way to move the robot forwards. Since ut
contains velocity, the robot’s acceleration can be unrealistically large. This problem can be solved by adding acceler-
ation to the state st., which won’t be done in this paper. The robot receives six measurements in total: three from
odometry and three from landmark detection. The odometry measurements are the dead-wheel encoder velocities
(inches per second) and are denoted as EL, ER, and Ea respectively. Landmark detection provides three position meas-
urements, xm, ym, and 𝜃𝜃𝑚𝑚. Measurement zt is written as:

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 6

𝑧𝑧𝑡𝑡 = [𝑥𝑥𝑚𝑚 𝑦𝑦𝑚𝑚 𝜃𝜃𝑚𝑚 𝐸𝐸𝐿𝐿 𝐸𝐸𝑅𝑅 𝐸𝐸𝑎𝑎]𝑇𝑇 (21)

Odometry measurements are provided at every time step, while landmark detection measurements are only provided
when an image landmark is completely in the robot’s view. The camera field of view (FOV) is 70 degrees. When an
image is not in sight, the position measurement variance is set to a very high value to make the EKF put negligible
weight towards the camera measurement.

B. Prediction Model

1) State Transition Function

The state transition function f propagates the current state to the next state. To find f, we need to express the next state
in terms of the current state. The dynamics model used to calculate the true state for the simulation is simply the
prediction model with added noise qt at each time step. The next position state is predicted by turning body velocity
into global velocity:

�
𝑥𝑥
𝑦𝑦
𝜃𝜃
�
𝑝𝑝

= �
𝑥𝑥 + Δ𝑡𝑡(�̇�𝑥 cos 𝜃𝜃 − �̇�𝑦 sin𝜃𝜃)
𝑦𝑦 + Δ𝑡𝑡(�̇�𝑥 sin𝜃𝜃 + �̇�𝑦 cos 𝜃𝜃)

𝜃𝜃 + Δ𝑡𝑡 ∙ �̇�𝜃
�

𝑡𝑡−1

 (22)

The next velocity state depends solely on the ut vector. Using mecanum wheel mechanics [5], we can calculate the
robot's body velocity based on the velocity of each of the four mecanum wheels. L is the distance from the center
horizontal axis to the center of a mecanum wheel and l is the distance from the center vertical axis to the center of a
mecanum wheel. r is the radius of a mecanum wheel. Refer to Figure 5.

�
�̇�𝑥
�̇�𝑦
�̇�𝜃
�
𝑝𝑝

= �𝑟𝑟
4
�

1 1 1 1
1 −1 −1 1

− 1
𝐿𝐿+𝑙𝑙

1
𝐿𝐿+𝑙𝑙

− 1
𝐿𝐿+𝑙𝑙

1
𝐿𝐿+𝑙𝑙

�� �

𝑚𝑚1
𝑚𝑚2
𝑚𝑚3
𝑚𝑚4

�

𝑡𝑡

 (23)

Multiplying the right side, we get:

�
�̇�𝑥
�̇�𝑦
�̇�𝜃
�
𝑝𝑝

= 𝑟𝑟
4
�

𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚3 + 𝑚𝑚4
𝑚𝑚1 −𝑚𝑚2 − 𝑚𝑚3 + 𝑚𝑚4

1
𝐿𝐿+𝑙𝑙

(−𝑚𝑚1 + 𝑚𝑚2 − 𝑚𝑚3 + 𝑚𝑚4)
�

𝑡𝑡

 (24)

Combining (22) and (24), we have:

𝑓𝑓

⎝

⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥
𝑦𝑦
𝜃𝜃
�̇�𝑥
�̇�𝑦
�̇�𝜃⎦
⎥
⎥
⎥
⎥
⎤

𝑡𝑡−1

, �

𝑚𝑚1
𝑚𝑚2
𝑚𝑚3
𝑚𝑚4

�

𝑡𝑡
⎠

⎟
⎟
⎞

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥𝑡𝑡−1 + Δ𝑡𝑡(�̇�𝑥 cos 𝜃𝜃 − �̇�𝑦 sin 𝜃𝜃)𝑡𝑡−1
𝑦𝑦𝑡𝑡−1 + Δ𝑡𝑡(�̇�𝑥 sin𝜃𝜃 + �̇�𝑦 cos 𝜃𝜃)𝑡𝑡−1

𝜃𝜃𝑡𝑡−1 + Δ𝑡𝑡 ∙ �̇�𝜃𝑡𝑡−1
𝑟𝑟
4

(𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚3 + 𝑚𝑚4)𝑡𝑡
𝑟𝑟
4

(𝑚𝑚1 −𝑚𝑚2 − 𝑚𝑚3 + 𝑚𝑚4)𝑡𝑡
𝑟𝑟

4(𝐿𝐿+𝑙𝑙)
(−𝑚𝑚1 + 𝑚𝑚2 −𝑚𝑚3 + 𝑚𝑚4)𝑡𝑡⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (25)

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 7

Noise qt has covariance matrix Q:

𝑄𝑄 = 𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑([0.002Δ𝑡𝑡 0.002Δ𝑡𝑡 0.002Δ𝑡𝑡 0.45 0.45 0.45]) (26)

diag() transforms a 1 x n vector into an n x n diagonal matrix. The position variance is multiplied by Δ𝑡𝑡 because error
increases with more delay between updates. The velocity variance, however, is independent of the value of Δ𝑡𝑡 These
variances are not obtained from measurements on an actual robot. They are just arbitrary values that can be tweaked
to adjust the simulation behaviour. For example, when experimenting solely with the accuracy of the prediction model,
the values in Q can be set to near zero, which will cause the KF to “ignore” the measurement.

2) State Transition Jacobian

Based on (25), we can compute the Jacobian matrix A.

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 Δ𝑡𝑡 (−�̇�𝑥 sin𝜃𝜃 − �̇�𝑦 cos𝜃𝜃) Δ𝑡𝑡 ∙ cos 𝜃𝜃 −Δ𝑡𝑡 ∙ sin𝜃𝜃 0
0 1 Δ𝑡𝑡(�̇�𝑥 cos𝜃𝜃 − �̇�𝑦 sin𝜃𝜃) Δ𝑡𝑡 ∙ sin𝜃𝜃 Δ𝑡𝑡 cos 𝜃𝜃 0
0 0 1 0 0 Δ𝑡𝑡
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

𝑡𝑡−1

 (27)

C. Measurement Model

1) State-to-measurement Function

The state-to-measurement function h converts the current state into the current predicted measurement. The model for
the true measurement includes added noise rt. In order to obtain the h function, we need to express the predicted
measurement in terms of the predicted state.

This is simple for the position components as computer vision directly measures position. Measurement is denoted by
the subscript m.

�
𝑥𝑥
𝑦𝑦
𝜃𝜃
�
𝑚𝑚

= �
𝑥𝑥
𝑦𝑦
𝜃𝜃
�
𝑝𝑝

 (28)

To obtain encoder readings in terms of predicted velocity, we use the linear odometry equations (29) [6].

�
�̇�𝜃
�̇�𝑥
�̇�𝑦
�

𝑝𝑝

= �
(𝐸𝐸𝑅𝑅 − 𝐸𝐸𝐿𝐿)/(2𝑊𝑊)

(𝐸𝐸𝑅𝑅 + 𝐸𝐸𝐿𝐿)/2
𝐸𝐸𝑎𝑎 + 𝐷𝐷�̇�𝜃𝑝𝑝

� (29)

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 8

W is the distance between a vertical encoder and the center vertical axis. The left and right encoders are symmetric to
the center vertical axis. D is the distance between the horizontal encoder and the center horizontal axis. Refer to
Figure 5. By rearranging (29), we can obtain:

�
𝐸𝐸𝐿𝐿
𝐸𝐸𝑅𝑅
𝐸𝐸𝑎𝑎
� = �

�̇�𝑥 −𝑊𝑊�̇�𝜃
�̇�𝑥 + 𝑊𝑊�̇�𝜃
�̇�𝑦 − 𝐷𝐷�̇�𝜃

�

𝑝𝑝

 (30)

Combining (28) and (30) gives:

ℎ

⎝

⎜⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥
𝑦𝑦
𝜃𝜃
�̇�𝑥
�̇�𝑦
�̇�𝜃⎦
⎥
⎥
⎥
⎥
⎤

𝑝𝑝⎠

⎟⎟
⎟
⎞

=

⎣
⎢
⎢
⎢
⎢
⎡

𝑥𝑥
𝑦𝑦
𝜃𝜃

�̇�𝑥 −𝑊𝑊�̇�𝜃
�̇�𝑥 + 𝑊𝑊�̇�𝜃
�̇�𝑦 − 𝐷𝐷�̇�𝜃 ⎦

⎥
⎥
⎥
⎥
⎤

𝑝𝑝

 (31)

Noise rt has covariance matrix R:

𝑅𝑅 = 𝑑𝑑𝑑𝑑𝑉𝑉𝑑𝑑([𝑑𝑑𝑣𝑣𝑎𝑎𝑟𝑟 𝑑𝑑𝑣𝑣𝑎𝑎𝑟𝑟 𝑑𝑑𝑣𝑣𝑎𝑎𝑟𝑟 𝐸𝐸𝐿𝐿𝑣𝑣𝑣𝑣𝑟𝑟 𝐸𝐸𝑅𝑅𝑣𝑣𝑣𝑣𝑟𝑟 𝐸𝐸𝑎𝑎𝑣𝑣𝑣𝑣𝑟𝑟])
𝑑𝑑𝑣𝑣𝑎𝑎𝑟𝑟 = 0.001𝑑𝑑𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑖𝑖2 + 0.001

𝐸𝐸𝑖𝑖𝑣𝑣𝑣𝑣𝑟𝑟 = 0.002𝐸𝐸𝑖𝑖2 + 0.001 (32)

Similar to the prediction covariance matrix, the measurement covariance matrix is not obtained from measurements
on a physical robot. Odometry measurement noise increases as the encoder spins faster, and landmark detection is
noisier if the robot is further away from the image. The variable dimage is the distance between the robot and the detected
image.

2) State-to-measurement Jacobian

We can use (30) to compute the Jacobian H. Our h function is linear, resulting in a constant Jacobian H.

𝐻𝐻 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 −𝑊𝑊
0 0 0 1 0 𝑊𝑊
0 0 0 0 1 −𝐷𝐷 ⎦

⎥
⎥
⎥
⎥
⎤

 (33)

V. Pure Pursuit Path Following

The path following algorithm being used to test localization accuracy is Pure Pursuit [7]. Pure Pursuit is relatively
easy to implement and requires low computational power. It works by pursuing the furthest point on the path that is
within a specified distance from the robot.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 9

Figure 6: Pure Pursuit: The squares and the segments connecting them are the desired path. The blue rectangle is the
robot and the blue point is its center. To follow the path, a circle with fixed radius is constructed around the robot, and
the point to pursue is the intersection (green dot) of the circle with the path that is furthest along the path. If there are
no intersections, the target point is just the nearest point on the path to the robot. The orange line is a hypothetical path
the robot might take.

In order to pursue a target point, Pure Pursuit utilizes a Proportional Integral Derivative (PID) controller. A singular
PID can only bring a scalar quantity to a target value, so in order to move a robot to a target position (three scalars),
three PIDs are used in this case - one each for the x, y, and 𝜃𝜃 values. The control action 𝑢𝑢𝑡𝑡 a PID controller outputs is
determined by this expression:

𝑢𝑢𝑡𝑡 = 𝑃𝑃 ∙ 𝑝𝑝𝑡𝑡 + 𝐼𝐼 ∙ 𝑑𝑑𝑡𝑡 + 𝐷𝐷 ∙ 𝑑𝑑𝑡𝑡 (34)

Coefficients P, I, and D are constants that require tuning. Each update cycle, pt is set to the error, which is the target
state minus the current state. it is the sum of all the errors up to time t. dt is the change in error since the last update
and is sometimes normalized over time. Let the current state be st and the target state be starget.

𝑝𝑝𝑡𝑡 = 𝑠𝑠𝑡𝑡𝑎𝑎𝑟𝑟𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑠𝑠𝑡𝑡 (35)
𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑡𝑡−1 + 𝑝𝑝𝑡𝑡 (36)
𝑑𝑑𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1 (37)

Eventually, the robot reaches the end of the path.

VI. Localization Experiments

A. Accuracy Metric

Localization accuracy will be measured by the root mean squared error (RMSE) of specific state values for all time
steps.

(𝑥𝑥,𝑦𝑦) 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸: position translational error
𝑥𝑥 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸: x position error
𝑦𝑦 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸: y position error
𝜃𝜃 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸: θ position error
𝑥𝑥 ̇ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 x velocity error
�̇�𝑦 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 y velocity error
�̇�𝜃 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 θ velocity error

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 10

For all EKF experiments, we will be using the same path (Figure 7). This path works well for testing localization
because the path includes many unique types of movement to follow, such as straight lines, left/right turns, and ellip-
tical curves.

Figure 7: Path for Localization Test: The path starts at (0, 0) and ends at (75, 2). Images for landmark detection
localization are located at the top and bottom of the border.

B. Velocity Accuracy Comparison

On a physical robot, system variance is often higher than measurement variance, so we imitate this in our simulation
(Figure 8).

Figure 8: Covariance Comparison: The sum of the velocity variances of prediction covariance matrix Q and the meas-
urement covariance matrix R are compared for the path in Figure 7. Since the prediction should be less accurate than
the measurement, it has a higher variance most of the time.

Figure 9: Velocity Fusion: The estimation from combining the model and the odometry measurement is more accurate
than just using one of them alone.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 11

To show velocity estimation (Figure 9) is better both prediction and measurement, we run 100 simulations using each
of three localization types and find the average velocity RMSE. The localization types are using only prediction
(model), using only measurement (odo), and using both prediction and measurement with an EKF.

Localization without Camera
 model odo model + odo

(𝑥𝑥, 𝑦𝑦) 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸
𝜃𝜃 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸
�̇�𝑥 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸
�̇�𝑦 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸
�̇�𝜃 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸

2.2432
0.1179
0.6692
0.6717
0.6698

2.9770
0.1903
0.4578
0.4120
0.2286

2.8704
0.1864
0.3589
0.3271
0.1996

The table above shows that fusing together the model with odometry with an EKF has the lowest RMSE for all three
velocity states. The position RMSE with an EKF might be high because neither the prediction nor the measurement
directly estimates the position. This makes it so slight angle error can lead to significant translational error.

C. Position Accuracy Comparison

Position correction shown in Figure 10, which is a result of data fusion, is both a benefit and drawback to the EKF. It
is a benefit because the robot can more accurately localize. It is a drawback because the estimated position will sud-
denly shift, which can lead to jerky path-following movements.

Figure 10: Data Fusion: When a landmark isn't in sight, the robot is able to use odometry to localize, but over time,
the position error accumulates. Once a landmark is back in view, the position corrects itself.

The following RMSE values are obtained from the same 100 trials as earlier:

Localization with Camera
 odo + model odo + model + camera

(𝑥𝑥, 𝑦𝑦) 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸
𝑥𝑥 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸
𝑦𝑦 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸
𝜃𝜃 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸

2.8704
6.4336
8.0909
0.1864

1.2140
1.6400
1.8259
0.0956

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 12

D. Localization for FTC

In the FTC competition, the most common type of autonomous path is consistently and accurately cycling between
two points. In the 2021-2022 FTC Freight Frenzy game (Figure 1 and 11) the robot needs to travel between the ware-
house and ship hub while avoiding the barriers.

Figure 11: Cycle Path: The circle is the shipping hub and the top left corner is the warehouse. Landmark images are
located on the left and bottom of the field (green). The robot is following the path using camera + odo + model for
localization.

Figure 12: A “cycle'' refers to the robot making its way from the warehouse to the shipping hub and back to the
warehouse. The graphed data is an average of 10 trials.

Without using landmark detection localization, the accuracy of odometry will drift over time, leading to error accu-
mulation in the long run as shown in Figure 12. The accuracy of odometry may not be realistic due to the 20-inch
error accumulation in just 5 cycles, but error accumulation is still a serious issue to physical robots.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 13

E. EKF Drawbacks

When Δ𝑡𝑡 is large, the Jacobians start to break down. This is because Jacobians are linear approximations, meaning
their accuracy deteriorates as Δ𝑡𝑡 increases. Furthermore, odometry accuracy worsens when Δ𝑡𝑡 increases. Refer to Fig-
ure 13.

Figure 13: 30 simulations were run at each value of Δ𝑡𝑡, and the average (x, y) RMSE value was recorded. The time
axis is logarithmic.

Another drawback to the EKF is if the system is highly nonlinear. The EKF works better when velocity is in body
coordinates instead of global coordinates since body coordinates tend to be less nonlinear. For example, when moving
in a circle at constant speed, global velocity is sinusoidal while body velocity is constant. Since the EKF works by
performing many linear approximations, having a highly nonlinear velocity state leads to less accurate localization.

VII. Conclusion

We successfully applied an Extended Kalman Filter to “fuse'' odometry and computer vision landmark measurements.
The EKF definitely provides good results for a mecanum drivetrain, as quantified by the decrease in RMSE when data
is fused, and can be applied to the FTC competition. It greatly increases localization accuracy while not requiring
much computation power.

The next steps are to implement an EKF on a physical robot with a more realistic model that includes acceleration and
other factors such as friction and motor voltages. A more accurate physics model can be obtained by training a machine
learning model with human driving. Another state estimation algorithm to look into is the particle filter, as it can
perform state estimation on systems with non-Gaussian noise.

References

[1] FIRST® (2021). 2021-2022 FIRST® Tech Challenge Game Manual Part 2 – Traditional Events.
https://firstinspiresst01.blob.core.windows.net/first-forward-ftc/game-manual-part-2-traditional.pdf

[2] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 14

[3] Franklin, W. Kalman Filter Explained Simply. The Kalman Filter.

[4] Thrun, S. (2002). Probabilistic robotics. Communications of the ACM, 45(3), 52-57.

[5] Taheri, H., Qiao, B., & Ghaeminezhad, N. (2015). Kinematic model of a four mecanum wheeled mobile
robot. International journal of computer applications, 113(3), 6-9.

[6] Olson, E. (2004). A primer on odometry and motor control. Electronic Group Discuss, 12.

[7] Coulter, R. C. (1992). Implementation of the pure pursuit path tracking algorithm. Carnegie-Mellon UNIV
Pittsburgh PA Robotics INST.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 15

