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ABSTRACT 
 
Water temperature plays an important role in our environment and is applicable to nearly all limnology research, as 
the temperature of a body of water affects biological activity and growth of organisms such as algae and bacteria. 
Certain organisms have a preferred temperature range within which they can survive, while others become dormant 
or die when the water reaches extreme temperatures. The temperature of water also governs the maximum dissolved 
oxygen concentration of water. Dissolved oxygen in water is important for aquatic life because of its vital role in 
cellular respiration. Predicting water temperature is also an important factor in determining whether a body of water 
is acceptable for human use. Warm bodies of water may contain pathogens that can be dangerous to humans. Our 
research presents a computational method of determining lake water temperature through a novel technique known as 
physics-informed neural networks (PINNs). PINNs can be used to model and forecast the temperature of water over 
a specific time period by training a neural network using the data points derived from the discrete form of a partial 
differential equation and taking into account the boundary conditions. Several factors such as wind, precipitation, and 
solar energy effects on water temperature were investigated. By using a computer simulation in place of an analytical 
mathematical model, a tremendous increase in run time speed can be achieved. The results can be used to determine 
the patterns in water temperature throughout a year, demonstrating the advantages of a PINN over an analytical model. 
 

Introduction 
 
Computer simulations are important tools in many areas of research. Generally, computer simulations are accom-
plished using traditional numerical methods, such as the finite difference method, finite element method, or computa-
tional fluid dynamics. While these methods are accurate, they can be slow and time-consuming. Traditional methods 
use a process called “time stepping” that requires the solution to be computed one time step at a time in chronological 
order. For example, if we wanted to compute the solution at time 1000 seconds, we must know the solution at time 
0.1 seconds, time 0.2 seconds, time 0.3 seconds, all the way up to time 1000 seconds. Recently, scientists have found 
that one way to make computer models faster is to solve them using neural networks instead of traditional numerical 
methods. What makes neural networks so much faster is that they can jump ahead to any time step within their training 
domain. This means that, with a neural network, we can compute the solution at time 1000 seconds as quickly as you 
can compute the solution at time 0.1 second.  
 In this research, our goal is to use a neural network to solve for the temperature profile of a lake. The neural 
network can compute the temperature profile at any time of the year. Additionally, the neural network can compute 
the solution magnitudes faster than a traditional numerical solver. Our research aims to prove the ability of neural 
networks to produce practical and accurate computer models that are amongst the fastest in the world.  
 

Methods 
 
In order to train a neural network to predict the temperature profile of a lake, we conduct two major processes:  
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 Method 1: Build a custom, discretized 3D mathematical model of transient heating using partial differential 
equations to model the temperature profile of the lake;  
 
Method 2: Subsequently, apply the resulting data and use it to train a neural network. The end result will be 
a neural network that performs nearly the exact same computations as an analytical mathematical model but 
with a tremendous speed advantage.  

 
 

A. Method 1 of 2: Build a mathematical model of the transient heating of a lake in order to collect collocation 
data. 

 
Step 1: Represent the lake as discrete points using Microsoft Excel CSV 

 
To determine the transient heating inside of a lake, we will convert our lake profile into a 2D grid with 51 
rows and 151 columns. We will convert the continuous nature of the lake profile into discrete points. That 
way, we only compute the temperature at a finite number of points. 
 
 

 
 
Fig. 1 Outline and initial temperature profile of a “deep” lake 
 
The image, which was created in a Microsoft Excel CSV file, consists of 51 rows (excluding the header) and 
151 columns. Thus, we have broken our environment into 51*151 = 7701 discrete points. However, the 1183 
green-colored cells represent the area that lies outside of the lake, i.e., rocks and soil. This means that our 
lake is broken into 7701-1183 = 6518 discrete points. The green cells to the left and bottom of the image 
represent earth material while the green cells to the right of the image represent an axis of symmetry. Estab-
lishing an axis of symmetry is a mathematical trick that allows us to simulate only half the lake, thereby 
reducing the needed number of computations. 
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Fig. 2 . Outline and initial temperature profile of a “shallow lake.” 
 
Again, the image consists of 51 rows (excluding the header) and 151 columns. The outline of the “shallow 
lake” is exactly the same as that for the “deep lake.” The only difference is in the initial temperature profile 
of the lake. Because the lake is shallow (meaning that the differential spacing in the y-direction is smaller), 
the red band of warmer water is more spread out in the shallow lake profile than in the deep lake profile. 
 
Step 2: Derive a formula to compute the temperature at every discrete point in the interior of our lake. 
 
There is a partial differential equation known as the transient heat equation that represents the transient heat-
ing of a continuous material. (Pina, H.L.G., Fernandes, J.L.M. 1984) That formula is given here: 

 
𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

+  
𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

+
�̇�𝑞
𝑘𝑘

=  
𝜌𝜌∁𝑝𝑝
𝑘𝑘

+ 
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

 

 
This equation illustrates how the temperature of any point in 3D space varies according to the spatial coor-
dinates x, y, and z, and the temporal coordinate t. However, our lake profile is 2D (which is equivalent to 
prismatic 3D), so we can drop the z-axis. This equation also includes a heat source q, which the interior of 
our lake does not have. Thus, for the interior points of our lake, we will use the following modified equation: 
 

𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

+ 
𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

=  
𝜌𝜌∁𝑝𝑝
𝑘𝑘

+  
𝜕𝜕𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕

 

 
This equation is in a “continuous” form. Since we “discretized” our lake into discrete points on a 51 x 151 
grid, we will need to replace the continuous form of the transient heat equation with a discrete form. This 
size grid was selected in order to properly display the lake proportions, while minimizing the number of 
points to make sure the neurological network would not be overloaded. We accomplish this by replacing 
every spatial and time derivative with its finite difference form. 

 
We insert the finite difference form of each term into the transient heat equation (Recktenwald, 2004), setting 
Δx=Δy, and rearranging, we obtain: 

 

𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘+1 = 𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘 + ∆𝜕𝜕 ∙
𝑘𝑘

𝑝𝑝 ∙ 𝑐𝑐𝑝𝑝
∙

1
(∆𝑋𝑋2) [𝑇𝑇𝑖𝑖−1,𝑗𝑗

𝑘𝑘 + 𝑇𝑇𝑖𝑖+1,𝑗𝑗
𝑘𝑘 + 𝑇𝑇𝑖𝑖,𝑗𝑗−1𝑘𝑘 + 𝑇𝑇𝑖𝑖,𝑗𝑗+1𝑘𝑘 − 4𝑇𝑇𝑖𝑖,𝑗𝑗𝑘𝑘  

Volume 12 Issue 4 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 3



 
In this equation, the subscript “i” represents the index in the x-direction, the subscript “j” represents the index 
in the y-direction, and the superscript “k” represents the index in time. Thus, this equation allows us to find 
the new temperature k+1 at any point I,j using only the current temperature at time k. Specifically, we see 
that the temperature of any point in space is dependent on the temperature of the points in space around it. 
Given our point in space, the formula requires that we sum the current temperature at the point in space 
directly above, below, to the right, and to the left. Then, from this sum, we must subtract four times the 
current temperature at our point in space. This mathematical process simply represents the heat that a point 
can gain due to its temperature gradient with the four points around it. This new value is then multiplied by 
constant:  𝑘𝑘

𝑝𝑝∗𝑐𝑐𝑝𝑝
* 1

(𝑥𝑥𝑥𝑥)2
 and Δt and added to the initial value of the temperature. This formula is simplified down 

from its original form to reflect a case where Δx is equal to Δy.  
 

Step 3: Derive a formula to compute the temperature at every discrete point along the side and bottom edges 
of our lake. 
 
In this step, we will derive a formula to compute the temperature along the left, right, and bottom edges. To 
accomplish this, we first have to understand what kind of boundary to apply to the left, right, and bottom 
edges. We will presume that, for the left and bottom edges of our lake, the heat inside the lake cannot escape. 
In other words, the left and bottom edges of our lake are well insulated. To prevent the heat from escaping, 
we apply a first-order zero-flux Neumann boundary to the left and bottom edges: 
 

           

𝑞𝑞𝑠𝑠 =  −𝑘𝑘
𝑑𝑑𝑇𝑇(0, 𝜕𝜕)
𝑑𝑑𝜕𝜕

= 0 

 
Because the right edge of the lake is an axis of symmetry, no heat should escape out of the right edge of our 
lake. So, we can also say that the right edge of our lake is well insulated. Thus, we apply a first-order zero-
flux Neumann boundary to the right edge as well.  
 
Step 4: Derive a formula to compute the temperature at every discrete point along the top edge of our lake. 
 
Finding the formula for the discrete points along the top edge of the lake is the most difficult task, because 
we have a non-zero-flux Neumann boundary. This means that heat is allowed to enter and leave the lake’s 
surface. In other words, heat transfer into and out of the lake is constantly occurring. The amount of heat 
transfer at any point in time is dependent on numerous weather conditions and other factors. The process to 
compute the temperature along the top of the lake is as follows. 
 
q_total, the total heat flux into the lake in W/m2, is given by: 

 
𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙  

 
q_solar is the solar radiation, q_sensible is the sensible heat flux, and q_latent is the latent heat flux.  
 
q_solar, the solar radiation, combines the short wave radiation q_short and the long wave radiation q_long:  

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑞𝑞𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑙𝑙 ∙ (1 − 𝑎𝑎) + 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙  
α, the albedo: 

𝑎𝑎 = 𝑝𝑝(𝑐𝑐 sin 𝑠𝑠+1) 
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where  
 
 a = hourly albedo, 
 c = roughness coefficient, 
 p = color coefficient, 
 b = solar angle, in degrees.  
 
H = solar hour angle, degree. (H = 0 at solar noon, 15° per hour deviation from solar noon,  “+” in the 
afternoon, “-” in the morning)  
 
The short-wave and long-wave radiation values are obtained from weather data The color coefficient p and 
the roughness coefficient c are found using the below table: 
 
 

 
 
Fig 3. Values for the coefficients p and c (For 0.3 micron to 3-micron wavelengths) 
 
The solar angle B and solar declination angle D are computed using these two formulas, where N is the Julian 
day: 
 

 
𝐵𝐵 = sin−1( sin𝐷𝐷 sin 𝐿𝐿 + cos𝐷𝐷 cos 𝐿𝐿 cos𝐻𝐻) 
𝐷𝐷 = sin−1{ 0.39797 cos[0.98563(𝑁𝑁 − 173)]} 

 
 
qsensible, the sensible heat flux through the lake surface: 

     
𝑄𝑄𝑠𝑠 = −𝑝𝑝𝑠𝑠 ∙ 𝑐𝑐𝑝𝑝 ∙ 𝐶𝐶𝑠𝑠(𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑠𝑠)𝑊𝑊 

 
 
 
 
 

Tv, the virtual temperature: 
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𝑇𝑇𝑣𝑣 = 𝑇𝑇(
1 + 𝑊𝑊

𝐸𝐸
1 + 𝑊𝑊

) 

 
  ρa, the density of the moist air mass: 
     

𝑃𝑃𝑠𝑠 =
𝑃𝑃

(𝑅𝑅𝑑𝑑 × 𝑇𝑇𝑣𝑣)
 

 
ω, the mixing ratio: 

𝑊𝑊 =
𝐸𝐸𝐸𝐸
𝑃𝑃 − 𝐸𝐸

 

ea, the vapor pressure above the lake’s surface: 

𝐸𝐸 = 𝐸𝐸0exp [�
𝐿𝐿𝑣𝑣
𝑅𝑅𝑣𝑣
� �

1
𝜕𝜕0
−

1
𝑇𝑇𝑑𝑑
�] 

 Lv, the latent heat of vaporization of water: 
 

𝐿𝐿𝑣𝑣 = 2500297.8 − 2369𝑇𝑇 
 

cp,a, the specific heat of moist air in J/kg-K: 

𝐶𝐶𝑝𝑝 = 𝐶𝐶𝑝𝑝0(
1 + 𝑊𝑊

𝐶𝐶𝑝𝑝𝑣𝑣
𝐶𝐶𝑝𝑝0

1 + 𝑊𝑊
) 

 
cs, the sensible heat transfer coefficient: 

    

𝐶𝐶𝑝𝑝 = �𝑊𝑊 < 8 𝑚𝑚𝑠𝑠−1: (0.720 + [0.0175 𝑊𝑊 (𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑠𝑠)]) ∙ 10−3

𝑊𝑊 ≥ 8 𝑚𝑚𝑠𝑠−1: (1.000 + [0.0015 𝑊𝑊 (𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑠𝑠)]) ∙ 10−3
 

 
q_latent, the latent heat flux through the lake surface: 

 
𝑄𝑄𝑠𝑠 = −𝑃𝑃𝑠𝑠 ∙ 𝐿𝐿𝑣𝑣 ∙ 𝐶𝐶𝑠𝑠(𝑞𝑞𝑠𝑠 − 𝑞𝑞𝑠𝑠)𝑊𝑊 

 
 

 qs, the specific humidity at the lake surface: 
 

 

𝑞𝑞 =
𝐸𝐸𝐸𝐸

𝑃𝑃 − (1 − 𝐸𝐸)𝐸𝐸
 

 
 Ce, the evaporative heat transfer coefficient: 
 

𝐶𝐶𝑠𝑠 = 1.5 ∙ 10−3 
 

Now that we know q_total (the total heat flux into the lake), the temperature of the nodes along the top edge 
of the lake can be computed using the finite volume method given below: 

 
𝑞𝑞�̇�𝑠 ,𝑇𝑇∞ = 300,𝐻𝐻𝑐𝑐 
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𝐾𝐾 ∙
𝑇𝑇1 − 𝑇𝑇0
∆𝜕𝜕

�
1
2
∆𝜕𝜕 ∙ 𝛿𝛿� + 𝐾𝐾 ∙

𝑇𝑇3 − 𝑇𝑇0
∆𝜕𝜕

�
1
2
∆𝜕𝜕 ∙ 𝛿𝛿� + 𝐾𝐾 ∙

𝑇𝑇4 − 𝑇𝑇0
∆𝜕𝜕

�
1
2
∆𝜕𝜕 ∙ 𝛿𝛿� + 𝑞𝑞𝑠𝑠(∆𝜕𝜕 ∙ 𝛿𝛿) + ℎ(𝑇𝑇∞ − 𝑇𝑇0)(∆𝜕𝜕 ∙ 𝛿𝛿)   

=  𝑃𝑃 �
1
2
∙ ∆𝜕𝜕 ∙ ∆𝜕𝜕 ∙ 𝛿𝛿� ∙

𝑇𝑇0𝑠𝑠𝑠𝑠𝑛𝑛 − 𝑇𝑇0
∆𝜕𝜕

 

 
To use this formula, we only need two last variables: T-infinity and h. T-infinity is just the common notation 
for the air temperature. So, we will obtain that at 15-minute intervals from our weather data. The last variable, 
h, is the convective heat transfer coefficient. This is given by: 

 

ℎ𝑐𝑐 = 10.45 − 𝑣𝑣 + 10
1
2 

 
In this formula, “v” is just the wind speed (measured at 10 meters above the surface of the lake) in units of 
meters per second. 
 
Step 5: Find the weather and material data necessary to run the model. 
 
The formulas above require that we obtain certain data. For example, the transient heating equations require 
that we know the mass density ρ, specific heat capacity cp, and thermal conductivity k of our lake water. 
These values, in turn, depend on the salinity of our lake. Assuming that our lake has a salinity of 15%, the 
aforementioned values will be ρ = 1171.45 kg/m3, cp = 3681.75 J/kg-K, and k = 0.60 W/m-K.  
 
Additionally, to create a transient heat modeling for the temperature profile of our lake for a 12-month period, 
we will need a detailed set of weather data for a 12-month period. So, we downloaded a weather set that has 
weather data from January 3, 2021, to December 31, 2021, collected at every 15-minute increment. This 
weather data contains the date, time, dew point temperature, air temperature at 10 meters above the ground, 
wind speed at 10 meters above the ground, and short-wave solar radiation (qshort). We will make the general 
assumption that the long-wave solar radiation qlong is some percentage of qshort, e.g., qlong = 0.45*qshort. This 
assumption is informed by field data showing that the pattern of short-wave and long-wave radiation appear 
to follow one another, but with the long-wave radiation being a fraction as intense. 

 
Table 1. Weather Data 
 

date_time td_avg airt_avg winds_avg precip_tb so-
larw_avg 

julian hour albedo 

1/1/2021 
0:00 19.4 22.8 2.503424 0 0 1 0 0.228450037 
1/3/2021 
0:00 18.7 20.9 0.849376 0 0 3 0 0.228338727 
1/3/2021 
0:15 17.2 19.3 0.312928 0 0 3 0.25 0.228137098 
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1/3/2021 
0:30 16.5 18.4 0.715264 0 0 3 0.5 0.22753414 
1/3/2021 
0:45 16.8 18.7 0.715264 0 0 3 0.75 0.226535602 
1/3/2021 
1:00 15.3 17.4 0.268224 0 0 3 1 0.225150948 
1/3/2021 
1:15 12.5 14.8 0.759968 0 0 3 1.25 0.223393182 
1/3/2021 
1:30 12.2 14.6 0.357632 0 0 3 1.5 0.221278617 
1/3/2021 
1:45 12.2 14.6 0.491744 0 0 3 1.75 0.218826576 
1/3/2021 
2:00 12.9 15.2 0.44704 0 0 3 2 0.216059063 
1/3/2021 
2:15 12.6 14.9 0.089408 0 0 3 2.25 0.213000386 
1/3/2021 
2:30 12 14.4 0.625856 0 0 3 2.5 0.209676754 
1/3/2021 
2:45 11.9 14.3 0.581152 0 0 3 2.75 0.206115864 
1/3/2021 
3:00 13 15.3 0 0 0 3 3 0.202346477 
1/1/2021 
0:00 19.4 22.8 2.503424 0 0 1 0 0.228450037 

 
Step 6: Run the mathematical model. 
 
To run our mathematical model, we set the time step to 0.1 seconds. The dataset that we obtained has weather 
information for 15-minute increments. Thus, for every set of 15-minute weather data, we must run our model 
for 9000 steps. One year should have (365 days/year) *(24 hours/day) *(4 15-increments/hour) = 35,040 15-
minute increments. However, our data only had 34,321 15-minute increments since a few days of data in the 
month of January were missing. In addition, other data points spread throughout the year were missing. Given 
that we have 34,321 15-minute increments, and our algorithm computes the new temperature values 9000 
times per 15-increment, this means that our algorithm ends up computing the temperature of our lake profile 
a total of (34,321)*(9000) = 308,889,000 times. Given that our lake contains 6518 (of the 7701 total points), 
this means that the total possible number of collocation data points that we can generate is 
(6518)*(308,889,000) = 2,013,338,500,000. 
 
Step 7: Sample the solution space to generate a collocation data set. 
 
Our model, which computes the temperature profile of our lake for a 12-month period, generates an incredible 
2,013,338,500,000 colocation data points. However, we need far fewer data points to train our neural net-
work. With too much data, the neural network can become stuck at a local minimum during stochastic gra-
dient descent. Additionally, the training time will be too high given the number of computations and batch 
sizes. So, we created an algorithm that samples the solution space and only takes a relatively small number 
of collocation points. As a result, we ultimately chose 10,502,532 collocation points. For each point, there 
are three inputs: time, x, and y (where x and y are simply the Cartesian coordinates of the points and are 
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computed using the row and column number of our array). For each point, there is only one output: the 
temperature T in Kelvin.  
 
Step 8: Scale down the collocation dataset. 
 
To scale down the collocation dataset, we apply the formula: 

                

𝑆𝑆𝑐𝑐𝑎𝑎𝑆𝑆𝐸𝐸𝑑𝑑 𝑉𝑉𝑎𝑎𝑆𝑆𝑉𝑉𝐸𝐸 =  
(𝑣𝑣𝑎𝑎𝑆𝑆𝑉𝑉𝐸𝐸 −𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑆𝑆𝐸𝐸)
(max− 𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑆𝑆𝐸𝐸)

 

 
In the formula, “value” is the original x or y value, “max” is the value with the biggest magnitude in the given 
data set, “middle” is the middle value of the given data set, i.e.,  [(𝑚𝑚𝑎𝑎𝜕𝜕 + 𝑚𝑚𝑚𝑚𝑚𝑚)/2], and “scaled_value” is 
the scaled-down version of the original value. Using this process, the data will be scaled down between -1 
and 1. When training a neural network, it is important to scale down all given inputs and outputs for two 
reasons: (1) to center all of the outputs to zero so that we can initialize the neural network weights to zero; 
(2) to enable faster convergence since all of inputs and outputs are centered in the middle of the activation 
function. This method also helps a network avoid getting stuck in any local minimums or maximums during 
training.  
 

B. Method 2 of 2: Build a neural network to learn the collocation data 
 

Overview: When using a dataset to train a neural network, there are initially too many data points for the 
network to be efficient. First, a training set must be made by selecting a fraction of the original data points to 
show the network what the desired output is for a corresponding input. In the beginning, the weights the 
network used in the hidden layers are set randomly. However, because we scaled our outputs to be centered 
at 0, it makes sense that we should initialize all the weights to near zero. As the network trains more batch 
sizes, these weights are adjusted according to the pattern the network recognizes through the training set, 
which should result in the mean squared error (MSE) decreasing. At the beginning of training, the total error 
will be fairly high, but the more training the neural network performs, the closer the MSE will get to zero. 
  
Step 1: For the structure of our neural network, we use the following: an input layer consisting of 3 nodes 
(one each for time, x, and y); four hidden layers of 100 nodes each, with each node being hyperbolic tangent; 
and one output layer consisting of 1 node (for temperature).  
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 Fig. 4 Neural Network  

 
Step 2: As we indicated previously, the loss function of our neural network is simply the mean squared error. 
This means that the neural network will adjust its weights so that the predicted answer is as close as possible 
to the correct answer. 
 
Step 3: Our neural network takes the 3 inputs of time, x, and y, and gives as its output the temperature of the 
water at that single point. Our neural network can predict the temperature at every possible point in the lake 
and generalize this to any point on the grid for any given time step. To accomplish this, we will input 7701 
combinations of (t,x,y) into the neural network all at the same time and compute the temperature at all 7701 
points. However, we know that the lake water only comprises 6518 out of the 7701 points. That means that 
we should ignore 7701-6518 = 1183 of the answers, which correspond to all the points that fall into the green-
colored cells in our CSV file.  
 
 

Results 
 
The criteria used during the neural network training was the mean squared error (MSE), which measures how close 
the neural network’s predicted answer is to the traditional math model’s correct answer. For the shallow lake (where 
we used slightly smaller dx and dy values), the MSE was 0.001520. For the deep lake, where we used bigger dx and 
dy values, the MSE was 0.001067. Given that we used real-life weather data, which is subjected to errors and noise, 
these MSE values are quite respectable. Additionally, by examining the neural network outputs, we can see that the 
2D graphic passes the eye test and demonstrates a reasonable temperature profile.  

The speed advantage of the neural network depends on the time step for which we want the solution to be 
computed. The neural network is able to compute the solution for time step 0 to time step 34,320. Because each time 
step represents a 15-minute increment, the total of 34,320 time steps represents roughly a one-year period (the original 
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data was missing the first few days of the year). The neural network can compute the solution at any time step in 0.192 
seconds.  
 Using traditional math methods, the time needed to compute the solution is directly proportional to the time 
step for which the solution is desired. For example, computing the solution at time step 50 will be 25 times longer 
than computing the solution at time step 2. It follows that computing the last time step (time step 34320) will take the 
longest time; indeed, the traditional numerical method required 7 hours. This time was derived from y points calculated 
through a math model and used to train the neurological network. This means that our neural network can be as much 
as (7 hours)*(3600 seconds/hour)/(0.192 seconds) = 131,250 times faster than the traditional numerical method. This 
speed advantage is a huge breakthrough for scientists and will help enable a much faster investigation of the impact 
of climate change on the temperature of lakes, which has enormous consequences for biodiversity, human consump-
tion, and pathogens and bacteria. 
 

 
 
 
Fig. 5 The results are shown for Jan 31, 2021, at midnight, which is Excel row 2690 and a time-step 2688. 
 

 
 
 
 
Fig. 6 The following diagram shows the result for February 28, 2021, at midnight, which is row 5474 with a time step 
of 5472.  
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Fig. 7 The following diagram shows the result for March 31, 2021 at midnight, which is excel row 8446 with a time 
step 8444.  The picture number is 8444/40 = 211. 
 

Discussion and Conclusion 
  
The data previously collected on the changes in temperature in a lake over time, the amount of albedo, daily precipi-
tation, daily winds, and air temperature, once scaled, serve as inputs to calculate the new temperature of the top of the 
lake. Tracking the temperatures of lake water is important as it affects many aspects such as biodiversity, water hy-
giene, and aquatic activity. Water temperatures change the metabolic rates and biological activity of aquatic life. 
Fluctuations in temperature will change behavioral patterns such as migration routines, predator-prey interactions, and 
organism relocation. Major temperature changes can also prohibit plant respiration and photosynthesis. This affects 
dissolved oxygen levels, which can put stress on aquatic life if they drop below 5.0 mg/l. Water temperatures also 
affect biodiversity as all organisms have an optimal temperature range. Temperature increases also lead to changes in 
bacteria and fungi composition, which can affect water quality (Bacteria grows fastest at 41 and 135 degrees F).  

The initial value of the temperature of the rest of the lake is assigned based on the day, but can be altered if 
necessary. From here, the data serves as inputs into a simulation that utilizes the finite difference transient heat equa-
tion and the first-order Neumann boundary in order to calculate the new temperature after a certain duration of time 
has passed, excluding the top layer. A separate math model is used to calculate the new value of the top layer, as it 
must take into account albedo, daily precipitation, daily winds, and air temperature when creating the next value. The 
initial temperature value of a part of the lake becomes the x value, while the calculated new temperature after a certain 
period of time becomes the output or y value. These are then made into a dataset in order to train the neural network.  

Science often relies on mathematical models of physical behavior. Usually, math models are solved using 
“numerical methods.” The most common include the finite difference method and the finite volume method. These 
methods are very accurate, but they can be slow. In fact, the model in this research (simulating the temperature profile 
of a lake for a 12-month period) took 7 hours to complete. The reason is that we can only step forward in time one 
step at a time. So, if we want the answer for t = 1000, we need to know the answer for t = 0.1, 0.2, 0.3, ….., 999.8, 
999.9, and then 1000. There is a new area of AI technology called “physics-informed neural networks,” which are 
neural networks that can understand some kind of physical behavior. Neural networks can act as ultra-fast solvers that 
approximate analytical partial differential equations. A neural network is a function that solves our model for any 
given point in time. So, if we want the solution for t = 1000, we simply input this to the neural network and it will 
provide the answer just as easily as it would if we gave it t = 0. The further out in time we want to see, the better the 
speed advantage of the neural network over the traditional numerical method. In this paper, we demonstrate that our 
neural network at the final step (t = 34320) is 131,250 times faster than the traditional numerical method. By predicting 
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the water temperature profile of lakes using much faster computational methods, we can determine in real-time the 
impact of climate change on biodiversity, water hygiene, and aquatic activity. 
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