
A Method for Training Object Scale Estimation System 
using Feature Extraction Enhancement with Depth 
Estimation 
 
Kyungryun Kim 
 
Detroit Country Day Upper School 
 
ABSTRACT 
 
In recent years, machine learning-based object scale estimation has been growing in popularity, as the significance of 
the technology lies in its potential for use in many industry fields. Although several methods have been proposed, the 
possible applications of this technique are limited due to its insufficient accuracy. Hence, a human-level accurate 
system is needed for the technology to be applied in the real-world domain. This research paper proposes a novel 
object scale estimation system that incorporates the feature extractor, disentangled feature maps, depth estimator, 
object localizer, and ground truth depth map. The input of the proposed system is an image, which is inputted into the 
feature extractor to create disentangled feature maps. These feature maps are then extracted by the depth estimator to 
generate a depth map, and by the object localizer to create a predicted bounding box around the object. The trained 
feature extractor can extract disentangled size-related features from the inputted image by jointly training the depth 
estimator and object localizer. The use of disentangled features boosts the performance of the proposed system. In 
addition, we propose an actual scale converter module to calculate the actual size of the input object. Throughout the 
experiments, the proposed method has proven that it is superior compared to other state-of-the-art methods. The pro-
posed method achieves an IoU (Intersection over Union) value of 0.8113 on the COCO dataset. 
 

1. Introduction  
 
1.1 Problem Definition 
 
The object scale estimation system aims to measure the dimension of a certain object in each input image. In recent 
years, the use of object scale estimation systems has been rapidly expanding in many fields, including smart farms or 
augmented reality (Loresco, Pocolo James, et al. 2018). However, the proposed system still lacks precision and gen-
erates numerous errors. For this reason, a human-level estimation system is a necessity for the object scale estimation 
system to be further applied in the real-world domain.  
 
1.2 Naïve Approach  
 
In early research, the majority of object scale estimation studies developed a way to directly estimate object dimen-
sions. These methods demand a large-scale dataset in order to achieve adequate accuracy. However, collecting large-
scale datasets is impractical because labeling the dimensions of each object is costly and time-consuming.  
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1.3 Relation-based Method 
 
To solve the aforementioned problem, a two-stage approach has been proposed. The approach divides the object scale 
estimation process into object localization and actual dimension-converting processes. Object localization includes 
the production of a predicted bounding box on an object. The actual dimension-converting process is then applied by 
using a proportional relationship between a reference object and the actual object that the proposed system aims to 
convert. However, the use of the novel two-stage approach still has problems. The precision of the system still lacks 
compared to human-level precision. In addition, the error in generating the bounding box can propagate to the actual 
dimension-converting process which degrades the accuracy of the result. 
 
1.4 The Proposed Method  
 
In this paper, I propose a novel strategy to train the scale estimation system. The proposed system is composed of an 
encoder, a decoder, and a scale regression MLP (Multilayer Perceptron). One of the components, the encoder, takes 
the image as input and outputs feature maps that contain important image features. The decoder then takes in the 
feature maps that are more important for making an accurate depth map and an accurate scale estimator. Then, the 
scale regression MLP finally produces the scale of the object. I also demonstrate the proposed system on the applica-
tion to edge devices such as Raspberry Pi. (Upton, et al. 2014) 
 
2. Related Work  
 
2.1 Representation Learning 

 
Representation learning aims to automatically learn to find the representations for specific features that are contained 
in the dataset samples. In the deep learning approach, representation learning is often conducted via an autoencoder 
which is composed of an encoder and a decoder. The encoder takes input images and outputs features or latent code. 
These features contain characteristics of input images such as background, brightness, or image shape. The decoder 
takes these features as input and reconstructs the original input image. By jointly training these two networks, the 
encoder is enforced to extract important features in order to make the decoder accurately reconstruct the image. Figure 
1 shows an autoencoder architecture and its representation learning pipeline.  
 

 

Figure 1. Example of autoencoder-based representation learning 
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In this paper, I exploit the representation learning approach to find better representation for accurate object 
scale estimation networks. I set figure 1. as a baseline and propose a novel representation training method using a 
depth estimator for accurate object scale estimation networks. A detailed explanation is in a future study in chapter 4. 
 
2.2 Depth Estimation 
 
Given input RGB color image, depth estimation aims to predict a depth map or a 3D reconstruction of the input image 
to find their distances from the camera in pixels. Traditional approaches are developed based on multi-view cameras 
to find the physical relationship between the multi-view images. Recent methods can directly estimate depth maps 
from an image captured by a monocular camera. This approach is often divided into two CNN (Convolutional Neural 
Network) modules which are an encoder and a decoder, and the depth map estimator. 
 

  

Figure 2. Example of depth estimation 

 
Figure 2 represents the fundamental approach of the recent depth estimation methods. As the decoder is 

trained to estimate an accurate depth map, the encoder is forced to extract the depth-related features, or object shape-
related features among entangled image features such as color histogram, illumination conditions, background, noise, 
or shape of the image. The proposed method extensively exploits these characteristics to capture the object shape-
related features in order to accurately predict the bounding box of the objects. The underlying hypothesis here is that 
if the encoder can be trained to extract and disentangle the object shape-related features, it will positively affect the 
final accuracy of the trained method. In the next chapter, the detailed layout of this approach is explained in detail. 
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3. Method 
 
3.1 Overview  
 

 

Figure 3. The overall architecture of the proposed object scale estimation system. 

 
Figure 3 shows the overall architecture of the proposed scale estimation system. The proposed system consists of a 
feature extractor, depth estimator, object localizer, and scale convert module. Firstly, the feature extractor takes the 
object image I, and then generates feature maps F. These feature maps are then fed to the depth estimator and the 
object localizer. Using these feature maps, the depth estimator estimates depth maps 𝐷𝐷� which is compared with its 
corresponding ground truth 𝐷𝐷𝑔𝑔𝑔𝑔  later. The feature maps are also fed to the object localizer to produce the bounding 
box of the object, 𝐵𝐵� , as shown in Figure 1. Finally, the proposed scale convert module converts the pixel-level scale 
of an object calculated from the bounding box into the actual scale’s unit such as an inch or centimeter. 
 
Table 1. Notations used in this paper 
 

Original Abbreviated 

Color input image           I 

Feature maps           F 

Estimated depth map          D 

Ground truth depth map 𝐷𝐷𝑔𝑔𝑔𝑔  

Predicted bounding box          B 

Ground truth bounding box 𝐵𝐵𝑔𝑔𝑔𝑔  
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3.2 Scale Convert Module 
 

The predicted bounding box implies the pixel-level scale of the object. The proposed scale convert module can easily 
convert the pixel-level scale into the actual scale unit. The actual scale of the object is calculated via proportional 
relationships between the pixel-level scale and the reference. 
 

  

Figure 4. Example of the reference object and actual size converting process. 
 

Figure 4 represents an example of an actual size-converting process with the reference and target objects. In 
this paper, the quarter is used as a reference object due to its common use, and symmetry, and is easy to calculate 
since its diameter is 1 inch. For example, to find the actual length of the eraser which is the target object (yellow 
bounding box), the pixel length is needed, which is calculated using the predicted bounding box from the aforemen-
tioned object localizer. The converting process is done by Equation (1) below. 
 
Equation 1: Actual size converting process 
 
              𝑆𝑆𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑔𝑔 = 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑃𝑃𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
                                     

 
Where 𝑃𝑃𝑡𝑡𝑡𝑡𝑟𝑟  and 𝑆𝑆𝑡𝑡𝑡𝑡𝑟𝑟  are the pixel size and actual size of the reference object (a quarter coin in figure4). 𝑃𝑃𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑔𝑔  and 
𝑆𝑆𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑔𝑔 denote the pixel size and actual size of the target object (yellow and green box object in figure 4). As the object 
localization network outputs, the bounding box of each object the 𝑃𝑃𝑡𝑡𝑡𝑡𝑟𝑟  and 𝑃𝑃𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑔𝑔  can be easily obtained. The variable 
𝑆𝑆𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑡𝑡𝑔𝑔 can be derived from equation 1 since 𝑆𝑆𝑡𝑡𝑡𝑡𝑟𝑟  is provided as prior knowledge (the diameter of a quarter coin is 
always 1 inch). 
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3.3 Loss Function 
 
In this paper, I use two kinds of loss functions to train the proposed object scale estimation system. To train the feature 
extractor and the depth estimator, I use MSE (Mean Squared Error) loss function which is commonly used for depth 
estimation research (Khan, et al. 2020), (Zhao, Chaoqiang, et al. 2020). More importantly, it is used to calculate the 
average pixel-wise difference in feature maps by using summations. The MSE loss function is defined as Equation 
(2).  
 
Equation 2: Mean squared error  
 

𝐿𝐿𝑚𝑚𝑚𝑚𝑡𝑡 = 1
𝑊𝑊∗𝐻𝐻

��(𝐷𝐷(𝑥𝑥𝑥𝑥−𝑦𝑦𝑦𝑦),𝐷𝐷𝑡𝑡𝑡𝑡(𝑥𝑥𝑥𝑥−𝑦𝑦𝑦𝑦))2
𝐻𝐻

𝑗𝑗=1

𝑊𝑊

𝑖𝑖=1
 

 
Where, W and H denote the width and height of the image, which is used to calculate the average pixel-wise difference 
in the predictions and its corresponding ground truths. The pixel-wise differences are then squared and summated and 
averaged.  
 
3.4 Architecture  
 
To develop the proposed feature extractor, I exploit imagenet pretrained (Krizhevsky, et al. 2017) resnet18 (He, Kaim-
ing, et al. 2016) architecture without final linear layers. Through extensive experiments, I have found that resnet18 
shows the best performance and accuracy among the existing off-the-shelf convolutional neural networks such as 
VGG (Simonyan, et al. 2014), DenseNet (Huang, Gao, et al. 2017), and HRNet (Wang, Jingdong, et al. 2020). The 
architecture of the proposed depth estimator is also heavily based on resnet. It has upsampling layers between each 
ResBlock in the vanilla resnet to reconstruct the original resolution of the input image. I simply implement two linear 
layers to build the proposed object localizer. Heuristically, the non-linearity power of the object localizer is enough to 
produce accurate results.  
 
 
3.5 Implementation Details 
 
I used Adam with an initial learning rate of 0.0001 and a decay rate of 0.1. The learning rate will decay first at 80 
epochs, and then at 160. I also used 16 batches and 200 epochs for training the model. The model is also trained using 
data augmentation. Specifically, the two techniques in data augmentation are horizontal flip and color jitter (the change 
of colors in the image). 
 

4 Experimental Results 
 
In this chapter, I explain how the experiment is conducted to prove the superiority of the proposed method.  
The detailed evaluation protocol will be explained including the datasets, evaluation metrics, and comparison meth-
ods.  
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4.1 Dataset 
 

 
 
Figure 5. Example samples of COCO dataset (Liu, Tsung-Yi, et al. 2014) 
 
For the dataset, I used COCO (Liu, Tsung-Yi, et al. 2014) object detection data that is frequently used to train object 
detection or location networks. The dataset contains 200,000 image samples of test sets, validation, and training. In 
addition, there are 80 object categories in the dataset, and it consists of high-quality images which allow better results 
for my proposed system. Figure 5 shows a snippet of the dataset which contains various types of object categories. 
 
4.2 Evaluation metric 
 
To evaluate the effectiveness of the proposed model, I used the IoU (Intersection over Union) metric which is widely 
known for its ability to measure the reliability or the effectiveness of object detection or object localization networks. 
The IoU metric output values from 0 to 1 and is calculated by dividing the area of intersection and the area of union.  

Figure 6. Shows the process of calculating the IoU value, which shows the difference between the predicted 
and the actual bounding box. The numerator is composed of the area of the intersection (shaded part) and the denom-
inator is the area of union, which is the area of the shaded part in the numerator.  
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Figure 6. Example of IoU calculation 

 
4.3 Comparison with the state-of-the-art methods 
 
Table 2. IoU comparison to the previous State-of-the-art methods 
 

 
IoU 

SSD (Liu, Wei, et al. 2016) 0.7296 

Faster R-CNN (Ren, Shaoqing et al. 2015) 0.7784 

Ours 0.8113 

 
For the comparison methods, I choose SSD (Liu, Wei, et al. 2016) and Faster R-CNN (Ren, Shaoqing et al. 2015) 
which show comparable performance in object localization tasks. As shown in Table 2, the IoU value for the state-of-
the-art methods 1 and 2 both respectively achieved 0.7296 for method 1 and 0.7784 for method 2. In comparison, the 
proposed method achieved an IoU value of 0.8113. The proposed method, compared to the state-of-the-art method 1 
has an increase of 0.0817 in IoU value. The proposed method also outperforms state-of-the-art method 2 by 0.0329 
IoU value.  

The proposed method in comparison to the state-of-the-art techniques was able to achieve higher IoU values 
because of the joint training of both the depth estimator and the object localizer. Since the networks are jointly trained, 
the networks try to reduce the loss values of the depth estimator and the object localizer. This unique training strategy 
allows the trained model to produce more accurate localization results since the trained depth-aware encoder extracts 
richer features. The effectiveness of the proposed training strategy is proved in chapter 4.4. 
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4.4 Ablation study  
 
Table 3. Ablation study results 
 

Method IoU 

Ablation model 0.7804 

Full model  0.8113 

 
In this experiment, I evaluate the effectiveness of the proposed joint training strategy. First, I train the model using 
the proposed training strategy referred to as the full model. For the comparison, I also trained an ablation model 
without the depth estimator. Note that the ablation model only includes the object localizer to generate the bounding 
box. The full model as compared to the ablation model has an increase of 0.0309 IoU value. By analyzing the exper-
imental results as shown in Table 3, it can be concluded that the proposed method helps with generating a more 
accurate output.  
 
4.5 Additional experiments on common objects 
 
In this chapter, I conduct an additional experiment to prove how the object localizer's increase in performance can 
affect the precision of the size-converting process. To measure the size of the object, I use 50 common objects such 
as laptops, books, pencil pouches, phones, binders, keyboards, mice, bags, toothbrushes, shirts, helmets, wallets, blan-
kets, paper, tables, shoes, rulers, drawers, doors, light switches. The collected image samples are then fed to the pro-
posed object localizer to produce bounding boxes for each object. The following process is the same as in the afore-
mentioned operation explained in chapter 4.2. In table 4, I calculate the error in width and height of previous state-of-
the-art methods and compare it to the proposed system. 
 
Table 4. Comparison results on common objects 
 

 
Width error (inch) Height error (inch) 

SSD (Liu, Wei, et al. 2016) 2.63 3.18 

Faster R-CNN (Ren, Shaoqing et al. 2015) 3.52 3.09 

Ours 2.33 2.87 
 
Since our proposed object localization system is superior to the existing state-of-the-art methods, the error propagation 
must also be lower than the methods used in previous research. Table 3 and 4 clearly show that the proposed method 
outperforms not only in the object localization but also in actual size estimation. 
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4.6 Application 

 

Figure 7. Real World Application 
 
Finally, I will explain how I expanded the proposed method to the real world. Figure 7 displays a diagram of the 
application that I implemented on edge devices such as Raspberry Pi (Upton, et al. 2014). As shown in the figure 
above, the webcam captures a picture of the plant object, and then the Raspberry Pi activates the scale estimator to 
output the actual size of the input plant object. This application can be applied to the smart farm industry and allows 
the automation of the farming process. As the system can measure the size of the plants, it can adjust the essential 
factors for the plants such as the water pump or lightning strength with the estimated plants’ life cycle. The software 
I used to implement the system is PyTorch (Paszke et al. 2017). 
 

5 Conclusion 
 
In this research project, I proposed a novel training approach for an object scale estimation system. The proposed 
approach comprises an encoder, depth estimators, and object localizers. The encoder takes in the input images and 
creates feature maps. These feature maps are inputted into the depth estimator and the object localizer. The depth 
estimator generates a depth map, and the object localizer predicts a bounding box. I also proposed the actual size 
converting process to accurately convert the bounding box size into inches which is a common metric unit for meas-
uring size. To evaluate the effectiveness of the proposed method, I conducted comparison experiments with previous 
state-of-the-art methods. The proposed method had an increased IoU value of 0.0817 compared to the state-of-the-art 
method 1 and 0.0329 for method 2. It is proven that the proposed idea affected the results via an ablation study. I also 
conducted additional experiments on common objects to verify the proposed method outperforms the previous meth-
ods in the size-converting process as well. The extensive experiment results clearly show that the proposed method 
outperforms not only object localization but also actual size estimation. In the future, I plan to apply the proposed 
method to real-world problems such as the smart farm industry. I expect that the proposed method can allow the fully-
automation of the farming process.  
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