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ABSTRACT 
 
Having to pay to go to a doctor's office and pay for a medical professional to use a stethoscope is costly and incon-
venient. A mobile solution that is cheap and uses a medium that is widespread will make diagnoses more accessible. 
The objective of our research was to assess how feasible and accurate a mobile device solution to cardiac auscultation 
is, compared to a digital stethoscope. We used a convolutional neural network-based solution, which used the heart 
sound audio, collected with a digital stethoscope and smartphone, graphed out on a spectrogram for input. We trained 
two convolutional neural networks, one on the digital stethoscope audio and the other on the smartphone audio. To 
analyze the outputs, we used the metrics accuracy, recall, precision, and f1 score. We then compared the outputs of 
the model trained on the digital stethoscope audio versus the model trained on the smartphone audio. The model 
trained on the smartphone data typically performed 15% worse than the model trained on stethoscope data in terms of 
accuracy. Based off these results alone, the hardware technology in phones is still not advanced enough to reliably 
diagnose with machine learning. 
 

Introduction 
 
Chest pain can be from a multitude of different causes, and it is difficult to pinpoint precisely what the issue is as a 
person is going through the pain. The only way to tell if something is wrong is through the diagnosis process. Unfor-
tunately, this process can be very time-consuming and expensive. Sometimes the help needed is not even available 
during a medical emergency. Having the instruments to diagnose without expertise, available via tech accessible to 
many people, would be an optimal solution. A piece of tech that fits the previous requirements would be smartphones. 
This paper focuses on how diagnosis using a mobile smartphone would stack up against a digital stethoscope using 
the same artificial intelligence model. Diagnosis is inherently a classification problem, as the action of diagnosis is 
classifying one’s symptoms into a certain disease or no disease. The data that is given would be heart sounds (these 
sounds are very similar to what can be heard through a traditional stethoscope), the nature of which is audio data but 
will be transformed into visual data (as a spectrogram). Once through the model, the output would be represented in 
binary labels: irregular and regular.  
 

Background 
 
The 2018 Kang et al published paper focuses on the feasibility of cardiac auscultation using a smartphone with no 
additional attachments for audio collection. They created a smartphone app called CPstethoscope, which used a built-
in microphone to collect heart sounds by pressing the bottom of a smartphone against the skin of the patient. This 
research was insightful in learning the most optimal way to collect heart audio data and if it is feasible to do so with 
only the built-in microphone. The conclusion that they drew was that cardiac auscultation diagnosis was feasible. This 
meant that the study on the margin of accuracy between a digital stethoscope and a smartphone was also attainable.  
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The Deep Learning Methods for Heart Sounds Classification: A systematic Review researched the methods 
of classification of heart sounds. The idea of using a convolutional neural network (CNN) for our method of classifi-
cation was originally from this article. The most prominent methods of feature extraction mentioned in the article are 
MFSC, MFCC, and spectrograms. We decided to use the spectrogram because of this article. 
 

Dataset 
 
The dataset that was used in the project was sourced from Kaggle from a machine learning challenge data set called 
Heartbeat Sounds. Two folders contain heart sound audio files: set_a and set_b, in the form of WAV files. Set_a audio 
was recorded on an iPhone using the iStethescope pro app. This data was gathered from the general public. Set_b 
audio was recorded using the digital stethoscope DigiScope from a clinical trial. There are also three CSV files that 
go along with the folders: set_a.csv, set_b.csv, and set_a_timing.csv. For set_a, the labels include artifact, extrahls, 
murmur, and normal. The distribution of the labels in set_a can be seen in figure 1. For set_b, the labels include 
extrasystole, murmur, and normal. The distribution of the labels in  set_b can be seen in figure 2. 
 

 
Figure 1. This graph shows the distribution of the types of heart diagnoses of the audio collected by the smartphone. 
 

 
Figure 2. Graph shows the distribution of the types of heart diagnoses of the audio collected by digital stethoscope. 
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The categorical labels were then changed into numerical labels. These labels were then transformed into 1 
for abnormal rhythm and 0 for normal rhythm. The number of audio files that were collected by a digital stethoscope 
greatly outnumbered those collected by a smartphone, so reducing the size of set_b was necessary to avoid bias in our 
model with a more even distribution of input data.  
 

 
Figure 3. This graph shows the distribution of the normal audio (0) and the abnormal audio (1) from the digital 
stethoscope data after it was pared and bucketized. 

  
The data was then split into train and test sets. The train set (for training the machine learning model) and the 

test set (for gathering metrics on the performance in the model). 40% of the data was used in the test set, while the 
remaining 60% was used in the train sets.  

For displaying the audio WAV files and to be used as the input feature in our AI model, the method chosen 
was a spectrogram, such as the one shown in figure 4. 
 

 
 
Figure 4. An example of a spectrogram taken from the smartphone audio data. 
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A spectrogram displays audio data using the x-axis, y-axis, and color. The x-axis represents time, the y-axis represents 
frequency, and the brightness of the color indicates the decibels of the frequency at that point in time.  
 

Methodology/Models 
 
The model used is a CNN (convolutional neural network) from the python library sklearn and keras. CNNs are par-
ticularly talented at reading and interpreting visual data. This makes it perfect for reading our data, as the input spec-
trograms are visual data. CNNs work by applying different filters over an image for feature extraction, and then using 
the output of all the filters for the input of a dense layer for classification. The input for a CNN consists of an array 
containing pixel data in the form of 3 numbers 0-255 (if the image is colored) representing the brightness of the color 
of that pixel. The way a filter is applied for feature extraction is by using a kernel as shown in figure 5. 
 

 
Figure 5. An example of a kernel used in a convolutional neural network. 
 

This kernel will slide across the input and perform an elementwise multiplication operation on each entry in 
the input. After the kernel reaches the end, the output will have the filter applied. CNNs are not limited to one layer 
of feature extraction. There can be many layers and many kernels. Between the convolutional layers, there can be 
pooling layers that reduce the size of each image. This is done to make classification more efficient and prevent 
overfitting to the training data. There are two types of pooling: max pooling and average pooling. Max pooling returns 
the maximum value of an area, while average pooling returns the minimum. This number is then plotted in the output. 
After all the pooling layers and convolution layers, the final image is then used as the input for a small dense network 
used for classifying. This dense network uses values called weights and biases to determine an output based on an 
input. 

The CNN model has settings, called hyperparameters, that can be tuned to better fit the data. These settings 
are not learned automatically through training. The three parameters that were tuned on the model were learning 
rate(lr), epochs, and learning rate decay (or just decay). The learning rate assigns an error to each weight. This affects 
how fast the model “learns” the inputs. Learning rate decay slowly reduces the learning rate until it reaches the most 
optimal value. Learning rate and decay are implemented to avoid overfitting to the training data. This means that the 
model has “memorized” the training data and answers. This would be similar to when a student memorizes a practice 
test but fails the real test because they only memorized the answers and not the method to find those answers. Epochs 
are the number of rounds the model will work through the dataset. The way that these hyperparameters are tuned and 
chosen is by trial and error. This can be seen in table 1. By testing different values and evaluating the accuracy results, 
the tuned values we arrived at that achieved the highest results are lr=0.001, epochs=10, and decay=1e-6.  
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Table 1. Table shows the result of testing different values of different hyperparameters and comparing the accuracy. 
Hyperparameter Value 1 Result 1 Value 2 Result 2 Value 3 Result 3 

Epochs Epochs = 5 67% Epochs = 10 82% Epochs = 15 82% 
LR LR = 0.001 82% LR = 0.005 71% LR = 0.0001 61% 

Decay D = 1e-6 82% D = 1e-7 76% D = 1e-5 80% 
 
The CNN model used consisted of a single convolutional layer with a kernel size of 32x32 with a stride of 

3x3, taking in an input shape of 288x432x4 (the size of the spectrograms created in preprocessing). After the convo-
lutional layer, there is a max pooling layer with a pool size of 2x2, then a dropout layer with a rate of 0.15. Finally, 
there are two dense layers used for classifying. The first contains 512 nodes, then the last contains two nodes, which 
are used as an output. One node signifies an abnormal heartbeat, while the other represents a normal heartbeat. The 
final configuration for the CNN was realized through trial and error. Any other tested configuration would drop the 
accuracy score by 15-20%. These tested configurations include adding more convolution layers, increasing and de-
creasing the shapes of the kernels and the strides, and changing the number of dense layers. 
 

Results 
 
The metrics of the model trained on heart sounds collected from a digital stethoscope performed significantly higher 
than the model trained on heart sounds collected from a smartphone. We used four different metrics to assess the 
performance of each model: accuracy, recall, precision, and f1 score. These metrics are obtained through different 
calculations using the tp, tn, fp, and fn of a model's predictions. Tp or true positive is the number of positive labels the 
model correctly predicted. In the case of the heart data, true positive represents how many abnormal heartbeats the 
model correctly predicted. Tn or true negative is the number of non-positive labels the model predicted correctly. With 
the heart data, tn represents how many normal heartbeats the model guessed correctly. Fp and fn stand for false positive 
and false negative. They are similar to tp, and tn except the model guessed them incorrectly. These values can be 
plotted using a confusion matrix. A confusion matrix created out of tp, tn, fp, and fn labels from the smartphone model 
are shown in figure 6. 

 
 
Figure 6. An example of a confusion matrix that uses tp, tn, fp, and fn.  
 

With these values we calculated the metrics needed for evaluating the model. Accuracy is calculated using 
this formula: 𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑓𝑓
. Accuracy is used to measure the percentage of correct predictions out of the total num-

ber of predictions. Precision is calculated with this formula: 𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓

. In this case precision is used to measure how 
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many abnormal heart beats were classified correctly out of all the predictions classified as abnormal heart beats. Recall 
is calculated utilizing this formula: 𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓
. Recall is useful as it evaluates how many abnormal heartbeats were clas-

sified correctly out of all the actual abnormal heartbeats. The last metric used, f1, is calculated using this formula: 

𝐹𝐹1  =  2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

. F1 allows us to quickly judge the recall and precision using only 1 number. We gath-

ered metrics for each model over five trials. Each trial included randomly shuffling the data from the test set and the 
train set. The final metrics for the smartphone-trained model are shown in table 2, and the digital stethoscope-trained 
model is shown in table 3. 
 
Table 2. The metrics of the convolutional neural network trained on the smartphone data over five trials. 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 AVG 

Accuracy 79% 79% 65% 82% 82% 77.4% 

Recall 80% 88% 64% 76% 76% 76.8% 

Precision 84% 84% 84% 100% 100% 90.4% 

F1 82% 86% 72% 86% 86% 82.4% 

 
Table 3. The metrics of the convolutional neural network trained on the digital stethoscope data over five trials. 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 AVG 

Accuracy 95% 95% 95% 86% 91% 92.4% 

Recall 100% 100% 100% 100% 82% 96.4% 

Precision 91% 86% 90% 63% 100% 86.0% 

F1 95% 92% 95% 77% 90% 89.8% 

 
Overall, the model trained on the digital stethoscope performed better than the model trained on smartphone 

data. On average, accuracy was 15% higher, recall was 19.6% higher, and f1 was 7.4% higher. The digital stethoscope 
model performed slightly worse in terms of precision compared to the smartphone model with a precision 4.4% less 
than the smartphone model. 
 

Discussion 
 
From these metrics, we can establish that the smartphone model was able to distinguish abnormal heartbeats fairly 
accurately. Where the model ran into issues was with discerning normal heartbeats. This was still apparent in the 
digital stethoscope model, but the gap between the accuracy of classifying abnormal and normal sounds was smaller 
than the gap in accuracy for the smartphone model. There are a couple of reasons why this could be occurring. The 
smartphone could be picking up surrounding noise due to its less specific use case. Smartphone microphones are 
meant to pick up a variety of sounds, while stethoscopes are manufactured for one purpose. The smartphone could 
pick up noises from the environment, and the model could interpret that as an abnormality of the heart. The second 
possibility is the distribution of abnormal heartbeats and normal heartbeats. As shown in figure 1 and figure 2, the 
stethoscope data has many more normal sounds compared to the smartphone data. The paring of the data, which was 
explained in the preprocessing section, was thought to have fixed this, but the way the data was pared was through 
random selection. This is a problem as each time the program was run, there is a possibility that the digital stethoscope 
model got more normal heart data than the smartphone model, which increased the variability of the metrics in the 
digital stethoscope model. 
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Conclusion 
 
Having a smartphone that is able to record heart audio data and classify that data reliably and accurately would be 
able to aid many people. The technology would make the diagnosis process less stressful, more efficient, widely 
available, and less expensive.  

The purpose of this research was not to create this model that would be put to use but to evaluate how well a 
certain configuration of a machine learning model using data acquired from a smartphone compares to another model 
of the same configuration using data collected using a digital stethoscope. The stethoscope model outperformed the 
smartphone model in terms of accuracy, recall, and f1 but interestingly the smartphone model outperformed the digital 
stethoscope model in terms of precision. This means that the smartphone model is particularly skilled at classifying 
abnormal heartbeats. Future research endeavors could investigate a different approach for feature extraction, such as 
mfcc’s instead of spectrograms, a way of filtering out environmental sound from the smartphone data, and a way of 
regularizing the data that evens the ratio of normal heart audio and abnormal heart audio the same between the 
smartphone data and the stethoscope data. 
 

Limitations 
 
The dataset used in the research does not mention where on the body the smartphone and the digital stethoscope were 
placed when collecting the heart audio. This is important as some heart disorders can only be heard from certain 
locations. This is why when doctors are diagnosis using a stethoscope, they will place the stethoscope on various 
locations of the chest as seen in figure 7. 
 

 
Figure 7. The different locations that a stethoscope is placed during cardiac auscultation. 
 
This process gives the most accurate diagnosis possible. The heart audio used in the study only gives audio taken from 
one unnamed point on the chest. I predict that the metrics of both models used in the study would greatly increase if 
the dataset included audio taken from multiple points on the chest. 

Volume 12 Issue 4 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 7



The type of phone and microphone used to take the audio data is not presented in the dataset. Different types 
of phones have different qualities of microphones. Higher quality microphones may pick up more minute details than 
lower quality microphones. These details may denote an abnormality which only a higher quality microphone would 
be able to detect. Gathering metrics across a variety of smartphones would give metrics that are closer to the results 
that would be found in everyday smartphones.  
Smartphone microphones are unable to separate background noise from the subject of the audio. This results in audio 
that has increased levels of background noise. This is a problem as the algorithm could mistake the background noise 
as very noisy blood flow. Very noisy blood flow could denote defects inside the heart which means that the algorithm 
would misinterpret the audio as abnormal. Using a denoising algorithm as a part of pre-processing the dataset would 
remove a majority of the background noise. This would solve the problem of the misinterpretation of the background 
noise, but it would also present another problem; the denoising algorithm could remove the sound of the blood flow 
of the heart. Listening to blood flow is a very important part of cardiac auscultation. Without it, many diagnoses would 
be missed. 
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