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ABSTRACT 
 
This paper aims to use rapidly growing machine learning applications in geology to predict vertical layers in rock 
based on properties. These layers in rock with similar chemical and physical properties are referred to as facies. Un-
derstanding the underlying strata and various facies informs geologists about the nature of a particular area. The order 
and nature of the layers in the ground can represent both how the location formed, as well as its evolution over time. 
This paper takes commonly analyzed wells from a block in the Dutch sector of the North Sea and shows methodology 
in selected particular models and parameters for prediction. Visual representation of the parameters allows for influ-
ence on the facies to be determined. My approach filters through extraneous properties and applies a Butterworth low-
pass filter. Because depth is a continuous data parameter that cannot be pieced apart for training data, splitting the 
training data was an obstacle. However, this problem was circumvented by using a stratified k-fold split. Six different 
models of supervised learning were directly compared both visually and analytically. Results from these comparisons 
from the F02-1 well indicate that a K-Nearest-Neighbors model is most accurate and should be used by lithostrati-
graphic drillers. Results on the test data yielded a prediction accuracy of 99%, but prediction accuracy is yet to be 
extensively applied to other wells. Finally, a visual reconstruction of the facies of a nearby F02-3 well presents the 
results of the application and reveals the geographic history of the North Sea. 
 
INTRODUCTION 
 
Although the conjunction of machine learning and geology is relatively bare, geologic mapping is one of the few 
explored areas of application. The specified facies of given rocks is key in physical and historic characteristics. The 
knowledge of these facies provides information on the composition, environment, and geologic record of the under-
lying strata. The relationship between a facies and its composition and environment can be seen through both sedi-
mentary and metamorphic facies. This paper aims to predict the facies of an area given well data.  

Sedimentary facies form under certain conditions of sedimentation, reflecting a particular process or envi-
ronment. Different adjacent facies represent distinct depositional environments and compositions. To classify distinct 
facies groups, unique characteristics must be seen in the description of composition, texture, sedimentary structures, 
bedding geometry, nature of bedding contact, fossil content, and color. Metamorphic facies are the set of mineral 
assemblages in metamorphic rocks formed under similar pressures and temperatures. Similar to sedimentary facies, 
metamorphic facies provide stratigraphic information. The different metamorphic facies are defined by the mineral 
composition of a rock. Both sedimentary and metamorphic facies provide invaluable information to geomappers, 
drillers, etc. If facies were able to be predicted by chemical and physical properties, the aforementioned information 
on the environment and earth could be learned.  

A visual mapping of the vertical layers of rock can help with interpretations of the geologic evolution of an 
area. Firstly, the law of superposition provides the framework for which layers in the ground are evaluated with. In its 
plainest form, it states that in undeformed stratigraphic sequences, the oldest strata will lie at the bottom of the se-
quence, while newer material stacks upon the surface to form new deposits over time. This allows us to derive age 
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from depth since deposition flows in a stack-like manner. Walther’s law of facies, or simply Walther’s law, named 
after Johannes Walther, states that the vertical succession of facies reflects lateral changes in the environment. This 
reflects the vertical stratigraphic succession that typifies marine transgressions and regressions. These changes occur 
when for example, the water level shifts, laterally shifting erosion and deposition on the bank. These laws allow us to 
map together unconformities in the terrain, which hint at geological evolutionary events that changed the local geog-
raphy over time. An unconformity is a buried erosional or non-depositional surface separating two rock masses or 
strata of different ages, indicating that sediment deposition was not continuous. Within the general label of uncon-
formity, geologists can dissect more information. A disconformity is revealed when there is an unconformity between 
parallel layers of sedimentary facies. A nonconformity exists between sedimentary and metamorphic or igneous rocks 
when the sedimentary rock lies above and was deposited on the pre-existing and eroded metamorphic or igneous rock. 
An angular unconformity is where horizontal parallel strata of sedimentary rock are deposited on tilted and eroded 
later.  

 
Figure 1: Unconformity types (Disconformity, Nonconformity, Paraconformity, Angular unconformity) visually 
shown (Source: Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia) 
 
This challenge of predicting facies given well data begs examination of the type of data and crisis. The well data which 
will be outlined further was strictly numerical and focused on objective measurable properties of the well extractions. 
Because the particular area of the F-01 was already studied, the facies are known. This makes this problem best solved 
by supervised learning, in which the data set is already tagged with correct values.  
 

BACKGROUND 
 
A good amount of literature has been published on lithology and facies prediction using machine learning. Thomas 
Martin, Ross Mayer, and Zane Jobe tackled the same problem in their paper in a METHODS article published in 
Frontiers in Earth Science. The approach taken by Martin et al followed a similar supervised learning model in which 
all the correct facies were manually labeled. The data used by Martin et al investigated Paleocene deep-marine strata 
within Quadrants 204 and 205 of the Faroe-Shetland Basin, West of Shetland, United Kingdom. A potential issue with 
this data set is that the geologic rifting of the area during the Devonian and Mesozoic periods applies complications 
in the labeling of the facies. Rifting can be associated with contact metamorphism along the sheer lines, chemically 
altering the facies horizontally. This would be an issue when labeling, as homogenous horizontal strata would be ideal. 
Furthermore, labeling was determined by core-color images. Also, color images can provide insight into the data, and 
small changes in lighting or interpretation of color can offset possible conclusions. For example, the interpretation of 
a well core could be either laminated sandstone or interbedded sandstone and mudstone depending on the lighting. 
The article was able to achieve maximum accuracy of 35.7% (nine training wells) and minimum accuracy of 18.2%.  
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A LinkedIn article written by Yohanes Nuwara outlined his full process from data cleanup to results. This 
article heavily influenced this paper and was generally followed for almost all steps. Nuwara uses data from the Neth-
erlands F3 Block, which I also chose to use over the Faroe-Shetland and Kansas well data logs. A key difference 
between Nuwara’s article and Martin et al. is the use of a low-pass Butterworth filter. Nuwara explains the benefits 
and implementation, which I used exactly. For the model, Nuwara uses KNN (K-Nearest-Neighbors) but never dis-
cusses why a KNN was specifically chosen. For this reason, I decided to examine multiple models with the same data 
used by Nuwara to determine if there was possibly a better model. The data, which will be examined in the next 
section, was available thanks to Nuwara’s article. In the article, Nuwara can achieve an accuracy of 98%, which leaves 
very little room for improvement. However, my goal was to take Nuwara’s methods and further improve them.  

 

DATASET 
 
The data used for this project comes from the Netherlands F3 block. This dataset is a seismic survey of approximately 
384 km2 in the Dutch offshore portion of the Central Graben basin, The formation of The Central Graben Basin 
follows the opening of the North Atlantic and posterior division of Pangea. This area contains ten main lithostrati-
graphic groups: The Carboniferous, Lower-Upper Rotliegend, Zechstein, Germanic Trias, Altena, Schieland, Scruff, 
Niedersachsen, Rijnland, and Chalk Group. This data is publicly available and tends to be labeled as seismic data.  

 
 
Figure 2: Location of the F3 3D survey in the North Sea, Netherlands offshore. (Source: Emilio Vital Brazil) 
 

The main components of the data set are “Depth, Density, Sonic, Gamma-ray, P-impedance, P-imped-
ance_rel, and Porosity.” Depth and density are fairly straightforward, but the other parameters may require some 
definitions. Sonic refers to the P-wave travel time versus depth and is recorded as microseconds per foot. P waves, 
Primary waves, or compressional waves are the first seismic waves to arrive at a seismograph. Gamma Ray logs are 
used to measure the radioactivity of rocks and are scaled in American Petroleum Institute (API) units. The gamma-
ray API unit is defined as 1/200 of the difference between the count rate recorded by a logging tool in the middle of 
the radioactive bed and that recorded in the middle of the nonradioactive bed. The P-Impedance is defined as density 
* P-wave velocity. Lastly, porosity is defined as the fraction of void space over the total space.  
The data used for this project was taken directly from Nuwara’s GitHub so it is unclear how much preprocessing went 
into it. Nevertheless, some data cleaning was needed at the beginning.  Together these properties collectively make 
up the seismic well data. In the training data, there is a total of 4096 samples, some of which may be incomplete. To 
fix this, all data marked as “-999” was switched to NaN, or “not a number”. The assigned facies were separated from 
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the main dataset and only had marker lengths. To assign each sample its facies, a dictionary was created with each 
sample value having a facies key.  

 
Figure 3: Graphs of all the parameters against depth alongside a labeled vertical interpretation of facies for well F02-
1 
 
A visual representation of all the data parameters can be seen in figure 2. Some clear correlations can be spotted 
through the examination of the graphs. Facies 1 is associated with relatively higher porosity and P-wave impedance 
with its surroundings. From these relative visual graphs, we can guess that facies 1 (blue) is most likely a fractured 
limestone formation of sorts, facies 3 (Green) may be sandstone, and facies 4 (yellow) could be a shale formation. 
The test data is unlabeled, so we won’t know how accurate the model truly is, as the result cannot be evaluated.  
 

METHODS 
 
After manipulating the data to contain no problematic values and linking the facies to the samples, the training features 
were split from the target. Parameters of density, porosity, P-wave impedance, relative P-wave impedance, and 
gamma-ray were chosen. These parameters were chosen just by playing around and experimenting with combinations 
until one with the highest accuracy was found. It is important to note that this combination of parameters differs from 
Nuwara’s selection. To avoid overfitting on the F-01 well, cross validator was used in the form of a stratified k-fold 
from SKLearn. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by 
preserving the percentage of samples for each class. After playing around with a couple more parameters, a value of 
5 folds was used for the cross-validation, with the shuffle set to true. When selecting a model to use for prediction, 
there is a multitude of options. Because I’m not experienced with the various models, I decided to try a few and pick 
the one with the highest accuracy. The selected prediction models for this trial were Ridge Classifier, Support Vector 
Machine, Gaussian Naive Bayes, Classification Decision Tree, Random Forest Classifier, and K-Nearest-Neighbors.  

Ridge classification differs from other classification models by adding a penalty term to the cost function 
that discourages complexity. This penalty term is usually the sum of the squared coefficients of the features in the 
model. By using a penalty term, the coefficients are forced to remain low, which prevents overfitting. When fit and 
tested on Well F02-1, the Ridge Classifier had an accuracy of 86.1%. Support Vector Machines work by taking data 
and mapping it to a high-dimensional feature space so that data points can be categorized, even when the data are not 
otherwise linearly separable. Typically, in a 2D space, a decision line could be used to separate data points. However, 
usually, a line becomes difficult when the data does not allow for a linear split. SVMs use kernel functions, in which 
dot products are used to find separators in higher dimensions. Following this, characteristics of new data can be used 
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to predict the facies to which a new sample should belong. When fit and tested, the SVM had an accuracy of 89.8%. 
Gaussian Naive Bayes is a type of Naive Bayes classification. Naive Bayes is a probabilistic algorithm that is based 
on the Bayes theorem. The name “naive” is used because the algorithm uses features in its model that are independent 
of each other. Naive Bayes is a probabilistic machine learning algorithm that can be used in several classification 
tasks. Typical applications of Naive Bayes are the classification of documents, filtering spam, prediction, and so on. 
This algorithm is based on the discoveries of Thomas Bayes and hence its name. Gaussian Naive Bayes assumes that 
each class follows a Gaussian distribution. For Well F02-1, Gaussian NB had an accuracy of 84.2%. A Classification 
Decision Tree is a non-parametric algorithm with a hierarchical tree structure. This structure consists of a root node, 
branches, internal nodes, and leaf nodes. The algorithm works by starting at the root node and making decisions that 
drive classification down the tree. Decision tree learning employs a divide-and-conquer strategy by conducting a 
greedy search to identify the optimal split points within a tree. This process of splitting is then repeated in a top-down, 
recursive manner until all, or the majority of records have been classified under specific class labels. Whether or not 
all data points are classified as homogeneous sets is largely dependent on the complexity of the decision tree. The 
decision tree had an accuracy of 96.0%. Random Forest classifiers consist of numerous individual decision trees which 
work together. Each tree in the random forest spits out a class prediction and the class with the most votes becomes 
our model’s prediction. These individual trees are not correlated to each other, which results in the trees protecting 
each other from their errors. This classifier ultimately led to an accuracy of 96.7%. Lastly, the K-Nearest-Neighbors 
classifier uses each sample’s neighbors in a 2D space to draw boundaries to classify. Distances between the points are 
used to determine proximity. KNN had an accuracy of 96.2%. The predicted facies of each algorithm next to the actual 
facies can be seen in figure 4.  

 
 
Figure 4: Various models predicted facies vs. true facies (Ridge, SVM, Gaussian, Tree, Random Forest, KNN) 
 

With the results from this experiment in mind, I decided to move forward with KNN. Although the KNN 
model had lower accuracy than the Random Forest, the KNN model can be optimized by changing the value of k 
neighbors. Furthermore, results with random forest-modeled lithostratigraphy that was not likely. The value of k de-
termines how many neighbors are taken into account when learning, so optimizing this value can have profound effects 
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on the results. Similar to the small simulation done to choose the model, I simulated the prediction of k values 1 
through 6. Ultimately, I chose a value of 4.  

 

 
 
Figure 5: Testing ascending K nearest neighbors values 1-6 
 

Lastly, the data from the wells contain a lot of noise which potentially introduces problems in the predictions. 
Well-log data has a high resolution because of its highest frequency in the range of 20 to 40 kHz. This usually is good, 
as this frequency can capture small contacts between two different lithofacies as accurately as 10-20 centimeters. But 
this accuracy level is not needed for our data. Which contains facies thickness that ranges from 20-100 meters. Filter-
ing out the high frequency will help accuracy levels. Filtering the high frequency and retaining the low frequency can 
be done by implementing a Butterworth filter. Implementation for the Butterworth filter was done by following Nu-
wara’s article tutorial.  
 

 
Figure 6: Line graph showing original density data (Red) and filtered data (Blue) through the Butterworth filter 
 

RESULTS 
 
The results consist of the preliminary results on the stratified k-fold as well as the prediction of the neighboring F02-
3 well. The result of the testing on stratified k-fold Well F02-1 was an accuracy of 99%. This is a 1% increase over 
the results in Nuwara’s article. The predicted facies of Well F02-3 can be seen in figure 8. Figure 7 provides a confu-
sion matrix that deconstructs the few incorrect predictions.  
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Figure 7: Confusion Matrix that visualizes the number of correct samples as well as the number of incorrect samples 
 

This prediction is different in comparison to the one in Nuwara’s article but is more likely closer to the actual 
lithostratigraphy of the well. Our prediction is more consistent with the thickness of facies in the Central Graben 
Basin. Our results were different from Nuwara due to two key changes: The parameters of the model, and the Butter-
worth low pass filter settings. Instead of the parameters of density, sonic, gamma ray, and porosity, we selected den-
sity, P-wave impedance, gamma ray, relative P-wave impedance, and porosity. This selection of parameters was done 
based on visual analysis, research, and trials. The low pass filter settings were selected using trial and error. The initial 
data value of 5 was too high, so I brought it down to 4.  
 

 
Figure 8: Final predicted facies for Well F02-3 along with the parameters graphed against depth 
 

To check the validity of the KNN model, I also ran the same parameters on the Random Forest model. Recall 
that initially, the Random Forest model had outperformed the KNN in stratified testing. The prediction results from 
the Random Forest are visible in figure 8. The issue with this prediction is the likelihood of the well lithostratigraphy. 
We had previously identified in the data section that facies 1 (blue) was likely similar to limestone, facies 3 (green) 
was likely similar to sandstone, and facies 4 (yellow) was similar to shale. In the Random Forest model, facies 1 forms 
a thick layer. Given the thickness and formation environment of the limestone beds in well F02-1, the RF model is 
inconsistent. The depositional environment for well F02-1 was mainly sandstone. The interpretation of the data is also 
more consistent with the North Sea formation aforementioned in the dataset section. Nuwawa’s final prediction is 
ultimately less likely than the prediction I present because of the nature of the prediction. The number of facies changes 
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is unrealistic. Considering Walther’s law of Facies, for Nuwara’s prediction to be true the terrain would’ve moved 
laterally back and forth repeatedly in an extremely short time. Although our prediction contains similar thin facies, it 
is less dramatic than Nuwara.  
 

 
 
Figure 9: Left to right: Well F02-1 true facies, Random Forest prediction for well F02-3, KNN prediction for well 
F02-3, Nuwara’s KNN prediction for well F02-3 
 

CONCLUSION  
 
We were able to successfully deconstruct machine learning-based lithostratigraphy, and understand the decisions made 
in model selection and implementation. This was done through visual data analysis, trial and error, and geographic 
research. Visual analysis of data is extremely important, and choosing the right parameters for input can seriously 
change the output. Perhaps the most crucial takeaway is the questionable nature of the result. Because the F02-3 well 
is not labeled, it is unclear how well our model truly performed. This problem is overshadowed by the larger, pressing 
issue in the earth science machine learning domain: The lack of data. In a search for applicable datasets, there were 
very few labeled and previously used wells. My options were limited to 3-4 popular wells that had already been 
extensively studied. The well data is by no means in a shortage either; There are a large number of wells that could be 
used to further enhance and fine-tune existing models. During this project, I reached out to a couple of drilling com-
panies to no avail. Although the final predictions must be taken with a grain of salt, the process demonstrated in 
selecting a KNN is still valid.  The success of the KNN may be because of the nature of the problem. The chemical 
and physical properties of one sample are heavily influenced by the adjacent neighboring samples above and below.  
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