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ABSTRACT 

I provide a proof of Fermat’s Sum of Two Squares theorem using Gaussian Integers. The theorem characterizes 
the integers that can be represented as a sum of two integer squares: n = a2 + b2 for some n, a, b ∈ Z. 

Introduction 

Fermat wrote an elaborate article on the statement that every prime p of the form 4n+1 is the sum of two squares. 
This was published in the 17th century, but Fermat’s initial proof was incomplete. Euler completed the proof 
using infinite descent almost 100 years later. Towards the end of the 19th century, Dedekind was the first to 
provide a simpler proof using Gaussian integers [4]. Recently, this theorem has been extended to characterize 
all integers, not just primes, that can be written as a sum of two squares. [1], [3] provides proof of this extended 
theorem using Thu’s Lemma and Fermat’s Little Theorem. This paper uses Gaussian integers to prove the ex-
tended theorem1, which is stated below. 

Theorem 1 (Sum of two squares theorem). A number n can be expressed as a sum of two squares a2 + 
b2, where a, b ∈ Z, if and only if all prime factors of n that are congruent to 3 modulo 4 have even powers in its 
prime factorization. 

In simpler terms, if a prime factor of n is of the form 4k + 3 and occurs with an odd power in the prime 
factorization of n, then n cannot be written as a sum of two squares. For instance, the number 27 with prime 
factorization 33 cannot be expressed as a sum of two squares because its prime factor 3, which is congruent to 3 
modulo 4, has an odd power. In contrast, 36 with prime factorization 22 · 32 can be represented as a sum of two 
squares, 62 + 02, because it has only one prime factor 3 that is congruent to 3 modulo 4, and this prime factor has 
an even power. 

Another example illustrating the theorem is 877149, which has prime factorization 72·13·17·34. This 
number can be expressed as a sum of two squares, namely 3152 + 8822, because both prime factors 7 and 3 that 
are congruent to 3 modulo 4 have even powers in its prime factorization. 

Gaussian Integers 

Gaussian integers were introduced by Gauss in 1832. Since the norm of a Gaussian integer is a sum of two 
squares, the theory of Gaussian integers is closely related to the sum of two squares theorem, which makes the 
proof easier. We state important definitions and related theorems of Gaussian integers below. For a detailed 
exposition on Gaussian integers, see Conrad [2]. 

Definition 1. The set of Gaussian integers is denoted by G and defined as G = a + bi: a, b ∈ Z, i2 = −1. 
Definition 2. The conjugate of a Gaussian integer z =  a +  bi is defined as another Gaussian integer 

z�  =  a –  bi. 
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1 I do not claim that this is the only paper that uses Gaussian Integers to prove extended theorem, but I provide 
a simpler approach that only requires the existence of Gaussian primes. 

Definition 3. The norm function D ∶  G →  Z of a Gaussian integer is defined as the product of the 
number and its conjugate, i.e., D(z) = zz� = a2 + b2 , which is a sum of two squares. The norm also has a 
multiplicative property: D(z1z2) = D(z1)D(z2),where z1, z2  ∈  G. 

The fact that a Gaussian integer multiplied by its conjugate results in a sum of two squares is a pivotal 
element of our proof of the “sum of two squares” theorem. 

Definition 4. An element of G with norm 1 is called a unit of G, and the complete set of units of G is 
1,−1, i,−i. 

G follows a divisibility rule defined by the following theorem: 
Theorem 2. A Gaussian integer z = a + bi is divisible by an ordinary integer c ∈ Z if and only if c|a and 
c|b in Z. This also implies that if z is divisible by c then z� is also divisible by c. 
G contains irreducible elements which are analog of prime number in the Integer domain. The irreduc-

ible elements follow property similar to that of prime integers. Two important properties which we will use in 
our proof are stated below without the proof. 

Definition 5. An element p ∈ G is irreducible if and only if whenever it is represented in the form p = 
a.b where a,b ∈ G, then at-least one of a or b is a unit.
Theorem 3. If an element p ∈ G is irreducible then p|a · b implies p|a or p|b.
Theorem 4 (Unique factorization). Any z ∈ G can be factorized into a unique (up to multiplication by

units) product of irreducible elements in G. 
The above theorems assert that the fundamental theorem of arithmetic can also be applied to the do-

main of Gaussian integers. 

Preliminary Results 

Before proving our main theorem, we require several intermediate results, which we provide in the following 
lemmas. 

Lemma 1 (Unique multiplicative inverse in Zp). If p is a prime then there exists a unique inverse x for 
each a ∈ 1,2, … , p − 1 such that ax ≡ 1(modp) 

Proof. Consider any a ∈ 1,2, … , p − 1. Since p is a prime, we have gcd(a, p) = 1. By using Bezout’s 
identity, we can write the following Diophantine equation for some x, y ∈  Z. 

ax +  py =  1  

ax ≡ 1(mod p) 

This implies that there exists an x such that ax ≡ 1(mod p). Next, we prove that the inverse is unique. 
Suppose not, so that there are two distinct integers x, y ∈ 1,2, … , p − 1 such that ax ≡ 1(mod p) and ay ≡
1(mod p).This implies 

a(x − y) ≡ 0(mod p) 

Since x and y are distinct integers in {1,2. . , p –  1}, (x –  y) ≠ pk for some k ∈ Z, which implies 

a ≡ 0(mod p) 
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This contradicts gcd(a, p) = 1.  Therefore, the inverse of each a ∈ 1,2, … , p − 1 is 
unique. 

Lemma 2 (Wilson’s Theorem). (p − 1)! ≡ −1(mod p)for any prime number p. 
Proof. By Lemma 1, each of the numbers in the set 1,2, … , p − 1 has a unique inverse modulo p. Fur-
thermore, 1 and p−1 are their own inverses since  

1.1 ≡  1( mod p) and (p − 1)2  ≡  p2 − 2p + 1 ≡  1( mod p). 

Thus, we can write: 
(p − 1)! = 1.2.3 … (p − 2). (p − 1) = 1. (p − 1)[2.3 … (p − 2)] 

Since 1 and p − 1 are their own inverses, all numbers in 2,3, … , p − 2 must have inverses within the 
same set, and these inverses are unique. Therefore, 

2.3 … (p − 2) ≡ 1(mod p) 
Hence, 

(p − 1)! ≡ 1. (p − 1). 1(mod p) 

(p − 1)! ≡ −1(mod p) 

Lemma 3. If a prime p is congruent to 1 (mod 4) then there exists some x ∈ N such that x2 ≡ −1 (mod 
p). 

Proof. Since p = 4k + 1 for some k ∈ N, we have , which is an even number. We also know 
that 

a ≡ a − p(mod p) 
Therefore, we can write: 

which implies 

By Wilson’s theorem (Lemma 2), we know that 

Since ! “exists”, x also exists such that x2  ≡  −1(mod p). 
Lemma 4. If a prime p is congruent to 1 (mod 4) then p is reducible, meaning it can be factorized into 

two factors x, y ∈  G, none of them is a unit. 
Proof. Suppose that prime p is congruent to 1 (mod 4). By Lemma 3 there exists some x ∈ Z such that 

p|x2 + 1 ⇒ p|(x + i)(x − i). 
If p|(x + i) then x + i = pk for some k ∈ G. Let k = a + bi for some a,b ∈ Z. Hence, 

x + i = p a + p b i ⇒ pb = 1 
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This leads to a contradiction as p is prime and b is an integer, so p b ≠ 1. Hence p † x + i  . Similarly, 
we can show p † x − i. If p does not divide either of the factors x + i or x − i but divides the product, 
(x + i)(x − i) , then p is not a prime element in G and hence p is reducible (from theorem 3). 

Lemma 5. A prime p that is congruent to 1 (mod 4) can be expressed as a sum of two squares. 
Proof. We know from Lemma 4 that such prime p is reducible, and hence p can be factorized into two 

non unit Gaussian integers x,y ∈ G. Using the properties of norm function 

D(p) =  D(xy) =  D(x). D(y) 

Since p is a prime integer, D(p) = p2. Therefore, 

D(x). D(y) =  p2 

Since p2 has only three integer factors 1, p, p2 and D(x) ≠ 1, D(y) ≠ 1. This implies: 

D(x) = D(y) = p 
. If x = a + bi then 
p = D(x) = a2 + b2 

Lemma 6 (Brahmagupta-Fibonacci identity). Let p and q be two positive integers that can be written 
as a sum of two squares then their product can also be written as a sum of two squares. 

Proof. Let p = x2 + y2 and q = u2 + v2 where x, y, u, b ∈  Z. Then p q can be written as 

p q =  (x2  +  y2)(u2  +  v2) =  x2 u2  +  x2v2  +  y2u2  +  y2v2 

=  (x2u2  ±  2xyuv + y2v2) + (x2v2  ∓  2xyuv + y2u2) 

pq =  (xu ±  yv)2  +  (xv ∓  yu)2 

Since xu ±  yv and xv ±  yu are integers, pq is a sum of two 
squares. 

Lemma 7. The only way a Gaussian integer z =  a + ib with b ≠ 0 can be transformed into a non-zero 
ordinary integer is through multiplication by a multiple of its conjugate. 

Proof. Let’s say that the Gaussian integer is a + bi where b ≠ 0. If we represent this number graphically, 

then the line passing through a + bi and the original makes an angle 
Since a regular integer will have angle 0 from the x-axis, and the angles add during multiplication in 

the domain of G, we need to multiply a + bi with another number say c + di such that 

The above equation is only satisfied if ad +  bc =  0 which means c +  di =  k(a –  bi) for some k ≠
0, k ∈  Z. 

Lemma 8. A prime q such that q ≡ 3(mod 4) is irreducible. 
Proof. Suppose q is reducible. Since q is a prime integer and reducible, it must be the product of two 

conjugates (from Lemma 7). q also does not have another integer factor because q is prime. Therefore, we can 
write: 

q =  (a +  ib)(a −  ib) =  a2  +  b2 where a, b ∈  Z 
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Since a2( mod 4)  ∈  {0,1} and b2( mod 4) ∈  {0,1}, a2  +  b2( mod 4)  ∈  {0,1,2}. Therefore, a sum 
of two squares number can’t be congruent to 3 (mod 4), which is a contradiction. Hence q is irreducible. 

Proof of Sum of Two Squares Theorem 

a) First, we prove the necessary condition. Let’s suppose that each prime factor 𝑞𝑞 ≡  3(𝑚𝑚𝑚𝑚𝑚𝑚 4) occurs to an
even power in the prime factorization of n. We can represent n in terms of its prime factors as follows:

2𝑘𝑘  � 𝑝𝑝𝑖𝑖
𝑟𝑟𝑖𝑖

𝑝𝑝≡1 (𝑚𝑚𝑚𝑚𝑚𝑚 4)

� 𝑞𝑞𝑗𝑗
𝑠𝑠𝑗𝑗

𝑞𝑞≡3 (𝑚𝑚𝑚𝑚𝑚𝑚 4)

We know that 2 = 12 + 12 is a sum of two squares, all pi’s are a sum of two squares from Lemma 5, and 
we can add 02 to represent each qj with even power as a sum of two squares by adding 02. Therefore, using Lemma 
6, their product n is a sum of two squares. 

b) Next, we will prove the converse. Let’s suppose that n = a2 + b2. We can represent n in terms of its
prime factors as follows: 

𝑛𝑛 = 2𝑘𝑘  � 𝑝𝑝𝑖𝑖
𝑟𝑟𝑖𝑖

𝑝𝑝≡1 (𝑚𝑚𝑚𝑚𝑚𝑚 4)

� 𝑞𝑞𝑗𝑗
𝑠𝑠𝑗𝑗

𝑞𝑞≡3 (𝑚𝑚𝑚𝑚𝑚𝑚 4)

= 𝑎𝑎2 + 𝑏𝑏2 

Since 2k and  for all i are sums of two squares, their product is also a sum of two squares by Lemma 
5. Let this product be α. Thus, we have:

𝑛𝑛 = 𝛼𝛼 � 𝑞𝑞𝑗𝑗
𝑠𝑠𝑗𝑗

𝑞𝑞≡3 (𝑚𝑚𝑚𝑚𝑚𝑚 4)

= 𝑎𝑎2 + 𝑏𝑏2 

Consider any j. Using division algorithm, 𝑞𝑞𝑗𝑗|𝑎𝑎2  +  𝑏𝑏2  ⇒  𝑞𝑞𝑗𝑗|(𝑎𝑎 +  𝑏𝑏𝑏𝑏)(𝑎𝑎 −  𝑏𝑏𝑏𝑏). Since 𝑞𝑞𝑗𝑗  is irreduc-
ible (from Lemma 8), 𝑞𝑞𝑗𝑗  must divide either 𝑎𝑎 + 𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑎𝑎 − 𝑏𝑏𝑏𝑏 (from Theorem 3). Without the loss of generality, 
let’s assume 𝑞𝑞𝑗𝑗  divides a + bi and the maximum power of 𝑞𝑞𝑗𝑗  that divides a + bi is k i.e. 𝑞𝑞𝑗𝑗𝑘𝑘|𝑎𝑎 +  𝑏𝑏𝑏𝑏. 

By Theorem 2, if 𝑞𝑞𝑗𝑗𝑘𝑘|𝑎𝑎 +  𝑏𝑏𝑏𝑏, then 𝑞𝑞𝑗𝑗𝑘𝑘|𝑎𝑎 −  𝑏𝑏𝑏𝑏. Next, we show that k is the maximum power of 𝑞𝑞𝑗𝑗   that 
divides a − bi. Suppose not and 𝑞𝑞𝑗𝑗𝑚𝑚|𝑎𝑎 −  𝑏𝑏𝑏𝑏 where m > k. Again, from Theorem 2, if 𝑞𝑞𝑗𝑗𝑚𝑚|𝑎𝑎 −  𝑏𝑏𝑏𝑏 then 𝑞𝑞𝑗𝑗𝑚𝑚|𝑎𝑎 +
𝑏𝑏𝑏𝑏, which is a contradiction that k is the maximum power of 𝑞𝑞𝑗𝑗  that divides a + bi. Thus, the power of 𝑞𝑞𝑗𝑗  that 
divides each of 𝑎𝑎 + 𝑏𝑏𝑏𝑏 and 𝑎𝑎 − 𝑏𝑏𝑏𝑏 must be equal to k and hence the power of 𝑞𝑞𝑗𝑗  that divide (𝑎𝑎 +  𝑏𝑏𝑏𝑏)(𝑎𝑎 −  𝑏𝑏𝑏𝑏) 
is 𝑠𝑠𝑗𝑗   =  2𝑘𝑘. Hence, 𝑠𝑠𝑗𝑗is even, and this is true for all j. In other words, each prime factor 𝑞𝑞 ≡  3( 𝑚𝑚𝑚𝑚𝑚𝑚 4) occurs 
to an even power. 

Looking Ahead 

After identifying the number that can be represented as a sum of two squares, the next important question is how 
we can identify the corresponding components of the two squares. In other words, what are the solutions to the 
Diophantine equation n = a2 + b2? 
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