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ABSTRACT 
 
The following is an overview of the concepts and systems necessary to build an understanding of the framework 
from ccg2lambda: A Compositional Semantics System, which produces logical semantic representations of nat-
ural language sentences. These representations are used in tandem with a theorem prover to conduct inferences. 
But, to the reader unfamiliar with the various tools within computer science, linguistics, and mathematics that 
were used to construct ccg2lambda and its dependencies, it can be difficult to understand the inner workings of 
the framework. Thus, an explication of these concepts could be useful for fostering further development. Con-
cepts such as mathematical logic, combinatory categorial grammar, the calculus of constructions, and interac-
tive theorem provers are covered, as well as the two systems C&C and ccg2lambda. A functional version of the 
ccg2lambda framework can be found at https://github.com/ajung202/ccg2lambda. 
 

Introduction 
 
Logic is a field in both philosophy and mathematics that deals with determining valid ways to deduce conclu-
sions. Over the course of the past two centuries, logic has developed greatly, coming to encompass numerous 
branches from propositional logic to first-order logic and higher-order logic, each of which has a different level 
of expressiveness. The current work fosters understanding of existing progress on natural language processing, 
specifically in its application of logic. Ultimately, this aims to advance application of logic in everyday life. 

One way to do so is via the meaning representations given by the ccg2lambda framework together 
with existing interactive theorem provers such as Coq. To produce meaning representations from natural lan-
guage, the framework implements the Clark & Curran parser in tandem with manually defined semantic tem-
plates, which are central to the ccg2lambda system. Using these meaning representations, a script written using 
the interactive theorem prover Coq attempts to determine whether given conclusions are deducible from given 
sets of premises. The deductive ability of the framework was tested on the FraCaS textual inference problem 
set. The theorem prover uses the calculus of constructions, which is derived from type theories and specifically 
the simply-typed lambda calculus. 

Because of the interdisciplinary nature of this endeavor, which involves philosophy, mathematics, lin-
guistics, and computer science, it can be difficult for readers to fully understand and thus also to further pro-
gress. Hence, a detailing of the theory behind each component of the ccg2lambda framework and its background 
is provided. 
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Figure 1. This flowchart provides an overview of relations and dependencies of the components to come. 

Components 
 
Propositional Logic 
 
Tracing its origins to stoic philosophers in the 3rd century BC, propositional logic is a formalization of reason-
ing specifically dealing with propositions (Haaparanta, 2009, p. 3). Propositions, usually represented as 
{𝑝𝑝, 𝑞𝑞, 𝑟𝑟, … }, are declarative sentences that evaluate to true or false. These propositions are connected via con-
nectives {¬,→,∧,∨,↔}, representing negation and conjunctions (Enderton, 2013, p. 14). The truth value of each 
propositional formula can be represented through truth tables such as that of Figure 2, which can be used to 
prove the law of the contrapositive. Proofs in propositional logic have a set of premises and a conclusion. 
Deductions are made via inference rules such as modus ponens, which means that assuming a conditional state-
ment and its hypothesis, its conclusion can be deduced (Enderton, 2013, p. 110). The Fitch-style proof of the 
law of the contrapositive is provided in Figure 3. The law of the excluded middle, which states that 𝑝𝑝 ∨ ¬𝑝𝑝 is 
a tautology, can also be proved by either of these methods. 
 

 
Figure 2. Example of a truth table. Observe that the right two columns are logically equivalent. Adding a 
column with expression (𝑝𝑝 → 𝑞𝑞) ↔ (¬𝑞𝑞 → ¬𝑝𝑝) has true as all its truth values, demonstrating this equivalence. 
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Figure 3. Fitch-style proof of the law of the contrapositive. Modus ponens is used on line 8 of the proof. 
 
First-Order Logic (FOL) 
 
Discovered independently by Frege and Peirce in the late 19th century (Moore, 1988), first-order logic, also 
known as predicate logic, is a formalization of reasoning that extends propositional logic: FOL can reason about 
groups of objects rather than single propositions. FOL has four components. First, like propositional logic, there 
are connectives for variables {¬,→,∧,∨,↔}. Second, there are quantifiers {∀,∃}, meaning “for all” and “there 
exists,” which provide the scope of a variable. Third, to describe and reason about objects, it implements pred-
icate symbols {F, G, H, … } each of which has its own arity, the number of variables it takes, and evaluates to 
either true or false based on their values. Fourth, FOL maps objects via functions of several variables {f, g, h, … } 
(Barwise, 1977). Like proofs in propositional logic, proofs in FOL have a set of premises and a conclusion and 
can use all the inference rules of propositional logic (Enderton, 2013). In addition, first-order logic proofs can 
implement the inference rules of universal instantiation, existential generalization, and existential instantiation, 
which involve the quantifiers.  

A theory is a set of sentences that are considered to be true such that all implications of those sentences 
are within the set. A set of axioms for a given theory is a subset of the theory that entails (implies) every sentence 
in the theory.  

The first-order theory of the natural numbers (including 0) is usually generated by an infinite set of 
axioms referred to as the Peano axioms, which establish facts about successorship, addition, and multiplication, 
and contain infinitely many instances of the induction principle. A sentence in the first-order theory of the 
natural numbers asserting that the remainder of any natural number when divided by 2 is 0 or 1 is shown below: 
 

∀𝑛𝑛∃𝑚𝑚 (𝑛𝑛 = 2𝑚𝑚 ∨ 𝑛𝑛 = 2𝑚𝑚 + 1) 
 

The literal translation for the above sentence is “for all 𝑛𝑛, there exists 𝑚𝑚 such that 𝑛𝑛 is equal to 2𝑚𝑚 or 
𝑛𝑛 is equal to 2𝑚𝑚 + 1.” 
 
Second-Order Logic (SOL) and Higher-Order Logic (HOL) 
 
Introduced by Frege in his Begriffsschrift in 1879 (Haaparanta, 2009, p. 232), second-order logic is a formali-
zation of reasoning that extends first-order logic. While FOL quantifies over elements, SOL quantifies over 
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both objects and properties (Leivant, 1994). This grants SOL more expressive power. To highlight this, take 
the law of induction represented in FOL and SOL respectively: 
 

�ϕ(0) ∧ ∀𝑘𝑘�ϕ(𝑘𝑘) → ϕ(𝑘𝑘 + 1)�� → ∀𝑘𝑘ϕ(𝑘𝑘) 
 

∀ϕ��ϕ(0) ∧ ∀𝑘𝑘�ϕ(𝑘𝑘) → ϕ(𝑘𝑘 + 1)�� → ∀𝑘𝑘ϕ(𝑘𝑘)� 

 
On one hand, induction in FOL is a FOL schema for the induction axiom, ϕ being a placeholder for 

other properties, and thus consists of infinitely many sentences rather than one. On the other hand, induction in 
SOL is a SOL sentence that encapsulates the induction axiom, quantifying over all properties. Quantification 
scopes can continue to be increased in this manner, leading to the general term higher-order logic, encompassing 
all logic beyond first-order logic.  

Type theory, discussed below, goes hand-in-hand with higher-order logic, for higher-order logic has 
elements of different types. 
 
Intuitionistic Logic 
 
First developed by Arend Heyting in 1928 (Haaparanta, 2009), intuitionistic logic, unlike standard logic, does 
not have the law of double negation elimination or the law of the excluded middle as rules of inference. (Bezhan-
ishvili & de Jongh, 2006). Double negation elimination is demonstrated in line 7 of Figure 3. 

By not implementing these two inference rules, one obtains intuitionistic propositional logic from 
propositional logic or intuitionistic predicate logic from predicate logic. This is a massive difference, for it 
removes the ability to perform proof by contradiction. Though David Hilbert stated that the lack of the law of 
excluded middle to be “tantamount to relinquishing the science of mathematics altogether,” intuitionistic logic 
provides great value in proofs involving the existence property—intuitionistic logic can be paired with proof 
assistants like Coq to iterate many cases. (Nozick, 1996). 
Lambda Calculus 
 
Invented by Alonzo Church in 1928 (Cardone & Hindley, 2006) dealing with foundations of mathematics, 
lambda calculus is a formal system in mathematical logic representing computation through lambda terms. 
Lambda terms can be constructed from variables, abstractions, and application: variables represent parameters; 
abstractions define functions; application applies a function to parameters in a left-associative manner (Bar-
endregt, 1984). Here is an example: 
 

λ𝑥𝑥.𝐹𝐹 = 2𝑥𝑥 + 1 
 

(𝐹𝐹 2) 
 

The first equation shown is an abstraction in which F = 2x + 1 binds the variable 𝑥𝑥 to 𝐹𝐹, taking in 𝑥𝑥 
and returning 2x + 1. Lambda calculus terms that are constructed via variables, abstractions, and applications 
can be reduced via operations such as 𝛽𝛽-reduction, which evaluates terms defined by function application. For 
instance, the β-reduction of the application of 𝐹𝐹 given above is shown below: 
 

(𝐹𝐹 2) = 22 + 1 = 5 
 
Type Theory 
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First proposed by Bertrand Russell to avoid Russell’s paradox, type theory offers formalized representations for 
type systems, logical systems that delineate different terms into different types (Bell, 2012). For instance, in a 
type system containing a natural number type nat and a character type char, the following expressions indicate 
the type of each of the terms 1, 10, a, and d: 
 

1: nat 
10: nat  
a: char 
d: char 

 
In any type system, functions are terms that can either be defined by rule or expressed as lambda terms. 

Lambda terms are constructed to take in given inputs of a certain type and to return outputs of a certain type. 
Lambda terms have the general form (λ variableName : type . term). For instance, (𝜆𝜆 x : nat . add(𝑥𝑥 1)) : nat 
→ nat would be a function that takes in a natural number x and returns the natural number x + 1. Calling this 
function, (𝜆𝜆 x : nat . add(𝑥𝑥 1)) 10: nat = (𝑎𝑎𝑎𝑎𝑎𝑎 10 1): nat = 11: nat. 

Some commonly defined types are the empty type, unit type, boolean type, and natural numbers. In 
addition, types dependent on other types such as the sum type and the product type are commonly defined. A 
type system with ∧ and ∨ types leads to intuitionistic logic. 
 
Simply-Typed Lambda Calculus and the Calculus of Constructions 
 
The simply typed lambda calculus is a minimal type theory that only implements the type constructor “→” over 
some collection of base types. Suppose the base types are natural numbers and the character type. The type 
constructor “→” would construct function types as follows. 
 

F1 ≔ nat → nat 
F2 ≔ nat → char 
F3 ≔ char → nat 

F4 ≔ char → char 
 

More types can be developed by nesting right arrows. For instance, 
 

F5 ≔ nat → (nat → nat) 
 

Via the Curry-Howard isomorphism, a proof in intuitionistic propositional logic is related to a term in 
the simply-typed lambda calculus (Church, 1940). Extending upon this relation, a proof in intuitionistic predi-
cate logic can be related to a term in the Calculus of Constructions, which is the foundation of the Coq Theorem 
Prover (Coquand & Huet, 1988).  
 
Coq Theorem Prover 
 
Created by Thierry Coquand and his team in 1989 (Bertot & Pierre, 2004), Coq is an interactive theorem-
proving system that implements the calculus of constructions. Coq allows users to interactively develop ma-
chine-checked proofs, which not only eliminates human error from proof verification but also allows immense 
case-by-case checking to be expedited. One example is the proof of the four-color theorem, which states that 
the regions of any planar map can be filled with four colors such that no two regions with the same color are 
adjacent. Initially, it was proved by Appel and Haken in 1976 assisted by computer programs (Appel & Haken, 

Volume 12 Issue 1 (2023) 

ISSN: 2167-1907 www.JSR.org 5



1986). Later, in 2005, Benjamin Werner and Georges Gonthier formalized a proof with Coq, removing the 
potential for human error in the earlier proof (Gonthier et al., 2008). 

A goal is a term that Coq aims to prove. To do so, Coq implements a series of tactics, which either 
prove a goal or replace it with one or more goals. As shown in Figure 4, tactics such as simplify, rewrite, and 
reflexivity are written in lowercase whereas other keywords are in title case. 

The below example proves that the reversal of the list obtained by appending an element x to a list l is 
equal to the reversal of l, prepended by x. This proposition is defined as a lemma in lines 4 and 5. The proof 
begins on line 7. It performs induction on l. On the right, the inductive hypothesis IHL is shown as well as the 
goal below it. 
 

 
Figure 4. Coq theorem prover run on an internet browser. The highlighted section on the left represents the 
point in the proof, as shown in the right—there is an unresolved goal below the line. 
 

In ccg2lambda’s Coq script, axioms and tactics are defined to resolve terms fed by the ccg2lambda 
pipeline. For instance, the axiom veridical_true is defined as forall P, (_true P -> P). The tactic solve_veridi-
cal_true is a manually defined tactic that can be applied to resolve goals using this axiom. In natural language, 
P here refers to a dependent clause that follows “It is true that…”. 
 
Context-Free Grammar (CFG) 
 
Developed in the mid-1950s by Noam Chomsky, context-free grammar defines grammatical structures, as the 
name suggests, in a context-free way. Context-free grammar constructs a system of non-terminal and terminal 
symbols. Non-terminal symbols, also called variables, eventually resolve to terminal symbols. Non-terminal 
symbols are resolved by the production rules, which replace non-terminal symbols with strings of variables or 
terminals (Cremers & Ginsburg, 1975). Terminal symbols can be stringed to form expressions. S is used to 
denote the start symbol, which must appear alone at the beginning of any derivation. The set of all expressions 
that can be produced by a given context-free grammar is called a context-free language. 

Consider a context-free grammar where 1, a, and + are terminal symbols. Take the three derivation 
rules given below: 
 

S → S +  S 
S → 1 
S → a 

 
Then the expression 1 + a can be derived as follows: 

 
S 

→ S +  S 
→ 1 +  𝑆𝑆 
→ 1 +  𝑎𝑎 

 
But CFG does not model natural language well, for natural language is not context free. 
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Combinatory Categorial Grammar (CCG) 
 
Developed by Mark Steedman starting in the 1980s (Steedman & Baldridge, 2011), CCG defines grammar 
structures by giving different elements such as verbs different syntactic categories and identifying them with 
functions with directionality of their arguments as well as the type of their result (Steedman, 1996). For instance, 
take the following example from Steedman, 1996: 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≔ (𝑆𝑆\𝑁𝑁𝑁𝑁)/𝑁𝑁𝑁𝑁 
 

where the definitions of forward and backward application are denoted as follows: 
 

𝑋𝑋/𝑌𝑌 𝑌𝑌 → 𝑋𝑋 (>) 
𝑌𝑌 𝑋𝑋 \ 𝑌𝑌 → 𝑋𝑋(<) 

 
Here, likes is categorized as a function that takes in a noun phrase via forward application and then 

another noun phrase via backward application. This means that likes requires a noun phrase after and before it. 
Consider the following resolution of the sentence Mary likes musicals: 
 

 
Figure 5. This is an example of a sentence being derived and resolved in CCG. This figure was taken directly 
from Steedman, 1996. 
 

CCG can produce derivations and dependency structures. Derivations are like Figure 5, showing the 
breakdown of a natural language sentence into CCG over the course of multiple steps of application. A depend-
ency structure provides less information—it too shows the breakdown of the sentence into CCG but does not 
contain levels of application. Sentences that are more complicated can have multiple derivations for a given 
dependency structure. 

CCG outputs are often tagged with feature structures such as [dcl], which stands for declarative sen-
tences. 
 
Clark & Curran Parser (C&C) 
 
Developed by Clark and Curran in 2007, C&C is an efficient wide-coverage tool that parses natural language 
into CCG, which indicates all the syntactic dependencies of a natural language sentence as discussed above 
(Clark & Curran, 2007). The C&C parser was built via a discriminative log-linear model. The discriminative 
model is a machine learning model that is fed both correct and incorrect combinatory categorial grammar parses 
from CCGbank, which consists of sentences and their correct CCG derivations developed by Hockenmaier and 
Steeedman (Hockenmaier & Steedman, 2007). The log-linear model is a statistical model, assigning probabili-
ties to different syntactic dependencies of C&C parses. 

Volume 12 Issue 1 (2023) 

ISSN: 2167-1907 www.JSR.org 7



C&C’s efficiency in training and parsing is notable. This was enabled by the supertagger, which as-
signs CCG lexical categories to words. Because there could be multiple derivations for a sentence, the authors 
used dynamic programming with a CCG chart, which efficiently represents all derivations. 
 

ccg2lambda 
 
The ccg2lambda framework (Mineshma et al., 2015) takes in as syntactic representations CCG derivations 
given by C&C. It uses around 100 manually defined semantic templates found in its YAML file recursively on 
the aforementioned tree representation of a sentence. Here is an example of a semantic template for the con-
junction and when it is used to join two sentences. 
 
category: S\S 
rule: conj 
semantics: \L S1 S2. (S1 & S2) 
child0_surf: and 
 

Semantic features such as [dcl], which stands for declarative sentences, are often tagged on CCG out-
puts, as mentioned above. Depending on these tags, different semantic templates will be applied. For instance, 
take: 
 
category: (S[dcl=true]\NP)/(S[to=true]\NP) 
semantics: \E V Q. Q(\w.TrueP, \x.V(\F1 F2.E(x,F2(x)))) 
base: manage 
 

Here, there needs to be a declarative sentence as well as an infinitive to trigger this template. Moreover, 
these semantic templates can be modified and even completely rewritten, thus allowing for improvement. 

The Coq file, which defines axioms, parameters, and tactics, implements meaning representations pro-
duced using the YAML file. This script calls upon different tactics to resolve a set of premises into a conclusion. 
The system’s deductive accuracy was tested on the FraCaS textual inference problem set developed by Stan-
ford’s FraCaS consortium (Cooper et al., 1996). In FraCaS, each of the 346 problems featured comes with a set 
of premises, a question, and a conclusion nearly identical to the question in declarative form. The answer to 
each question is provided as yes, no, or unknown. The ccg2lambda framework uses the version provided by 
MacCartney and Manning (MacCartney & Manning, 2007), but excluding nominal anaphora, ellipsis, and tem-
poral reference. 

The overall framework is best described in Figure 6. 
 

 
Figure 6. This is the system pipeline of ccg2lambda, directly taken from Mineshma et al., 2015. 
 

Application 
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The ccg2lambda framework uploaded to GitHub by Koji Mineshima et al., no longer works due to deprecation 
issues. My fork has addressed these issues and has instructions for installation and execution in the Readme. It 
can be found at https://github.com/ajung202/ccg2lambda. 
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