
Simulating Chromatic Harmony in Romantic Era Music 
using Diophantine Approximation 
Larine Ouyang 

Rose-Hulman Institute of Technology 

ABSTRACT 

The Romantic period of music is known for its intricate and emotionally expressive harmonic style. Nevertheless, 
recreating authentic melodies of the Romantic period in contemporary compositions poses a considerable chal-
lenge for composers and musicians. In this paper, we present a method for simulating chromatic harmony in 
Romantic Era music through the use of Diophantine Approximation. Inspired by the works of renowned com-
posers of that period, such as Richard Wagner, Franz, Liszt, and Frederic Chopin, my transitional model was 
constructed to preserve the essence of the preceding melody as the harmonic progression unfolds. The model 
helps with the creation of harmonic progressions that contain the nuances of the preceding harmonic structure 
and musical style, providing composers with a novel way to explore a wide range of musical possibilities. Ex-
perimental validation involving human hearing shows that the model is successful in imitating authentic Roman-
tic-era harmonic structures. This finding suggests that the model is a promising tool that could inspire contem-
porary composers to create almost authentic chromatic harmonic progressions. 

A brief introduction to the Chromatic Harmony in Romantic Era Music 

Chromatic harmony in music theory utilizes chords and chord progressions that incorporate notes beyond the diatonic 
scale of the key employed in a musical composition. In contrast to the conventional practice of diatonic chords, which 
strictly adhere to the scale’s notes, chromatic harmony integrates accidentals or modified notes, augmenting the music 
with enhanced depth, richness, and emotional fervor. This harmonic technique gained notable prominence during the 
Romantic Era, a historical period in music known for its emphasis on expressive and emotive compositions. 

During the early era of Romanticism, composers like Franz Liszt and Frederic Chopin began utilizing chro-
matic modulation to transition between distantly related keys, a technique that was later embraced by Richard Wagner. 
This inventive use of chromaticism in their compositions added an extra dimension to their musical expression, ena-
bling smooth and emotionally charged transitions between remote tonalities. In Wagner’s operas, he employed chro-
matic harmonies to intensify emotional expression and create a sense of dramatic tension. 

Figure 1: The opening of Wagner’s music drama Tristan und Isolde 
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He adeptly utilized chromaticism to defy traditional harmonic rules (see Figure 1), becoming a pivotal mo-

ment in the opera that evokes a profound sense of yearning and desire. Liszt’s approach to chromatic harmony surpassed 
mere technical display. He employed chromaticism to evoke a wide range of emotions and moods, pushing the bound-
aries of traditional harmonic language. His works often featured daring chromatic modulations and harmonic shifts, 
creating a sense of unpredictability and intensity. Moreover, Liszt’s use of chromatic harmony influenced other com-
posers of his time, including Richard Strauss and Gustav Mahler, who continued to explore and expand the expressive 
possibilities of chromaticism in their own compositions. 

The emergence of chromatic harmony during the Romantic Era gave rise to the creation of chromatic chords, 
which consist of notes outside the natural scale of the key. These chords frequently involve augmented or diminished 
intervals, resulting in notably distinct emotional subtleties when compared to traditional diatonic chords. The inclusion 
of chromatic chords expanded composers’ range of colors and emotions, opening doors to more possible territories of 
expression. 

The paper delves into the use of mathematics to model chromatic harmony for multiple reasons. First and 
foremost, music and mathematics have a long history of interconnectedness, dating back to the ancient Greeks and 
Pythagorean discoveries. The application of mathematical principles to music provides a systematic approach to un-
derstanding and analyzing complex harmonic structures, such as those found in chromatic harmony. By using mathe-
matical models, we can explore the relationships between chromatic chords and their diatonic counterparts, shedding 
light on the underlying principles guiding the harmonic choices made when incorporating chromatic elements. Thus, 
some simulated chords will preserve the presence of chromatic harmony due to the existence of chromatic harmonies 
in the original chords. 

Additionally, mathematics allows researchers to quantify and measure the degree of harmonic tension created 
by chromatic progressions. Moreover, mathematical analyses offer a level of objectivity and precision, allowing com-
posers to identify specific patterns and structures. 

In conclusion, the use of chromatic harmony allowed composers to expand beyond the confines of traditional 
tonal systems, evoking a wide range of feelings and emotions. Utilizing mathematics to model chromatic harmony 
grants researchers a deeper comprehension of the principles and structures that govern this harmonic language, offering 
insights into the creativity of Romantic composers. 
 

Fundamentals of Diophantine Approximation 
 
Diophantine approximation is a branch of number theory that deals with the approximation of real numbers using 
rational numbers. The fundamental concept revolves around finding rational approximations in close proximity to ir-
rational numbers with a good degree of accuracy. In this context, continued fractions play a significant role, providing 
an efficient approach to approximate irrational numbers. 

To illustrate the role of continued fractions in diophantine approximation, let’s consider the Golden Ratio, 
denoted by the symbol ϕ. The Golden Ratio is an irrational number defined as the positive root of the equation ϕ2 = ϕ 
+ 1, such that it satisfies 𝜙𝜙 ∈ ℝ ∉ ℚ. It has been widely used by composers and musicians to determine the lengths of 
different sections within a musical piece. Some musicians have also explored the application of the golden ratio in 
establishing connections between distinct pitches or intervals within a melody. By following the proportions of the 
golden ratio, musicians can craft compositions that feel aesthetically pleasing and well-balanced. We can express ϕ as 
a continued fraction, 
 

𝜙𝜙 = 1 +
1
2

√5 − 1

= 1 +
1

1 + 1
1 + ⋯

 

 

Volume 12 Issue 3 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 2



 

These numerators and denominators of the continued fraction sequence correspond to the Fibonacci numbers. Let the 
denominators be denoted by Qi, we have Q1 = F1, Q2 = F2, Q3 = F3, ..., Qi = Fi. 
And let the numerators be denoted by Pi, we have P1 = F2, P2 = F3, ..., Pi = Fi+1. As the sequence progresses, the continued 
fraction yields an infinite sequence of ones, 
 
 

𝑃𝑃𝑖𝑖
𝑄𝑄𝑖𝑖

= [1;  1, 1, 1, 1, … ] = 1 +
1

1 + 1
1 + ⋯

 

 
Notice that the convergents 𝑃𝑃𝑖𝑖

𝑄𝑄𝑖𝑖
 get closer and closer to ϕ. In fact, it can be shown that: 

 

lim
𝑛𝑛→∞

𝑃𝑃𝑛𝑛+1
𝑄𝑄𝑛𝑛+1

=𝜙𝜙 

 
Thus, we can get the difference between the convergents and ϕ approaches zero as n goes to infinity, 
 
 

lim
𝑛𝑛→∞

|
𝑃𝑃𝑛𝑛+1
𝑄𝑄𝑛𝑛+1

−𝜙𝜙| = 0 

 
This can be perceived as a form of diophantine approximation because it used the fraction 𝑃𝑃𝑖𝑖

𝑄𝑄𝑖𝑖
∈ ℚ to approximate the 

irrational value ϕ. The rational approximations to irrational numbers are represented by convergents of continued frac-
tions. Let 𝛼𝛼 ∈ ℝ ∉ ℚ, we make a conjecture that α is between 𝑃𝑃𝑛𝑛

𝑄𝑄𝑛𝑛
 and 𝑃𝑃𝑛𝑛+1

𝑄𝑄𝑛𝑛+1
 . Thus, we can have, 

 

�
𝑃𝑃𝑛𝑛
𝑄𝑄𝑛𝑛

− 𝛼𝛼� ≤ �
𝑃𝑃𝑛𝑛+1
𝑄𝑄𝑛𝑛+1

−
𝑃𝑃𝑛𝑛
𝑄𝑄𝑛𝑛
� =

1
𝑄𝑄𝑛𝑛𝑄𝑄𝑛𝑛+1

 

 
Since we want to seek out a systematic approach to finding the best possible rational approximations, represented by 
fractions Pn /Qn, which come increasingly close to a given irrational number α. We shall see shortly that the inequality 
above can have only finitely many rational solutions.  
Lemma 1 For any irrational number 𝛼𝛼 ∈ ℝ ∉ ℚ, there exists an infinite sequence of rational numbers 𝑃𝑃𝑖𝑖

𝑄𝑄𝑖𝑖
 , such that, 

 

�
𝑃𝑃𝑖𝑖
𝑄𝑄𝑖𝑖
− 𝛼𝛼� ≤

1
(𝑄𝑄𝑖𝑖)2

 

 
 
This lemma provides a solution to our goal of finding a perfect rational fraction, allowing us to approximate irrational 
numbers with an ever-increasing level of accuracy. As we delve deeper into this notion of measuring accuracy, we are 
inspired to seek a more optimized bound for the difference between α and its rational approximations, because the 
measure of the accuracy of the approximations is of significant interest. Generalize the inequality above, we can intro-
duce the following theorem, 
 
Theorem 2 For any irrational number 𝛼𝛼 ∈ ℝ ∉ ℚ, there exists an infinite sequence of rational numbers p/q for p,q ∈
ℤ and 𝑞𝑞 ≠ 0, such that, 
 

�
𝑝𝑝
𝑞𝑞
− 𝛼𝛼� ≤

1
𝑞𝑞2
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The expression �𝑝𝑝
𝑞𝑞
− 𝛼𝛼� states that the difference between the irrational number α and its rational approxima-

tion p/q is less than or equal to 1/q2. In other words, the expression �𝑝𝑝
𝑞𝑞
− 𝛼𝛼� ≤ 1

𝑞𝑞2
 is the tightest bound possible for the 

approximation error and the rational fraction p/q is a close approximation to the irrational number α, and the difference 
between them diminishes as the denominator q increases. However, it is important to note that this inequality does not 
hold true for all irrational numbers α. There are many irrational numbers for which the difference �𝑝𝑝

𝑞𝑞
− 𝛼𝛼� doesn’t have 

a tightest bound 1/q2. 
This leads us to the introduction of the expression 1

√5𝑞𝑞2
. For certain α, a function that provides a tighter upper bound 

for the difference �𝑝𝑝
𝑞𝑞
− 𝛼𝛼�. This introduces us to the Hurwitz inequality for Diophantine approximations. 

Theorem 3 For irrational number 𝛼𝛼 ∈ ℝ ∉ ℚ, there exists an infinite sequence of rational numbers p/q for p,q ∈ ℤ 
and 𝑞𝑞 ≠ 0, such that, 
 

�
𝑝𝑝
𝑞𝑞
− 𝛼𝛼� ≤

1
√5𝑞𝑞2

 

 
 

The Hurwitz inequality is a fundamental theorem that provides an upper bound for the difference between an 
irrational number α and its best rational approximation 𝑝𝑝

𝑞𝑞
 . It plays a crucial role in understanding the distribution of 

rational approximations to irrational numbers and their degree of accuracy. For example, the Golden Ratio 𝜙𝜙 = 1+√5
2

  
is one of the irrational numbers for which the diophantine approximation is optimized by the inequality in the above 
theorem such that the optimized diophantine approximation for ϕ is represented by �𝜙𝜙 − 𝑝𝑝

𝑞𝑞
� ≤ 1

√5𝑞𝑞2
. 

 

Overview of Mathematical Parameters of Chromatic Harmony 
 
Chromatic harmony, an aspect of music theory delving into the utilization of non-diatonic chords and. Gaining insight 
into the mathematical aspects of chromatic harmony equips, musicians and composers obtain valuable knowledge 
concerning the intricate interplay among chords and progressions. Through a mathematical analysis of these harmonic 
structures, artists can discover their composing potential and enhance their comprehension of music’s emotional and 
structural elements. 

Within the domain of chromatic harmony, chords are formed by incorporating notes from a certain key. By 
expressing musical notes as numerical entities, like pitch class integers or frequencies, mathematicians and musicians 
can study the intervals and connections between chords. This method can help musicians discover captivating symme-
tries, patterns, and repetitions in chord progressions. 

One approach is to use a numerical representation for every 12 musical notes within an octave, ranging from 
0 to 11. This system allows us to create a discrete set, which can be represented using the mathematical concept of ℤ12. 
Each element in this system corresponds to a specific note, and by manipulating these numerical representations, we 
can analyze the intervals and progressions between chords in a mathematically precise manner. 

To establish a connection between musical theory and mathematical structures, various aspects of music, such 
as MIDI numbers and frequencies, are utilized. MIDI (Musical Instrument Digital Interface) numbers provide a stand-
ardized way to represent musical notes across different devices and software. Let S denote the set of MIDI numbers of 
all notes, we see that the mapping S ↦ ℤ12 is surjective, every element y ∈ ℤ12 can be mapped from some element x 
∈ S such that f(x) = y. And there doesn’t exist another representation in ℤ12 for each element in S, allowing us to 
explore the inherent symmetries and patterns within chromatic harmony. Since each MIDI note corresponds to a unique 
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pitch, by mapping these MIDI numbers onto the numerical range of 0 to 11, we can seamlessly integrate musical 
concepts into mathematical frameworks. 

Consider a chord progression in the key of C major, incorporating chromatic harmony. We’ll start with a C 
major chord (C-E-G) and then proceed to an unexpected chromatic chord, such as C♯ diminished (C♯-E-G). The nu-
merical representation of these notes can be as follows: C = 0, C♯ = 1, E = 4, and G = 7. By analyzing the intervals 
between these notes, we can express the chromatic harmony mathematically. For instance, the C major chord has the 
following interval pattern: (4−0) and (7−4). On the other hand, the C♯ diminished chord features the intervals (4−1), 
and (7−4). This mathematical analysis reveals how the chromatic chord introduces new approaches to modeling the 
pattern of music elements, expanding the harmonic palette beyond the traditional diatonic chords. 

Thus, for all chords, there exists a representation consisting of numerical integers from 0 to 11 inclusively that 
can be used to represent the chord. For example, there always exists a,b,c,d ∈ ℤ12 such that (E-G-B-E)= {a,b,c,d}. 
The foundation of chromatic harmony lies on harmonic ratios, which govern the relationships between musical fre-
quencies and dictate the consonance or dissonance of intervals. These ratios can be mathematically represented as 
fractions, with the most harmonically pleasing intervals characterized by the simplest ratios. For example, the perfect 
fifth, a fundamental interval in music, has a harmonic ratio of 3 : 2, meaning that the frequency of the higher note is 
392.00
261.63

≈ 1.5 times that of the lower note. By exploring the properties of harmonic ratios, musicians are able to make 
great decisions about chord progressions while composing, enhancing the emotional impact and overall coherence of 
their compositions. 
Let’s consider the harmonic ratios of a common progression, the major triad. In the key of C major, the C major triad 
(C-E-G) consists of the following harmonic ratios: 
Measuring Harmonic Ratios for different Intervals 

• The interval between C and E is a major third, with a harmonic ratio of 5 : 4. This means the frequency of E is 
329.63
261.63

≈ 1.25 times that of C. 
• The interval between C and G is a perfect fifth, with a harmonic ratio of 3 : 2. This means the frequency of G is 

392.00
261.63

≈ 1.5 times that of C. 
• The interval between E and G is a minor third, with a harmonic ratio of 6 : 5. This means the frequency of G is 

392.00
329.63

≈ 1.2 times that of E. 
 
The consonance and stability of the major triad are governed by these harmonic ratios, resulting in its pleasant and 

harmonious sound. With this understanding, composers can utilize this information to craft chord progressions that 
evoke distinct emotions and musical aesthetics. 

In practical applications, a more intricate scenario might involve examining the harmonic ratios of extended chords, 
such as seventh chords or altered chords, whose mathematical representations become more elaborate yet equally in-
sightful for understanding harmony. 

The mathematical exploration of chromatic harmony extends to employing various mathematical operations like 
addition, subtraction, multiplication, and division, strategically crafting chord progressions that smoothly transition 
between diverse tonal centers. An example of this is the concept of modulations, wherein one key is transformed into 
another through mathematical operations, effectively shifting the musical focus. 

Furthermore, mathematical tools, such as Fourier analysis, can be skillfully utilized to deconstruct intricate har-
monic structures into their fundamental frequencies, thus illuminating the spectral content of a chord and its overall 
harmonic color. This analytical approach uncovers the intricate interplay of musical elements and provides valuable 
insights into the inner workings of complex musical compositions. 
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1 Simulating Chromatic Harmony with Diophantine Approximation 
 
To predict the next chord in a chromatic harmony progression, we can employ a mathematical approach that utilizes 
intervals and ratios between successive chords. The first step is to represent each chord as a set of numbers that contain 
the representation for each note in the chord. This allows us to capture the unique notes present in each chord, consid-
ering their relationships to each other. 

Once we have a numerical representation of successive chords, we calculate the intervals between these chords. 
By determining the pitch differences between consecutive chords, we gain valuable insights into the harmonic move-
ment and development of the music. 
 

 
 
Figure 2: Overview of the process of modeling the chromatic chord progression 
 

As shown in Figure 2, constructing a continued fraction based on these intervals is the next step of the mod-
eling process. The continued fraction represents the ratios between different chords, which could further help our 
diophantine approximation. The goal is to find p,q ∈ ℤ (where 𝑞𝑞 ≠ 0) that satisfies the diophantine approximation 
inequality. This means we have to find the optimized rational approximation that describes the harmonic transition 
from the current chord to the next one. Applying the ratio p/q to the last chord enables us to predict the pitch values 
for the next chord in the chromatic harmony progression. 

We use the opening chords of Prelude Op. 28, No. 20 in C minor written by Frederic Chopin as an example 
of modeling because it contains chromatic harmonies. For example, the piece begins in the key of C minor, but the 
seventh, eighth, and ninth chord contains flat D, which is a chromatic note in the key of C minor. In the C minor scale, 
the D is natural, but here it is altered to D♭, thus, creating chromatic harmony. 
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Figure 3: Chords in the opening of Prelude Op. 28, No. 20 in C minor by Frederic Chopin 
 

We write down the notes of each chord in the opening of the Prelude (see Figure 3). The first chord consists 
of the notes G - C - E♭ - G. Moving forward, the second chord encompasses A♭ - C - E♭ - A♭. The third chord, G - B 
- E♭ - G, contains the natural B in the harmonic scale of C minor, adding complexity to the melody. We do the same 
to all the chord, we get the harmonic progression in this form: 
(G - C - E♭ - G) → (A♭ - C - E♭ - A♭) → (G - B - E♭ - G) → (G - B - D - F) → 
(E♭ - G - C - E♭) → (E♭ - A♭ - C - E♭) → (F - A♭ - D♭ - F) → 
(D♭ - E♭ - G - C - E♭) → (D♭ - E♭ - G - B♭ - D♭) → (C - E♭ - A♭ - C) 

To facilitate further mathematical calculations and analysis, it is essential to find a numerical representation 
for each chord in the opening of Chopin’s Prelude Op. 28, No. 20. Assigning numerical values to the notes will allow 
us to transform the musical data into a format that can be processed and manipulated using mathematical operations 
and algorithms. 

One approach to find the MIDI number corresponding to each note in the chord. In this system, each note is 
assigned a number in ℤ12, representing its position within the chromatic scale. For instance, the key C4 is assigned the 
number 60, C♯4 (or D♭) is 61, D4 is 62, and so on. Then we can represent the chords as a set of numbers, allowing us 
to perform mathematical operations on these numerical representations. 
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Figure 4: Reference Chart of the MIDI numbers corresponding to the Note name 
 

We take the value of the MIDI number modulo 12, we can then get a number in ℤ12. For instance, the corre-
sponding MIDI number of A4 is 69 (see Figure 4) and 69 ≡ 9 (mod 12), so we can rewrite the value of A4 as 9. Thus, 
we can rewrite the chords into different sets consisting of numbers in ℤ12. 

We next construct the continued fraction use the numerical values in each chord. Continued fractions are a 
special type of fraction where the numerator and denominator are integers, and the fraction is expressed in a specific 
infinite form. 

To begin the process, we take the numerical representation of each chord and create a sequence of integers. Using 
the reference provided in Figure 4 and the examples mentioned earlier, we get that the numerical representations are 
as follows: 
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Chord 1: (G - C - E♭ - G) = {7,0,3,7} 
Chord 2: (A♭ - C - E♭ - A♭) = {8,0,3,8} 
Chord 3: (G - B - E♭ - G) = {7,11,3,7} 
Chord 4: (G - B - D - F) = {7,11,2,5} 
Chord 5: (E♭ - G - C - E♭) = {3,7,0,3} 
Chord 6: (E♭ - A♭ - C - E♭) = {3,8,0,3} 
Chord 7: (F - A♭ - D♭ - F) = {5,8,1,5} 
Chord 8: (D♭ - E♭ - G - C - E♭) = {1,3,7,0,3} 
Chord 9: (D♭ - E♭ - G - B♭ - D♭) = {1,3,7,10,1} 
Chord 10: (C - E♭ - A♭ - C) = {0,3,8,0} 

 
Then we need to determine the musical distance or pitch difference between the numerical representations of the chords. 
We can then calculate the interval for each pair of successive chords in terms of semitones 
(half-steps). 

• Interval between Chord 1 and Chord 2: 
[8, 0, 3, 8] - [7, 0, 3, 7] = [1, 0, 0, 1] 

• Interval between Chord 2 and Chord 3: 
[7, 11, 3, 7] - [8, 0, 3, 8] = [-1, 11, 0, -1] = [11, 11, 0, 11] 
 
Now, we can construct continued fractions for each chord. The general form of a continued fraction is given by 

[a0; a1, a2, a3, ...], where a0 is the integer part and a1, a2, a3, ... are the continued fraction coefficients. We find the 
coefficients by iteratively dividing the integer part of the number by the fractional part. 

We find each value of an with n ≥ 0 from each interval between successive chords. Suppose the sequence of 
integers [x1, x2, x3, x4] for x1, x2, x3, x4 ∈ ℤ12 is the interval between nth chord and chord (n+1)th chord, we have an ∈ 
{x1, x2, x3, x4}. Similarly, given that the sequence of integers [y1, y2, y3, y4] for y1, y2, y3, y4 ∈ ℤ12 is the interval between 
(n + 1)th chord and chord (n + 2)th chord, we then have 𝑎𝑎𝑛𝑛+1 ∈  {𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4}. 
Thus, using the sequence of integer [a0; a1, a2, a3, a4, a5, ...] we get, we can construct the continued fraction for the 
change in pitch between chords, 

𝛿𝛿 = 𝑎𝑎0 +
1

𝑎𝑎1 + 1
𝑎𝑎2 + 1

𝑎𝑎3 + 1
𝑎𝑎4 + 1

𝑎𝑎5 + ⋯

 

 
After obtaining an irrational number δ ∈ ℝ ∉ ℚ, we are able to construct the inequality that quantifies how 

well this irrational number can be approximated by rational numbers with specific properties. 
Diophantine approximation focuses on finding rational numbers that come close to irrational numbers. For a given 
irrational number δ, we aim to find rational numbers p/q (where p,q ∈ ℤ) such that the difference between δ and p/q 
is as small as possible.  
One common way to construct the Diophantine approximation inequality is by using the following expression: 
 

�𝛿𝛿 −
𝑝𝑝
𝑞𝑞
� ≤

1
𝑞𝑞2

 

 
where δ is the irrational number from the continued fraction, and p/q represents the rational approximation. The ine-
quality states that the difference between the irrational value δ and the rational approximation p/q must be less than 
the reciprocal of the square of the denominator (q) of the rational approximation. 
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The Diophantine approximation inequality helps us quantify how closely we can approximate an irrational number 
using rational numbers. The smaller the value of 1/(q2), the better the approximation. In other words, if we can find 
rational numbers p/q that satisfy the inequality for increasingly larger values of q, the irrational number δ is said to 
have “good” Diophantine approximations. And p/q is considered a rational best approximation of δ if, 
 

�𝛿𝛿 −
𝑝𝑝
𝑞𝑞
� ≤ �𝛿𝛿 −

𝑝𝑝′
𝑞𝑞′
� 

 
for all p′,q′ ∈ ℤ, 1 ≤ q′ ≤ q. 

After finding the optimized p/q value we want for δ, we multiply the last chord by the ratio p/q to simulate 
the harmonic progression of the next chord. This ratio represents the harmonic relationship between the last chord and 
its harmonic progression, which we can interpret as a “scaling factor” for the chord. 

Given the numerical representation of the last chord as [z1, z2, z3, z4] for z1, z2, z3, z4 ∈ ℤ12, by multiplying the 
note of the last chord by the ratio p/q, we effectively stretch or compress the chord, altering its pitch and potentially 
creating new harmonies. This process is akin to a musical transformation, where the irrational value obtained from 
Diophantine approximation guides the modification of the chord’s tonal properties. 

The multiplication process will yield a new chord with pitch values [r1, r2, r3, r4] for r1, r2, r3, r4 ∈ ℤ12. Since 
p/q ∈ ℚ is a rational approximation of the irrational value associated with the last chord, these new pitch values will 
be rational numbers, maintaining the original chord’s harmonic framework. 

Therefore, we can add the simulated chord to the end of the harmonic progression. This new chord, created 
through the mathematical transformation, becomes a novel addition to the musical sequence. Thus, the resulting har-
monic progression now includes both the original chords, followed by the simulated chord derived from Diophantine 
approximation. 

To develop the next chord after the simulated chord, we repeat the exact same steps of Diophantine approximation 
used previously. We take the numerical representation of some of the previous chord and simulated chord, and seek 
the best rational approximation p/q to represent its harmonic development. This new ratio p/q serves once again as a 
“scaling factor” that we can use to multiply the notes of the simulated chord, just like we did with the last chord. 

 

 
 
Figure 5: Numerical Representation of Simulated Chromatic Harmony Progression based on the opening of Prelude 
Op. 28, No. 20, in C minor by Frederic Chopin 
 

Apply this process of Diophantine approximation and chord simulation to the chords in the opening of 
Chopin’s Prelude Op. 28, No. 20 in C minor, we can get a numerical sequences of the next six chords (see Figure 5). 
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Noticing that some of the chords were simulated to be chromatic harmonies due to the presence of chromatic harmonies 
in the original chords. 

Then we can use the MIDI number again to convert the numerical representation of the new chords we ob-
tained into musical notes on staff as shown below in Figure 6. The MIDI number system assigns specific integer values 
to musical pitches, allowing us to accurately transform the numerical chord representations into tangible musical sym-
bols. For instance, suppose the MIDI number of the pitch of the note is a for a ∈ ℤ12, we can rewrite a as a ≡ a + 12k 
(mod 12) for k ∈ ℤ. Based on the pitch of the previous chords, we determine the value of k and obtain final pitch of 
the chord from its numerical representation. The conversion process from numerical data to musical notation provides 
a visual representation of the harmonic progression, helping us understand the melodic relationships between the 
chords. It helps provide us with insights into the musical flow and phrasing, highlighting the patterns present in the 
compositions. 
 

 
 
Figure 6: Simulated Chromatic Harmony Progression based on the opening of Prelude Op. 28, No. 20 on staff 
 

Conclusion 
 
In conclusion, the application of Diophantine approximation to simulate chromatic harmony in music has provided us 
with valuable insights and creative possibilities. By converting musical chords into numerical representations and em-
ploying Diophantine approximation to find rational approximations for the change in pitches of the chords, we have 
successfully simulated new chords that preserve the essence of the original composition including its chromatic ele-
ments. 

Using this mathematical method, we have unveiled a series of following chords that mirror the harmonic 
complexities embedded in Chopin’s Prelude Op. 28, No. 20 in C minor. The iterative simulation of chords has enabled 
us to explore the concealed patterns and interconnections within the composition. Notably, certain simulated chords 
have showcased chromatic harmonies, enriching the musical progression with deep emotional expression. The conver-
sion of the numerical chord representations back into musical notes on a staff using the MIDI number system further 
enhanced our understanding and appreciation of the harmonic sequence. While the staff notation allowed us to visual-
ize the melodic and harmonic structure, leading to a deeper comprehension of the musical flow and phrasing. The 
value of employing Diophantine approximation to simulate chromatic harmony lies in the intersection of mathematics 
and music. This interdisciplinary methodology emphasizes the influence of mathematical concepts in enhancing music 
analysis and composition. Through mathematical precision, we have discovered novel harmonic connections and me-
lodic motifs within the piece. This newfound comprehension can assist music theorists and composers in delving into 
the foundational structures of intricate musical compositions. 

Moreover, the potential of this method extends beyond analyzing existing music; it presents a distinctive op-
portunity for composers to craft imaginative and evocative musical passages. The process of simulating chromatic 
harmony using Diophantine approximation unlocks creative pathways, empowering composers to explore novel har-
monic progressions and create original compositions that resonate with audiences. The ability to simulate chromatic 
harmonies through Diophantine approximation opens up possibilities for composers to fill   the gap between 
theoretical analysis and artistic expression. It encourages a symbiotic relationship between the rich heritage of classical 
music theory and the ever-evolving contemporary composition. 
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With the continuous advancement of technology and the fusion of mathematical methods, computer software 
has the potential to transform music composition and analysis. Computational tools can support composers in delving 
into a plethora of harmonic possibilities, offering instant feedback and opening the door to the exploration of undis-
covered musical realms. Besides that, it also opens up the realm of algorithmic composition. By automating parts of 
the creative process, composers gain the ability to efficiently delve into a wide range of harmonic possibilities and 
produce a rich variety of musical material. This approach merges the intuitive and expressive nature of music with the 
accuracy and efficiency of mathematical algorithms. 

In summary, the utilization of Diophantine approximation to simulate chromatic harmony has yielded fruitful 
results. The interplay of mathematics and music in this pursuit highlights the limitless potential for creative expression 
and the endless possibilities of composition. This integration serves as a source of inspiration to delve deeper into the 
connection between art and mathematics, fostering novel pathways of exploration in the realm of music composition. 
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