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ABSTRACT 
 
Cancer is the second leading cause of death worldwide and with the disease having over 200 variations, it has not been 
cured yet despite being the priority of the medical field for decades. Due to the difficulty of human subject research, 
animal studies, e.g., mouse and Chinese hamster V79 tumors have been widely used to test the modeling of tumor 
growth due to their dynamic nature and ability to grow to high volumes within short periods of time. Mathematical 
models, including ordinary differential equations (ODEs), have been utilized to model tumor growth and study treat-
ment of cancer. With most current models being selected only for mathematical convenience, recent studies have been 
focusing on determining the optimal treatment schedule for the most popular existing treatments of chemotherapy and 
radiation therapy. In this paper, three of the most established ODE models: the Gompertz, Von Bertalanffy, and lo-
gistic models are utilized to analyze which model most accurately fits existing tumor growth data for the Chinese 
Hamster V79 fibroblast tumor, various forms of immunodeficient mice tumors, and glioblastoma based on the mini-
mization of the normalized mean squared error (NMSE). Next, the ODEs themselves were modified to simulate the 
growth of the tumors when exposed to treatment and determined which treatment schedule produced the lowest final 
volume of the tumors. The results of this research identify the optimal treatment schedules based on data from all three 
ODE models and also determine the ODE models that produce curves that most precisely fit the datasets. 
 

Introduction 
 
Cancerous tumors continue to cause the second-highest number of deaths worldwide. Chemotherapy and radiation 
therapy are the most common forms of treatment, with treatment schedules varying between patients and the types of 
tumors.  

ODEs have been a prevalent form of mathematical modeling with regards to its applications in tumor growth. 
However, there has been widespread discrepancy amongst previous literature in determining which ODE model is the 
most accurate when fitted to tumor growth data. In this paper, we consider various forms of mice and hamster tumors 
as well as glioblastoma, a grade 4 malignant brain tumor that is currently one of the most aggressive and widespread 
forms of cancer. We studied the tumor growth behavior under a treatment designed to simulate chemotherapy, which 
targets the tumor at a single location. 

The Bertalanffy, Gompertz, and logistic models have been previously studied in the context of tumor growth 
and have been established as three of the most optimal ODEs. Jue Wang utilized these three ODEs to model the growth 
of a Chinese Hamster V79 Fibroblast and Mouse CM.37 T.1 tumor, determining the optimal parameters that would 
produce a minimum NMSE value (Wang, 2018). 

In this paper, we analyze the efficacy of the same three ODE models in producing a best-fit curve for each 
of our 9 datasets (Wang, 2018; Gaddy et al., 2017; Staat, 2020). Further, we alter the ODEs to simulate tumor behavior 
under our treatment function, as defined within our models. We consider 21 variations of a 7-day treatment schedule 
with 5 days of active and 2 days of inactive treatment. Ultimately, our research contributes to the ongoing discussion 
of the best-fitting ODE model and determines the optimal treatment schedule to limit the onset of tumor growth. 
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In the first section, we review three different tumor growth models and their corresponding type I and type 
II treatment, each with 21 variations. In the next section, we discuss a theoretical result regarding the constant final 
tumor volume with a fixed total treatment amount.  Computational approaches are then described. Numerical experi-
ments including least NMSE fitting and most effective treatment are presented in the next section, and we conclude 
in the final section with a discussion of treatment results. 
 
Tumor Growth Models 
 
Here we briefly review three well-established and popular methods that have been used to predict tumor growth: the 
logistic, Bertalanffy, and Gompertz ODE models. We then modify them to incorporate the treatment.  
 
Tumor Growth Models Without Treatment 
 
The logistic model is represented by the following differential equation, in which there is a linear decrease of the 
growth rate and a carrying capacity of b (Vogels et al., 1838). 
 
 
Equation 1: Logistic Model: 
 

dV
dt

= 𝑎𝑎𝑎𝑎(1 −
𝑉𝑉
𝑏𝑏

) 

 
The carrying capacity is specifically defined as the maximum tumor volume in the context of our research. This max-
imum tumor volume occurs due to increasing competition over nutrients as the tumor grows and a lack of blood vessels 
to sustain the proliferation of tumor cells indefinitely. 
 
Equation 2: Bertalanffy Model: 
 

dV
dt

= 𝑎𝑎𝑉𝑉2/3 − 𝑏𝑏𝑏𝑏 

 
The above equation is the Bertalanffy model. The model was created by Ludwig Bertalanffy in 1957 to model organ-
ism growth (Von Bertalanffy, 1957). The first term of the ODE has an order of ⅔ due to the surface rule model, which 
assumes that cell growth is proportional to its surface area, which defines the amount of energy/nutrients a cell can 
absorb. Additionally, the Bertalanffy model accounts for both cell synthesis and death through the two terms of the 
equation, each having its respective parameter of a or b (Murphy et al., 2016). Lastly, the Gompertz model, represented 
by the following ODE, was initially created by Benjamin Gompertz in 1825 to model human mortality and determine 
the value of life insurances (Kirkwood, 2015). 
 
Equation 3: Gompertz Model: 
 

dV
dt

= 𝑉𝑉(𝑎𝑎 − 𝑏𝑏 ln𝑉𝑉) 

 
The model was later applied to breast and lung cancer growth and has been an integral part of the mathematical  
modeling of various types of tumors. The ODE presents an exponential decay of the growth rate as well as a maximum 
tumor size (Murphy et al., 2016). 
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Treatment 
 
Treatment Models 
In order to count for the treatment, we modify the aforementioned models to 
 
Equation 4: Logistic Model for Type I Treatment: 
 

dV
dt

= 𝑎𝑎𝑎𝑎 �1 −
𝑉𝑉
𝑏𝑏
� − 𝑅𝑅 × 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ×  𝑎𝑎𝑎𝑎(1 −

𝑉𝑉
𝑏𝑏

) 

 
Equation 5: Bertalanffy Model for Type I Treatment: 
 

dV
dt

= 𝑎𝑎𝑉𝑉2/3 − 𝑏𝑏𝑏𝑏 − 𝑅𝑅 × 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 × (𝑎𝑎𝑉𝑉2/3 − 𝑏𝑏𝑏𝑏) 

 
Equation 6: Gompertz Model for Type I Treatment: 
 

dV
dt

= 𝑉𝑉(𝑎𝑎 − 𝑏𝑏 ln𝑉𝑉) − 𝑅𝑅 × 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑉𝑉(𝑎𝑎 − 𝑏𝑏 ln𝑉𝑉) 

for type I treatment and  
 
Equation 7: Logistic Model for Type II Treatment: 
 

dV
dt

= 𝑎𝑎𝑎𝑎 �1 −
𝑉𝑉
𝑏𝑏
� − 𝑅𝑅 × 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ×  𝑎𝑎𝑎𝑎 

 
Equation 8: Bertalanffy Model for Type II Treatment: 
 

dV
dt

= 𝑎𝑎𝑉𝑉2/3 − 𝑏𝑏𝑏𝑏 − 𝑅𝑅 × 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑎𝑎𝑉𝑉2/3 

 
Equation 9: Gompertz Model for Type II Treatment: 
 

dV
dt

= 𝑉𝑉(𝑎𝑎 − 𝑏𝑏 ln𝑉𝑉) − 𝑅𝑅 × 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑎𝑎𝑎𝑎 

 
for type II treatment, where in both treatments, the constant Cmax indicates the strength of the treatment and R(t) is an 
on-off function which specifies the treatment activity. The type I treatment introduces an overall degradation based 
on the growth rate of the original model. Meanwhile, type II treatment represents a linear decay for the logistic and 
Gompertz models and a degradation according to the surface rule for the Bertalanffy model.  
 
Treatment Schedule 
When the treatment was inactive/active, the R value was set to 0/1 accordingly.  Mathematically, the ODE remains 
unchanged when R is 0, thus accounting for the inactivity of the treatment. Meanwhile, when R is 1, the treatment is 
activated with a degradation proportional to Cmax. The Cmax value served as a measurement of the strength of the 
simulated treatment and was kept constant at 0.75 for all considered treatment schedules amongst the three ODE 
models. Here, the treatment schedule was standardized to a 7-day period, with 5 days of active treatment and 2 days 
where the treatment was inactive. Thus, combinatorics yielded 21 possible treatment schedules that maintained the 
pattern of 5 active days and 2 inactive days. To account for all possible treatment schedules, the treatment function 
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was programmed to consider all 21 different treatment schedules, adjusting the R values accordingly as a function of 
time. The treatment schedule was visually represented in the treatment graphs with a subplot indicating when the 
treatment was active over a 7-day period (Table 1). For the purpose of the research, the location of the treatment was 
not considered, which could be a factor for treatment such as radiation therapy. Instead, the sole focus of our analysis 
was the treatment schedule. 
 
Table 1. The 21 treatment schedules across a 7-day period, with 0 denoting inactive treatment and 1 denoting active 
treatment. 
 

 Days 
  1 2 3 4 5 6 7 

1 0 0 1 1 1 1 1 
2 0 1 0 1 1 1 1 
3 0 1 1 0 1 1 1 
4 0 1 1 1 0 1 1 

Tr
ea

tm
en

t S
ch

ed
ul

e 

5 0 1 1 1 1 0 1 
6 0 1 1 1 1 1 0 
7 1 0 0 1 1 1 1 
8 1 0 1 0 1 1 1 
9 1 0 1 1 0 1 1 
10 1 0 1 1 1 0 1 
11 1 0 1 1 1 1 0 
12 1 1 0 0 1 1 11 
13 1 1 0 1 0 1 1 
14 1 1 0 1 1 0 1 
15 1 1 0 1 1 1 0 
16 1 1 1 0 0 1 1 
17 1 1 1 0 1 0 1 
18 1 1 1 0 1 1 0 
19 1 1 1 1 0 0 1 
20 1 1 1 1 0 1 0 
21 1 1 1 1 1 0 0 

 
MathematicalAnalysis 
 
When the ODE model is separable, the equation can be anti-differentiated to obtain the final tumor volume defined in 
an implicit manner. We will show the final volume is identical across treatments with the same number of active days. 
The following serves as mathematical justification for the equivalent final tumor volume across different treatment 
schedules. 
 
The ODE models utilized can be stated in the general form as follows, 
 
Equation 10: Theorem 1: 
 

dV
dt

=
1

𝑓𝑓(𝑉𝑉) (1 − 𝑅𝑅(𝑡𝑡)𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) 
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where f(V) varies with respect to different models. For example, the logistic model has  
 
Equation 11: Theorem 1: 
 

1
𝑓𝑓(𝑉𝑉) = 𝑎𝑎𝑎𝑎 �1 −

𝑉𝑉
𝑏𝑏
�. 

 
By separation of variables, we have  
 
Equation 12: Theorem 1: 
 

𝑓𝑓(𝑉𝑉)
dV
dt

= 1 − 𝑅𝑅(𝑡𝑡)𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 . 

 
After integrating both sides from t0 to T, denoting V(t0) as V0, and assuming that the anti-derivative of f(V) is F(V), 
we have  
 
Equations 13/14: Theorem 1: 
 

𝐹𝐹�𝑉𝑉(𝑇𝑇)� − 𝐹𝐹(𝑉𝑉0) = � (1 − 𝑅𝑅(𝑡𝑡)𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚)𝑑𝑑𝑑𝑑
𝑇𝑇

0
 

                                   = 𝑇𝑇 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 � �𝑅𝑅(𝑡𝑡)�𝑑𝑑𝑑𝑑.
𝑇𝑇

0
 

 
If T is given and ∫ �𝑅𝑅(𝑡𝑡)�𝑑𝑑𝑑𝑑𝑇𝑇

0  is a constant, the final volume V(t) is implicitly determined by the above equation.  This 
concludes that the final volume depends on the integration of the treatment as determined by the number of active 
days. Therefore, if the total number of active days is the same, the final tumor volume will be identical. On the other 
hand, the ODE models for type II treatment are non-separable, preventing us from drawing this conclusion. Instead, 
we will determine the final volume with a numerical approach to be discussed later. 
 
NMSEFitting  
 
In this section, we will discuss the datasets, numerical approach to solve the ODEs, and the fitting performed to 
minimize the NMSE. With the use of numerical methods implemented by Python, the goal of our research was to find 
the model that fit our existing tumor growth data the most effectively and use the model to optimize the treatment 
schedule for each type of tumor. We will first introduce the datasets that were used. We shall then discuss the mathe-
matical methods implemented in our Python code and the utilization of the NMSE to measure fitting accuracy. Finally, 
we will discuss the results of the model-fitting and draw conclusions on the best-fit model for each dataset. 
 

Dataset 
 
We use nine online datasets which display the tumor volume (mm3) as a function of time (days) for the tumors of 
Mouse CM.37 T.1, Chinese hamster V79 fibroblast, glioblastoma, SCID (severe combined immunodeficiency), NSG 
(nonobese SCID gamma), nude (nu/nu), and BALB/Slc-nu/nu mice. The datasets are shown in the tables in the Ap-
pendix. 
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ODE Solver 
 
In order to find the solution of the ODEs numerically, the odeint package from scipy.integrate was utilized. The odeint 
library includes a variety of methods from the Runge-Kutta family, with Euler’s method being the simplest one avail-
able. In order to maximize the accuracy of the ODE graphs, Python was utilized in order to solve the ODEs over small 
step sizes that could only be produced within the code. The methods within the Runge-Kutta family are generally 
characterized as controlled steppers or dense-output-steppers. Controlled-steppers perform step-size control, in which 
they can adjust the step-size between intervals to achieve maximum accuracy. Dense-output-steppers perform contin-
uous interpolation between consecutive time intervals rather than only during the steps themselves. With Euler’s 
method being a first order stepper, the Runge-Kutta methods were optimal for achieving a higher level of accuracy 
for the ODE graphs as they were higher order methods that allowed for more frequent interpolation within step sizes. 
The code for the ODE models employed the Runge-Kutta 4 method, the most renowned algorithm that utilizes a fixed 
step size and provides a robust approach to develop the approximation. In this paper, the Runge-Kutta 4 method is 
used. 
 
Fitting 
 
In order to align the curves produced by the ODE models with the tumor growth datasets, the values of the parameters 
a and b were determined in equations 1, 2, and 3 discussed in section 3.1. The parameter values were optimized such 
that the NMSE of the ODE when compared with the data was at a minimum value (closest to 0). The NMSE of a 
function is a normalized form of its sum of squared residuals (SSR), meaning that the sum of squared residuals is then 
divided by the sum of all the actual y values presented by the data. The yi term represents the actual data values while 
the ypredi represents the predicted values. Both calculations are shown below. 
 
Equation 15: SSR: 
 

𝑆𝑆𝑆𝑆𝑆𝑆 =  �(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖)2
𝑖𝑖

0

 

 
Equation 16: NMSE: 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖)2𝑖𝑖
0

∑ 𝑦𝑦𝑖𝑖2𝑖𝑖
0

 

 
To perform the parameter optimization, the code employed the minimize package from the scipy.optimize library 
within Python. The minimize function utilized Powell’s Method, which is an algorithm that generates a bi-directional 
search to find the local minimum of a function. Powell's Method was specified within the calling of the odeint function 
and returned the minimum NMSE values for each ODE model and the corresponding parameter values. The resulting 
parameter values and the corresponding NMSE values for each ODE model are shown in Figure 1 below. For the 
purpose of the model-fitting, the x-values were subtracted by 3.46 for the Chinese hamster V79 fibroblast dataset such 
that the data begins when time is equal to zero days. Therefore, the NMSE values shown below may differ from 
existing literature involving the same datasets due to a similar shift in the data coordinates. 
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Figure 1. The fitted logistic, Bertalanffy, and Gompertz models for all datasets. 
Fitting Results/Discussion 
 
After analyzing the NMSEs produced by each of the ODE models, the best-fitting models were determined for the 
datasets. The results are shown in table 2 below. 
 
Table 2. The best fit-models that produced the lowest NMSE value for each of the 9 datasets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TreatmentResults  
 
The adjusted ODEs for type I and type II treatment were solved with the optimized parameters that were obtained in 
the previous section. The best-fit ODE models displayed in figure 2 were utilized to draw conclusions regarding the 
efficacy of each treatment schedule in limiting tumor growth. Thus, the comparison of the NMSE values produced 
was crucial in ensuring that the ODE model selected to analyze results would yield the highest accuracy and thus 
validate our findings. The treatment curves were then plotted and fitted for each of the 21 7-day treatment schedules, 
2 forms of treatment, 3 ODE models, and 9 datasets, resulting in 1134 total figures. All figures were produced with 
the use of the matplotlib.pyplot, which was imported as plt into the code. As mentioned, the treatment curves were 

Dataset Best-fit ODE Model 
Mouse CM.37 T.1 Logistic 
Chinese Hamster V79 Fibroblast Gompertz 
Glioblastoma Bertalanffy 
NOD/SCID Gompertz 
NSG Immunodeficient Gompertz 
BALB/Slc/nu-nu Bertalanffy 
nu/nu Bertalanffy 
SCID Gompertz 
SCID Logistic 
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generated with the introduction of a degradation term determined by R and Cmax. To analyze the results across the 
1134 figures, 18 scatter plots were created, one for each dataset and form of treatment, that displayed the final tumor 
volume (mm3) as a function of the treatment schedule, Rid. The scatter plots are shown in figure 2 below. 
 
        
 
 
 
 
 
 
 
 
 
 Type I  
 
 
 
Treatment                                          Type II Treatment 
 
 
 
 
Mouse CM.37 T.1 
 
 
 
 
 
 
 
 
Chinese Hamster V79 Fibro-
blast 
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Glioblastoma 
 
 
 
 
 
 
 
 
 
NOD/SCID 
 
 
 
 
 
 
 
 
 
NSG Immunodeficient 
 
 
 
 
 
 
 
 
 
BALB/Slc-nu/nu 
 
 
 
 
 
 
 
nu/nu 
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SCID 
 
 
 
 
 
 
 
 
SCID 
 
 
 
 
 
 
Figure 2. The scatter plots display the final tumor volume as a function of the treatment schedule, Rid.  Predicted 
tumor volumes are shown for each of the three ODE models. 
 
Conclusions regarding the efficacy of each treatment schedule on limiting the final tumor volume were made based 
on the models that produced the lowest NMSE for each dataset. For type I treatment, the final tumor volume was a 
direct result of the number of active treatment days. The Mouse CM. 37 T.1 dataset exemplifies this pattern. While 
the data was collected over a period of 78 days, we can assume that all treatment schedules return an identical volume 
after 77 days by the theorem discussed in section 2, since all schedules had 55 days of active treatment. Thus, the only 
discrepancy in final tumor volume between schedules was caused by the treatment activity on the 78th day. With 
treatment schedules 1-6 inactivating treatment on the 78th day and schedules 7-21 activating the treatment on this day, 
the first 6 treatment schedules will still have 55 days of active treatment while the last 15 will have 56 days. The 
results confirm the correlation between active treatment days and tumor volume as treatment schedules 1-6 returned 
a higher tumor volume than schedules 7-21.  On the other hand, the ODEs utilized to simulate type II treatment were 
non-separable, preventing the application of the theorem previously discussed. Thus, more variation in final tumor 
volume across schedules was observed and no clear pattern was established for type II treatment. The individual 
treatment graphs for each treatment schedule including the fitted curve, treatment curve, and the original data points 
are displayed in the Appendix. Treatment schedules are represented in the subplot below each graph of the fitted and 
treatment curves. Table 3 displays the least and most effective treatment schedules for each tumor and type of treat-
ment. 
 
Table 3. The final volumes under the least and most effective treatment schedules as predicted by the best-fitting ODE 
model for each dataset. The most effective are shaded in green while the least-effective are shaded in red. 
 

Tumor, Treatment Schedule(s), Type I 
Tumor, Treatment Schedule(s), Type II 

Final Volume (mm3) 

 63.0729 
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Mouse CM.37 T.1, Treatment Schedule 7-21 
 
Mouse CM.37 T.1, Treatment Schedule 7 
 

 
52.7949 

Mouse CM.37 T.1, Treatment Schedule 1-6 
 
Mouse CM.37 T.1, Treatment Schedule 6 
 

67.9719 
 
58.3273 
 

Chinese Hamster V79 Fibroblast, Treatment 
Schedules 3, 8, 12, 16, 17, 18 
 
Chinese Hamster V79 Fibroblast, Treatment 
Schedule 19 

5.2264 
 
 
2.3321 

Chinese Hamster V79 Fibroblast, Treatment 
Schedules 1, 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 
19, 20, 21 
 
Chinese Hamster V79 Fibroblast, Treatment 
Schedule 7 

5.2393 
 
 
 
2.8105 

Glioblastoma, Treatment Schedules 1-6 
 
 
Glioblastoma, Treatment Schedule 1 

649.165 
 
 
162.623 

Glioblastoma, Treatment Schedules 7-21 
 
 
Glioblastoma, Treatment Schedule 21 

661.983 
 
 
187.682 

NOD/SCID, Treatment Schedule 21 
 
 
NOD/SCID, Treatment Schedule 11 

53.095 
 
 
22.886 

NOD/SCID, Treatment Schedules 7, 8, 9, 12, 
13, 16 
 
NOD/SCID, Treatment Schedule 19 

58.511 
 
 
29.990 
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NSG Immunodeficient, Treatment Schedule 6 
 
 
NSG Immunodeficient, Treatment Schedule 1 

323.939 
 
 
66.540 

NSG Immunodeficient, Treatment Schedules 
7, 8, 9, 10, 12, 13, 14, 16, 17, 19 
 
NSG Immunodeficient, Treatment Schedule 
21 

 
326.688 
 
 
77.906 

BALB/Slc-nu/nu, Treatment Schedules 12, 13, 
14, 16, 17, 19 
 
BALB/Slc-nu/nu, Treatment Schedule 7 

809.047 
 
 
436.0474 

BALB/Slc-nu/nu, Treatment Schedule 6 
 
BALB/Slc-nu/nu, Treatment Schedule 6 

863.911 
 
502.3434 

nu/nu, Treatment Schedules 12-21 
 
nu/nu, Treatment Schedule 12 

623.6939 
 
310.1888 

nu/nu, Treatment Schedule 1 
 
nu/nu, Treatment Schedule 1 

730.1343 
 
412.1961 

SCID, Treatment Schedule 21 
 
SCID, Treatment Schedule 6 

907.4536 
 
36.0899 

SCID, Treatment Schedule 1, 2, 3, 4, 7, 8, 9, 
12, 13, 16 
 
SCID, Treatment Schedule 19 

917.5078 
 
 
53.0116 

SCID, Treatment Schedules 12, 13, 14, 16, 17, 
19 
 
SCID, Treatment Schedule 7 

949.546 
 
 
615.010 

SCID, Treatment Schedule 6 1028.649 
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SCID, Treatment Schedule 6 

 
723.184 

 

Conclusion/Future Research 
 
Ultimately, the results determined that when Cmax was kept constant at a value of 0.75, the optimal treatment schedules 
differed between the types of tumors, suggesting that no single schedule can be universally accepted as most effective 
in limiting tumor growth.  The results are limited by the simplification of the treatment to a single constant, Cmax. 
Therefore, forms of treatment such as radiotherapy were not accounted for, as they can target tumor growth at several 
different locations. The ODE models assumed treatment was targeted at a single location and partial differential equa-
tions (PDEs) would have to be employed in order to factor in multiple different locations. Additionally, with regards 
to chemotherapy, the research did not account for the quantification of drug doses that correlate to the Cmax constant. 
Lastly, the side effects to patients that would be subjected to the assumed treatments were not considered. These 
limitations exist as a result of the mathematical modeling being strictly computational, without any physical or medical 
testing having been performed. The future direction of the research will be to incorporate a wider range of datasets to 
improve the reliability of the model-fitting results and allow for the analysis of a greater variety of tumor growth 
behavior. Additionally, a major aspect of the future direction of the research involves applying the models in a labor-
atory setting and determining how to quantify chemotherapy relative to the Cmax value. Further, another objective will 
be to determine whether type I or type II treatment is more applicable to real-life uses of chemotherapy to target tumor 
growth. The final stage of the research would involve the experimental testing of the treatment on mouse and hamster 
subjects and the subsequent analysis of their tumor growth. 
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