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ABSTRACT 
 
There is increasing interest in the application of nonlinear optimization techniques across a broad range of real-world 
problems that is linked to rapid advances in novel technologies and renewed interest in areas like sustainable devel-
opment. While many algorithms for nonlinear optimization have been developed, they differ widely in their methods 
of convergence to the solution. Consequently, matching the function to be optimized with the right optimization algo-
rithm is essential. To further explore this relationship, we studied two nonlinear optimization methods – the Nelder-
Mead simplex method that only performs function evaluations and the quasi-Newton method which requires estima-
tion of derivatives. These algorithms were used to find the global minima of the Rosenbrock, Booth, and Matyas 
functions from multiple starting points. The convergence paths for each starting point across both optimization meth-
ods for all 3 functions were visualized on contour plots. While convergence on the global minima was observed in all 
instances, our analysis indicated that the quasi-Newton method was consistently more efficient and needed fewer 
iterations than the Simplex method. This was especially pronounced for the Booth and Matyas functions where ~10-
fold and 20-fold fewer iterations, respectively, were necessary for convergence. Our analysis reinforces the need to 
carefully match properties of the function being minimized with the performance characteristics of the optimization 
approach to obtain fast convergence on the global minimum.  
 

Introduction  
 
The general approach of optimization has broad practical applications across many disciplines ranging from engineer-
ing to finance (Bartholomew-Biggs, 2005, 2008). As many real-world systems are nonlinear, optimization of nonlinear 
functions becomes important to minimize waste, maximize efficiency, and to design an optimal manufacturing plant 
for the product of choice (Cui et al., 2017; Edgar & Himmelblau, 1987). Extensive work has been done in the area of 
nonlinear optimization and many different approaches are available to solve these problems (Beck, 2014). 

Every optimization problem has a function that needs to be optimized and a choice must be made on the 
optimization method that will be applied to the function. Also, because nonlinear optimization is iterative, the starting 
point needs to be specified using which the optimization method will advance towards the solution. It is important to 
choose starting points that are close to the global minimum of the function being optimized. Starting with initial values 
that are far from the global minimum can lead to the optimization method converging on undesirable local minima 
and thus lead to an incorrect solution. 

To better understand the performance of optimization methods, three functions with different properties were 
chosen. They included the Rosenbrock function (Rosenbrock, 1960) which is non-convex with a global minimum of 
(1, 1) located in a long, narrow, and flat parabolic (banana-type) valley (Figure 1). The second was the Booth function 
(Salleh et al., 2022) characterized by a long flat valley (Figure 2) with the global minimum located at (1, 3). Finally, 
the Matyas function (Wang & Luo, 2021) was chosen for its plate shaped surface (Figure 3) and has a global minimum 
at (0, 0). The diversity and uniqueness of surface properties across these three functions make them good candidates 
to evaluate optimization algorithms. 
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A range of initial estimates were evaluated around the true global minima for the 3 functions and the number 
of iterations necessary for convergence was determined for the two nonlinear optimization approaches. While conver-
gence was reached in all cases, substantial differences in the performance of the optimization methods were observed, 
reinforcing the need to carefully match functional properties with the optimization algorithm. 
 

 
 
Figure 1. Contour and surface plots for the Rosenbrock function for x1 and x2 values in the -10 to 10 range. The 
function minimum of 0 corresponding to x1 = 1 and x2 = 1 is shown as a red dot. 
 
 

 
 
Figure 2. Contour and surface plots for the Booth function for x1 and x2 values in the -10 to 10 and -30 to 30 ranges, 
respectively. The function minimum of 0 corresponding to x1 = 1 and x2 = 3 is shown as a red dot. 
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Figure 3. Contour and surface plots for the Matyas function for x1 and x2 values in the -10 to 10 range. The function 
minimum of 0 corresponding to x1 = 0 and x2 = 0 is shown as a red dot. 
 

Methods 
 
Optimization Algorithms Tested 
 
As the purpose of this investigation was to compare optimization methods across different functions, algorithm choice 
is an essential component. The Nelder-Mead Simplex Method (Nelder & Mead, 1965) has gained much importance 
since its introduction and utilizes a polygon that converges on the global minima through reflection, contraction, and 
expansion motions. Because this method only uses function evaluations and does not require the calculation of deriv-
atives, it has broad applicability over a range or problems. Conversely, the quasi-Newton method creates a quadratic 
model problem using curvature information at each iteration. Through numerical differentiation, gradient information 
is collected, and the method follows a direction of descent to reach the minima (Edgar & Himmelblau, 1987). While 
both methods are appropriate for finding the minima of nonlinear functions, they take very different approaches to 
arrive at the solution. 
 
Choice of Starting Points 
 
It is well known that the choice of initial estimates is critical to ensure convergence during minimization of nonlinear 
functions (Beck, 2014). Convergence is faster and more likely when the initial estimates are closer to the values that 
correspond to the global minimum. In this study, parameter values corresponding to function minima were known and 
were (1,1), (1,3), and (0,0), for the Rosenbrock, Booth, and Matyas functions, respectively. For robust testing of the 
performance of the optimization algorithms, 6 sets of initial estimates were used for each function, and these included 
both positive and negative values as shown in Table 1. 
 
Table 1. Choice of initial parameter estimates and their values at the minimum for the 3 functions evaluated in this 
study.  

Function Values at f(x) = 0 Initial Estimates Evaluated 
Rosenbrock (1, 1) (-10, -10), (-5, -5), (-2, -2), (2, 2), (5, 5), (10, 10) 
Booth (1, 3) (-10, -30), (-5, -15), (-2, -6), (2, 6), (5, 15), (10, 30) 
Matyas (0, 0) (-10, -10), (-5, -5), (-2, -2), (2, 2), (5, 5), (10, 10) 
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Computer Programs 
 
Optimization of all 3 functions was performed using MATLAB R2023a (The MathWorks, Inc., Natick, MA). The 
Simplex method was implemented using fminsearch while the quasi-Newton method was implemented using the 
fminunc function. The termination and convergence criteria defaults were 1 x 10-4 for both the algorithms evaluated 
in this study. 
 

Results 
 
Rosenbrock Function 
 
A total of 6 initial parameter estimates were used to find the minima of the Rosenbrock function using the Simplex 
and quasi-Newton methods. Convergence was reached in all 6 instances and the associated number of iterations are 
shown in Table 2. The convergence path is shown in Figure 4 over the contour plots for the two extreme starting 
conditions of (10, 10) and (-10, -10). The iteration trajectories for the other initial estimates in Table 2 were generally 
like those shown in Figure 4. 
 Across both methods, there was a general increase in the number of iterations as the initial estimates moved 
further away from the optimal values of (1, 1). Additionally, within each method, positive initial estimates were asso-
ciated with a higher number of iterations than the corresponding negative initial estimates. The most striking difference 
from Table 2 is the efficiency of the quasi-Newton method where a 3 – 4-fold reduction in the number of iterations is 
seen across the 6 initial estimates evaluated in this study. 
 

 
Figure 4. Contour plots showing the iteration trajectories for the Rosenbrock function for the Simplex and quasi-
Newton methods at initial estimates of (10, 10) and (-10, -10). Convergence to the optimal value of (1, 1) was 
achieved in all instances. 
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Table 2. Comparison of convergence between the Simplex and quasi-Newton method for the Rosenbrock function. 
Initial Estimates 
(x1, x2) 

Number of Iterations 
Simplex Method Quasi-Newton Method 

(2, 2) 62 23 
(5, 5) 106 36 
(10, 10) 129 44 
(-2, -2) 79 19 
(-5, -5) 78 27 
(-10, -10) 89 28 

 
Booth Function 
 
The Booth function has a global minimum of (1, 3) and like the approach for the Rosenbrock function, initial estimates 
were chosen that were 2-fold, 5-fold and 10-fold of the global minima in both positive and negative directions. These 
values are shown in Table 3 along with the corresponding numbers of iterations for the Simplex and quasi-Newton 
methods. Figure 5 shows the iteration trajectories starting from (10, 30) and (-10, -30), the two extreme initial estimates 
on contour plots. Convergence to the optimal values was achieved in all instances with the quasi-Newton method 
rapidly reaching the global minimum compared to the Simplex method. 

 

 
Figure 5. Contour plots showing the iteration trajectories for the Booth function for the Simplex and quasi-Newton 
methods at initial estimates of (10, 30) and (-10, -30). Convergence to the optimal value of (1, 3) was achieved in all 
instances. 
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Table 3. Comparison of convergence between the Simplex and quasi-Newton method for the Booth function. 
Initial Estimates 
(x1, x2) 

Number of Iterations 
Simplex Method Quasi-Newton Method 

(2, 6) 46 6 
(5, 15) 54 6 
(10, 30) 55 6 
(-2, -6) 58 6 
(-5, -15) 56 8 
(-10, -30) 55 6 

 
Compared to Table 2 data for the Rosenbrock function, the number of iterations did not vary significantly for the 
Booth function as the initial estimates were changed (Table 3) across both optimization approaches. However, the 
difference in performance was very significant with the Simplex method converging in 46 – 58 iterations compared 
to 6 – 8 iterations for the quasi-Newton method. This translates to almost an order of magnitude reduction in the 
number of iterations for the quasi-Newton method.  
 
Matyas Function 
 
The Matyas function has a global minimum of (0, 0) and the initial estimates of x1 and x2 used to find the function 
minimum and the associated number of iterations for the Simplex and quasi-Newton methods are shown in Table 4. 
Like the Booth function, there was minimal influence of the initial estimates on the number of iterations with the 
Simplex method converging in 36 – 44 iterations while the quasi-Newton method only needed 2 iterations for conver-
gence across all conditions. 
 

 
Figure 6. Contour plots showing the iteration trajectories for the Matyas function for the Simplex and Quasi-New-
ton methods at initial estimates of (10, 10) and (-10, -10). Convergence to the optimal value of (0, 0) was achieved 
in all instances. 
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Figure 6 shows the convergence path for both optimization approaches at the extreme initial estimates of (10, 10) and 
(-10, -10). The flat profile of the Matyas function resulted in a linear convergence path for both optimization ap-
proaches and the quasi-Newton method was ~20-fold more efficient than the Simplex method (2 vs ~40 iterations). 
 
Table 4. Comparison of convergence between the Simplex and quasi-Newton method for the Matyas function. 

Initial Estimates 
(x1, x2) 

Number of Iterations 
Simplex Method Quasi-Newton Method 

(2, 2) 39 2 
(5, 5) 42 2 
(10, 10) 44 2 
(-2, -2) 36 2 
(-5, -5) 42 2 
(-10, -10) 44 2 

 

Conclusion  
 
When the Simplex and quasi-Newton optimization methods were used to find the global minima of the Rosenbrock, 
Booth, and Matyas functions from varying starting points, significant differences in the number of iterations necessary 
for convergence were seen, especially for the Booth and Matyas functions. While all initial estimates resulted in con-
vergence across both optimization methods, the quasi-Newton method needed ~10-fold and ~20-fold fewer iterations 
for the Booth and Matyas functions, respectively. It is very likely the long flat valley of the Booth function and the 
plate-like profile of the Matyas function were well suited for rapid convergence of the quasi-Newton method. The 
difference in performance was not as high for the Rosenbrock function where the global minimum lies inside a long 
and narrow parabolic valley. Our work reinforces past observations that while many optimization methods may lead 
to the desired solution, their performance is dependent on the function being evaluated. Matching properties of the 
function to be minimized with the features of the optimization method can help choose the most appropriate method 
to determine the global minimum of a function.  
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