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ABSTRACT 
 
As AI technology continues to advance rapidly, it is essential to address the environmental concerns associated with 
the increasing carbon emissions and their contribution to global warming. The expanding AI industry requires signif-
icant computing power, making it a potential major contributor to carbon emissions in the future. Unfortunately, our 
current understanding of AI models is very limited. We conducted a comprehensive analysis involving 12 distinct AI 
models, encompassing object detection, translation, and text-to-image generation tasks. Our findings revealed that 
smaller AI models can achieve equal or even better results compared to larger models while offering a significant 
reduction of carbon emissions. This highlights the potential for environmental savings by prioritizing smaller models. 
These findings underscore the importance of considering the environmental impact of AI models and encourage the 
adoption of strategies such as using smaller models and optimizing workload schedules to reduce carbon emissions. 
By prioritizing sustainability in AI development and deployment, we can work towards a greener and more sustainable 
future. 
 

I. Introduction 
 
The carbon emissions generated by AI models are a pressing concern as the demand for AI technologies continues to 
grow rapidly. While AI offers various practical applications in tasks such as object detection, translation, and content 
generation, its environmental impact is often overlooked. 

The widespread adoption of AI, as exemplified by ChatGPT's immense user base, indicates the exponential 
growth of the industry in the coming years. However, this growth poses a challenge due to the substantial computing 
power required to train and run AI models. This high energy consumption, particularly when powered by non-renew-
able sources, results in significant carbon dioxide emissions. 

Unfortunately, there is a widespread lack of awareness among the general public regarding the significant varia-
tions in carbon emissions resulting from different activities. Furthermore, the field of Green AI, which focuses on 
mitigating the environmental impact of artificial intelligence, is still in its early stages of development. As a result, 
due to the absence of adequate metrics and tools, it is commonly assumed that larger AI models consistently outper-
form smaller ones. However, this paper investigates the effectiveness of employing smaller AI models that generate 
fewer carbon emissions while still attaining comparable, if not superior, performance when compared to their larger 
counterparts. 

By prioritizing smaller models, we can limit the scaling of carbon emissions associated with larger models. 
Through our comprehensive analysis of 12 AI models, which are among the most up-to-date and most downloaded 
models available on Hugging Face (Hugging Face models, 2017), in the domains of language translation-Facebook 
wmt19-en-de and wmt19-de-en(Ng et al., 2019), AllenAI wmt19-de-en-6-6-base and wmt16-en-de-12-1(Pappas et 
al., 2019), and Google bert2bert_L-24_wmt_de_en(Lewis et al., 2020), object detection-Deformable DETR(Zhu et 
al., 2020), OwlVit-base-patch14(Minderer et al., 2022), OwlVit-base-patch32(Minderer et al., 2022), DETR-Res-
net(Carion et al., 2020), and image generation. Lastly, for text-to-image generation, we analyzed the default stable 
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diffusion v2-1(Stable diffusion 2.1, 2023) and 2 other models of different sizes, Bloodorange mix(Abyssorangemix2 
- sfw/soft nsfw, 2023) and Pastel mix (Pastel Mix Stylized Anime Model, 2023).  

These findings highlight the importance of considering the trade-off between model size and performance, as well 
as the environmental impact when developing and deploying AI technologies. By adopting smaller models, we can 
work towards minimizing the carbon footprint of AI and creating a more sustainable future. 

The rest of the paper is organized as follows. Section II will discuss the contributions of other papers toward the 
field of Green AI. Section III will discuss the details of the AI models used in this experiment. Section IV will discuss 
the findings of our experiment. Section V will discuss the conclusion reached, the limitations our research faced and 
our plans for future research. 
 

II. Related Work 
 
The issue of carbon emissions in AI has received significant attention from researchers in recent years. Several papers 
have addressed this concern by exploring various aspects of AI's carbon footprint and proposing potential solutions. 

Dhar (Dhar, 2020) highlights the dual nature of AI, which can contribute to both smart grid designs and low-
carbon technologies while also generating carbon emissions when used extensively. This highlights the need to find 
ways to reduce AI's carbon footprint. Schwartz (Schwartz et al., 2020) advocates for a "Green AI" framework that 
aims to reduce resource consumption while maintaining acceptable results. He calls for further research in this area to 
address the substantial carbon footprint of AI technologies. Yigitcanlar (Yigitcanlar et al., 2021) emphasizes the im-
portance of collaboration between different stakeholders, including governments, industry, academia, and civil soci-
ety, to reduce emissions from AI models deployed in large-scale urban environments. This collaborative approach can 
lead to more effective strategies for achieving the goals of Green AI. 

Mehlin (Mehlin et al., 2023) discusses strategies to decrease carbon emissions throughout an AI system's 
lifecycle, including IT infrastructure, data management, modeling, training, and deployment. This comprehensive 
approach recognizes the multiple stages where carbon reduction can be achieved. Bergstra (Bergstra et al., 2011) and 
his team propose a novel algorithm for hyper-parameter optimization, based on sequential model-based optimization 
(SMBO), which outperforms existing algorithms on benchmark datasets. This optimization technique can contribute 
to more efficient AI models and subsequently reduce carbon emissions. Dettmers (Dettmers and Zettlemoyer, 2019) 
presents a method for training sparse neural networks using a regularization technique called "sparse group lasso." 
This approach allows for faster training without the need for pre-training, contributing to energy-efficient AI models. 

Rolnick (Rolnick et al., 2022) suggests leveraging AI in energy optimization applications to mitigate envi-
ronmental impacts. However, challenges such as data availability and privacy need to be addressed when implement-
ing AI in these contexts. Nishant (Nishant et al., 2020) raises concerns about AI research, including the reliance on 
historical data, uncertain human responses to AI interventions, increased cybersecurity risks, and challenges in meas-
uring the effects of intervention strategies. These challenges need to be addressed to ensure responsible and sustainable 
AI development. 

While these works focus on improving AI efficiency and reducing its carbon footprint through technical advance-
ments, our work emphasizes simpler solutions. We propose using smaller AI models as an effective and easily imple-
mentable strategy to reduce overall carbon emissions in AI systems. 
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III. AI Models 
 
Object Detection Models 
 
Here we will discuss the 12 AI models selected for this experiment, more specifically the general overview of how 
they work. These models were among the most recent and most downloaded models available to us on Hugging Face 
(Hugging Face models, 2017). 

1. Deformable Detection Transformer Model (DETR) - includes Deformable DETR and DETR-Resnet: The 
DETR model is a transformer with an encoder-decoder architecture and a convolutional backbone. It incor-
porates two heads on the decoder outputs to carry out object detection. One head consists of a linear layer 
that predicts class labels, while the other head comprises a multi-layer perceptron (MLP) that predicts bound-
ing boxes. To detect objects in an image, the model utilizes object queries, which are designed to look for 
specific objects in the image. The number of object queries for COCO is fixed at 100.(Zhu et al., 2020)(Car-
ion et al., 2020) These two relatively small models, at around 161 MB for Deformable-DETR, and around 
168 MB for DETR-Resnet-50, were chosen to test the effectiveness of smaller AI models compared to larger 
ones. They would also be compared against each other to test for effectiveness and consistency differences 
with models using the same foundation but different training. 

2. OwlVit - includes OwlVit-base-patch14 and OwlVit-base-patch32: Matthias Minderer, Alexey Gritsenko, 
Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag 
Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby intro-
duced OWL-ViT (short for Vision Transformer for Open-World Localization) in their paper "Simple Open-
Vocabulary Object Detection with Vision Transformers". OWL-ViT is a zero-shot model for text-condi-
tioned object detection that allows users to query an image with one or multiple text inputs. The model em-
ploys CLIP as its multi-modal backbone, using a ViT-like Transformer to obtain visual features and a causal 
language model to obtain text features. (Minderer et al., 2022) These larger models, at around 1.74 GB for 
patch14 and around 615 MB for patch32, were selected to test if larger models generated better results. Like 
the DETR models, these two would also be compared against each other to effectiveness and consistency 
differences with models using the same foundation. 

 
Translation Models 
 

1. Facebook FAIR's WMT19 News translation submission - German to English and English to German: The 
WMT19 is the 2019 Workshop on Machine Translation, which challenges participants to translate certain 
inputs into different languages. As a result, both were trained using the WMT19 dataset. The Facebook FAIR 
submission includes a ported German-to-English and English-to-German translation model. Both models are 
approximately the same size, around 1.08 GB. We classify both models as medium-sized models- between 1 
and 2 GB. The German-to-English AI model has a BLEU score of 40.8 and the English-to-German AI model 
has a score of 42.7.(Ng et al., 2019) 

2. AllenAI's WMT News translation submissions - WMT19 German to English and WMT16 English to German: 
Similar to the Facebook FAIR model, the AllenAI model was also made for the WMT, and trained using the 
WMT19 and WMT16 dataset. We use a ported version of the 2019 German-to-English AI and the 2016 
English-to-German AI. Both models are less than 1 GB in size, classifying them as smaller models. The 
WMT16 model has a BLEU score of 25.75 and the WMT19 model has a BLEU score of 38.37.(Pappas et 
al., 2019) 

3. Bert2Bert L-24 WMT EncoderDecoder Model - German to English: The model is a BERT-initialized 
Seq2Seq model trained for text translation using the WMT14 dataset. The model is 3.09 GB, which classifies 
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it as a larger model relative to the other translation models we used. The model has a BLEU score of 39.3, 
which is smaller than the scores of the medium-sized models. (Lewis et al., 2020) 

 

Stable Diffusion - Text to Image and Image to Image Models 
 
Just as the name insists, Stable Diffusion is an image generation AI model that creates images according to the input 
of the user, using the numerical method stable diffusion. To put it shortly, this is a process that involves using a series 
of steps to create an image by gradually refining it from an initial noisy image. 
 

The following are the checkpoints under the main model of Stable Diffusion that we deployed. 
1. Stable Diffusion v2-1: The most basic checkpoints. Has a model size of 5.09GB. Suited for creating all types 

of images. 
2. Bloodorange mix: Model suited for creating more "Anime" styled art, has a size of 2.08GB. 
3. Pastel mix: Model which creates aesthetically pleasing "pastel-like" styled art, has a size of 5.84GB. 

 
The model will start with some input prompt and a random noise image. The model then undergoes a series of steps, 

named diffusion timesteps, where it denoises the initial image so that it is guided toward an image that matches the 
description. The model also will reverse the process, having the conditioning vector guide and generate a coherent 
image that corresponds to the text prompt. Finally, the model samples from the distribution to generate the final image. 
This last step is called sampling. 
 

We also investigated the 4 main methods of sampling for Stable Diffusion (Stable diffusion samplers, 2023). They 
are Euler-a, LMS, DDIM, and DPM++ (we will be using 2M Karras). These, by taking different steps of sampling, 
will alter the time needed for image generation quite a bit. 

 
k-LMS: Using a sequence of small random steps that align with the distribution's gradient to construct the final 

image. The step size is adjusted based on the curvature of the distribution. 
DDIM: An extension of the LMS method. By eliminating variance and bounding the distribution, it refines the 

outcome and provides more precise sampling compared to LMS. Achieving this entails incorporating additional details 
into the distribution. 

k-Euler: Similar to DDIM, it demonstrates remarkable speed and delivers satisfying results. However, it noticeably 
alters the style of the image generated compared to DDIM. 

DPM++ 2M: Arguably the best performing one among the four sampling methods when it comes to generating 
precision. it operates at a slower pace but produces consistent and visually captivating images. It excels when working 
with intricate prompts that carry a low error probability. 
 

IV. Experimental Results 
 
In this section, we will present our experimental results. We will show the different experiments and results, via tables 
and graphs, for each of the three categories of object detection, translation, and text-to-image generation. It is important 
to note that all three experiments relied on CodeCarbon (CodeCarbon, 2021) to record carbon emissions. 
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Object Detection 
 
For object detection, we employed four AI models: Deformable-DETR, OwlVit-base-patch14, OwlVit-base-patch32, 
and DETR-Resnet. To visualize the results, we utilized PyTorch code(Mukulsomukesh, 2022) to draw bounding boxes 
based on the coordinates generated by the AI models. 

It's important to note that a bounding box represents a rectangular region surrounding an object, specifying its 
position. Additionally, a label, which is a classifying word or phrase, is assigned to each object and displayed in the 
top-left corner of the corresponding bounding box. 

For the four object detection models, we selected five test images shown below and noted down the bounding 
box coordinates generated by each AI model and inputted them into the Pytorch code (Mukulsomukesh, 2022) to 
visualize the results. 

 

 
 
To evaluate the performance of the four object detection models, we selected a set of five test images. The result-

ing bounding box coordinates generated by each AI model were fed into the PyTorch code to visualize the detection 
results. Subsequently, we conducted 15 test runs for each AI model and the results will be presented in the following 
writing. 

In our analysis, we calculated the average carbon emissions for each AI model across all five images, as well as 
the overall average carbon emissions by averaging the averages of each image. The conclusion will be based on several 
factors, including the number of objects detected by each AI, the tightness of the bounding boxes, and the carbon 
emissions produced. 

Below, you will find the results indicating the resulting bounding boxes and the area of each bounding box for 
every image and AI model, along with the corresponding carbon emissions. It is important to note that the y-axis of 
the carbon emissions figures are in units of ee-8 kg. Additionally, the area of each bounding box is calculated using  

 
Equation 1: (xmax - xmin) * (ymax - ymin) (1) 
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Cats 
In the following tables, Cat 1 
refers to the cat on the left, Cat 
2 refers to the cat on the right, 
Remote 1 refers to the remote 
on the top left, Remote 2 refers 
to the remote on the top middle, 
and the couch refers to the 
background. 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Table II and Table III show the results for each image processed, for each AI. The first column specifies the AI 

model used (if a model name is not present, it means that AI did not detect anything). The second column specifies 
the object detected; these will be identified on the original image for reference. The next four columns specify the 
coordinates of the bottom left (xmin, ymin) and top right (xmax, ymax) corners of the bounding box. The final column 
specifies the area of each bounding box as calculated with the formula mentioned previously. 
 
Table 1. Average Carbon Emissions for Cats Image 

 
AI Model Emissions(kg) 

Deformable 2.307e-8 
OwlVit-base-patch14 2.654e-8 
OwlVit-base-patch32 2.688e-8 
DETR-Resnet 2.298e-8 
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Table 2. Results for Cats Image 
 

AI Model Objects Xmin Xmax Ymin Ymax Area 

Deformable-
DETR 

Cat 1 
Cat 2 

16.5 
342.19 

318.25 
640.02 

52.84 
24.3 

470.78 
372.25 

126113.395 
103629.9485 

OwlVit-base-
patch14 

Cat 1 
Cat 2 

8.61 
335.98 

315.07 
637.93 

54.8 
14.93 

479.78 
373.28 

130239.3708 
108203.7825 

OwlVit-base-
patch32 

Cat 1 
Cat 2 

1.46 
324.97 

315.55 
640.58 

55.26 
20.44 

472.17 
373.29 

130947.2619 
111362.9885 

DETR-Resnet Cat 1 
Cat 2 
Remote 1 
Remote 2 
Couch 

13.24 
345.4 
40.16 
333.24 
-0.02 

314.02 
640.37 
175.55 
368.33 
639.73 

52.05 
23.85 
70.81 
72.55 
1.15 

470.93 
368.72 
117.98 
187.66 
473.93 

125990.7264 
101726.3039 
6386.3463 
4039.2099 
302461.005 

 

 
 
Figure 1: Visualization of results of each AI using the PyTorch code mentioned above; A = Deformable-DETR, B = 
OwlVit-base-patch 14, C = OwlVit-base-patch 32, D = DETR-Resnet. 
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Figure 2: Carbon emissions of each AI (in kg). Each dot represents one test case. 
 

 
 
Marching Band 
In the following tables, Per-
son 1-5 refers to the 5 peo-
ple standing in the fore-
ground of the image, from 
left to right. Person 6-10 re-
fers to the 5 people standing 
in the background. 
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Table 3. Results for Marching Band Image 
 

AI Model Objects Xmin Xmax Ymin Ymax Area 

Deformable-DETR Person 1 
Person 2 
Person 3 
Person 4 

86.03 
236.22 
374.97 
529.94 

269.32 
409.62 
555.99 
727.86 

86.03 
169.96 
144.92 
108.9 

678.37 
678.28 
675.71 
678.44 

108569.9986 
88142.688 
96083.6058 
112723.3568 

DETR-Resnet Person 1 
Person 2 
Person 3 
Person 4 
Person 5 
Person 6 
Person 7 
Person 8 
Person 9 
Person 10 

81.9 
239.44 
374.82 
513.99 
766.42 
112.28 
497.38 
689.72 
32.54 
-0.06 

270.39 
412.45 
558.33 
725.44 
1022.96 
174.96 
550.67 
753 
131.16 
44.65 

157.91 
164.01 
140.49 
108.24 
89.05 
145.22 
146.26 
171.95 
119.49 
134.1 

679.92 
680.3 
680.33 
680.3 
679.07 
264.53 
216.13 
413.34 
421.01 
421.7 

98393.6649 
89323.3329 
999066.0384 
120962.087 
151363.7308 
7478.3508 
3723.3723 
15275.1592 
29735.9024 
12858.596 

 
Table 4. Average Carbon Emissions for Marching Band Image 
 

AI Model Emissions(kg) 
Deformable 2.245e-8 
OwlVit-base-patch14 2.636e-8 
OwlVit-base-patch32 2.455e-8 
DETR-Resnet 2.293e-8 

 
 

 
 
Figure 3:  Visualization of results of each AI using the PyTorch code mentioned above; A = Deformable-DETR, B = 
DETR-Resnet. 
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Figure 4:  Carbon emissions of each AI (in kg). Each dot represents one test case. 
 
 
 
Table 5. Remaining Test Images (A = Deformable DETR, B = OwlVit-base-patch14, C = OwlVit-base-patch32, D = 
DETR-Resnet, No Image = No Detection) 
 

Image Results 
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Table 6. Overall Average Carbon Emissions 
 

AI Model Emissions(kg) 
Deformable 2.307e-8 
OwlVit-base-patch14 2.654e-8 
OwlVit-base-patch32 2.688e-8 
DETR-Resnet 2.298e-8 

 
Tables I and IV show the average carbon emissions of each AI model for the specified image. The average 

was calculated using the data in Figures 2 and 4 respectively.   
Table V shows the results of the remaining images. Table VI shows the overall average carbon emissions of 

each AI across all five images.  
Based on Table VI, the OwlVit-base-patch32 model generated the highest average carbon emissions, approx-

imately 1.30% more than the OwlVit-base-patch14, 16.52% more than Deformable-DETR, and 16.97% more than 
DETR-Resnet. 

The results from our test images and data indicate that the DETR-Resnet model performed the most consist-
ently in terms of the number of objects detected among the four tested AI models. Additionally, it generated the least 
average carbon emissions. Moreover, the calculated area of each bounding box was smaller for the Resnet model 
while still effectively encompassing the entire object, indicating more precise results compared to the other models. 

This insight highlights that larger models do not always yield the best results and that smaller models that 
generate lower carbon emissions can outperform their larger counterparts. 

To further estimate the carbon emissions of larger and smaller object detection models when deployed in AI 
cameras in the United States, we conservatively assumed that the AI cameras would be continuously running object 
detection at 15 frames per second (fps) throughout the day (How many frames per second can the human eye see?, 
2021). Assuming there are approximately 24 million households with video surveillance (Security Camera Statistics: 
2022 Market Share Analysis & Industry Trends, 2023), and each household employing one AI camera, we can estimate 
the carbon emissions by multiplying the fps, the total number of seconds in a day (86,400), the number of AI cameras, 
and the average carbon emissions per run of the object detection software: 

 
fps * seconds * carbon emissions * number of cameras (2) 

 
It's important to note that the only variable that changes between each calculation is the average carbon 

emissions per run. 
For this estimation, we considered the DETR-Resnet model as the smaller model and the OwlVit-base-

patch14 as the larger model. Based on our experimental data, the average carbon emissions per run for the DETR-
Resnet model and the OwlVit-base-patch14 model are 2.298183e-08 kg and 2.653695e-08 kg, respectively. Running 
the calculation as mentioned above, we find that the estimated total emissions for the DETR-Resnet and OwlVit-base-
patch14 models are 714,826.840 kg per year and 825,405.293 kg per year, respectively. Thus, the larger model gen-
erated approximately 110,578.453 kg, or about 15.47% more carbon emissions. It is important to note that this differ-
ence will continue to increase as more cameras are installed and the fps of AI cameras is increased, making the carbon 
emissions savings of smaller models exponentially greater. 

 
Language Translation 
 
Our overarching objective for this section is to attain superior translation quality while minimizing the carbon emis-
sions associated with these models. We have conducted an analysis wherein we noted the BLEU scores and model 
sizes for each utilized model. This investigation allows us to observe the correlation between employing smaller 
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models for a given task and the resultant reduction in carbon emissions. By leveraging these insights, we aim to strike 
a balance between translation quality and environmental impact. 

The evaluation of translation models predominantly relies on BLEU(Evaluate custom models, 2023), an algorithm 
designed to assess the quality of natural language models. BLEU is among the pioneering metrics that claim a strong 
correlation with human judgments of quality and remains widely employed to evaluate text translation. A higher 
BLEU score indicates a higher level of quality for the model. Consequently, it has emerged as one of the most popular 
metrics for evaluating text translation. 

In Table VII, we observe that the highest BLEU scores were produced by medium-sized models, not necessarily 
by larger models. 
 
Table 7. Translation Models 

 
Name Type BLEU Score Size(GB) 
facebook/wmt19-de-en De-En 40.8 1.08 
google/bert2bert_L-
24_wmt_de_en De-En 39.3 3.09 
allenai/wmt19-de-en-6-
6-base De-En 38.37 0.266 
facebook/wmt19-en-de En-De 42.7 1.08 
allenai/wmt16-en-de-12-
1 En-De 25.75 0.235 

  
For every translation task, we conduct ten separate runs using each model. These translation tasks involve pas-

sages ranging from 40 to 60 words in either German to English or English to German translation. To ensure environ-
mental sustainability, we employ CodeCarbon (CodeCarbon, 2021) to track and record the carbon emissions generated 
by each test run. The CPU used to conduct these runs was an AMD Ryzen 7 5700U with Radeon Graphics. By col-
lecting this data, we create plots that depict the total carbon emissions produced by each run, correlating them with 
the sizes of the respective models. Additionally, we plot the BLEU scores against the model sizes to observe the 
relationship between translation quality and model size. 

Figure 5:  Figure 6: 
Total Carbon Emissions in Relation to Model Size Quality(BLEU Score) in Relation to Model Size 

 
Figures 5 and 6 suggest a moderately strong correlation between carbon emissions and model size, indicating that 

larger models tend to generate higher carbon emissions. On the other hand, there is a weaker relationship between 
BLEU scores and model size, implying that increasing the size of the model does not necessarily result in a higher-
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quality translation. However, it is important to note that larger models are more likely to produce higher rates of carbon 
emissions. Therefore, when considering translation tasks, it is crucial to strike a balance between model size, transla-
tion quality, and environmental impact. 

 
Stable Diffusion 
 
For the experiment conducted over Stable Diffusion, we used the Stable Diffusion WebUI created by AUTO-
MATIC1111 (AUTOMATIC1111, 2023). The laptop used had a 12th Gen Intel(R) Core(TM) i7-12700H CPU and 
an NVIDIA GeForce RTX 3060 GPU. This experiment was conducted in the central US region, in Austin Texas, 
where the self-deployment emission rate showed to be .00044 lb of CO2 per KHh. 

One of the critical steps involved in the process was manually determining the sampling steps for generating the 
desired images. In Stable Diffusion, each sampling step aims to reduce noise within an initially noisy image and 
produce an output that aligns with the provided prompts. It is important to note that increasing the number of sampling 
steps directly leads to a proportional increase in the run time of image generation. Below are some indicative examples 
of the corresponding run times for reference: 
 

 
Figure 7: Stable Diffusion Performance by Step Count 

 
Based on Figure 7., we can conclude that the quality of the generated images tends to improve as the number of 

sampling steps increases, up to around 20 steps. Beyond this point, there appears to be minimal improvement in image 
quality despite the continued increase in run time. Therefore, it seems that running the process with approximately 20 
steps would be the most optimal approach. This balance allows for a reasonably high-quality output while also mini-
mizing the additional run time required for further incremental improvements. 

Now that we understood what the most optimal run steps are, we conducted four sets of 10 samples for each 
Checkpoint/vae. Each set was generated using one of the four sampling methods mentioned earlier. This approach 
allowed us to compare and evaluate the results of each method for different Checkpoints/vae. 

Among the different sampling methods utilized, each provided a distinct set of outcomes. The DPM++ method 
resulted in the most detailed images, showcasing a higher level of visual intricacies and fine details. On the other hand, 
the Euler-a method yielded different outcomes, presenting unique characteristics and visual variations compared to 
the other methods. The specific details and differences between these sampling methods can be observed in the sam-
ples provided below in Figure 8: 
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Figure 8: Test Result of Various Sampling Methods 
 
Below are test data results from different sampling methods. Figure 9 illustrates a trend where the best-performing 

method, DPM++, also has the longest average runtime. Following DPM++, Euler and LMS methods exhibit relatively 
shorter runtimes, and DDIM has the shortest average runtime among the methods considered. It's important to note 
that while DPM++ provides superior performance, it comes at the cost of increased computational time, while the 
others offer faster generation with potentially slightly lower-quality outputs. These factors should be considered when 
selecting the most suitable sampling method for image generation tasks. 

 
Figure 9: Test Result of Various Sampling Methods 
        

The issue with image generation models lies in the fact that it is generally preferable for users to select the model 
that will produce the most desirable results. This means that even if using a smaller model helps in reducing carbon 
emissions, it may not be favored if it compromises the quality of the generated images. 

In conclusion, when it comes to image generation models, selecting smaller models does not have a significant 
impact on the output quality. However, users can still optimize the settings and parameters for the chosen models to 
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achieve the best possible results. It is important to strike a balance between the desired image quality and the environ-
mental impact when making such decisions. 
 

V. Conclusions and Future Work 
 
As the field of AI continues to advance rapidly, concerns about its environmental impact, specifically carbon emissions 
and global warming, are growing. The increasing demand for computing power in AI models is expected to contribute 
significantly to carbon emissions in the future. To mitigate this impact, we explored using smaller AI models that emit 
fewer greenhouse gases. 

In our study, we conducted a comprehensive analysis of 12 AI models across different domains, including object 
detection, translation, and text-to-image generation. The results clearly demonstrated that smaller AI models have the 
potential to achieve comparable or even better performance compared to larger models, while drastically reducing 
carbon emissions. 

However, it's important to acknowledge the limitations of our experiment. Firstly, the scope of tasks and AI 
models tested was limited, and our findings may not be generalizable to all AI models and applications. Additionally, 
hardware constraints prevented us from running larger models consistently, potentially impacting the accuracy of our 
results. Moreover, our measurement of carbon emissions relied solely on CodeCarbon, which, while widely used, may 
not be perfectly reliable or accurate. We also faced challenges in determining a standardized measure of quality, 
relying instead on subjective assessments, which introduces the possibility of bias in our conclusions. Finally, we 
observed that some AI models experienced a significant decrease in performance when using smaller versions, indi-
cating the need for alternative solutions. 

Moving forward, we plan to explore the potential of carbon-aware workload shifting as a means to reduce carbon 
emissions in AI models. By adopting this approach, we aim to achieve positive outcomes for AI models of all sizes 
and contribute to a global reduction in carbon emissions. 
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