
Generalized Deep Reinforcement Learning for
Trading

Junyoung Sim1 and Benjamin Kirk#

1Ithaca High School, Ithaca, NY, USA
#Advisor

ABSTRACT

This paper proposes generalized deep reinforcement learning with multivariate state space, discrete rewards,
and adaptive synchronization for trading any stock held in the S&P 500. Specifically, the proposed trading
model observes the daily historical data of a stock held in the S&P 500 and multiple market-indicating securities
(SPY, IEF, EUR=X, GSG), selects a trading action, and observes a discrete reward that is based on the correct-
ness of the selected action and independent of the volatility of stocks. The proposed trading model’s reward-
maximizing behavior is optimized by using a standard deep q-network (DQN) with adaptive synchronization
that stabilizes and enables to track learning performance on generalizing new experiences from each stock. The
proposed trading model was trained on the top 50 holdings of the S&P 500 and tested on the top 100 holdings
of the S&P 500 starting from 2006 to 2022. Experimental results suggest that the proposed trading model sig-
nificantly outperforms the 100% long-strategy benchmark in terms of annualized return, Sharpe ratio, and max-
imum drawdown.

Introduction

As data science became a prominent field, many recent works proposed deep learning as an effective statistical
framework for leveraging traditional quantitative trading methods such as technical analysis. Standard deep
neural networks, long-short-term memory neural networks (LSTM), and even hybrid models combining con-
volutional neural networks (CNN) and LSTMs are some major deep learning models that have been proposed
to be successful in predicting the direction of future prices of various financial securities [1, 2, 3, 4]. Above all,
a subfield of deep learning known as deep reinforcement learning is also frequently mentioned in current liter-
ature on quantitative trading. Deep reinforcement learning was introduced in [5] as an unsupervised deep learn-
ing algorithm where an agent interacts with some environment by observing a state that represents the environ-
ment and performing a reward-maximizing action. Thus, deep reinforcement learning is often used for sequen-
tial decision-making tasks performed in a complex environment, such as video games [6], that may consist of
multiple variables. In the context of quantitative trading, many previous works used deep reinforcement learn-
ing to make practical and profit-maximizing decisions that outperform traditional quantitative trading methods
and cutting-edge models by observing raw time series, convolution-processed time series, technical indicators,
or correlated pairs of various assets, such as stocks, futures contracts, commodities, foreign exchanges, and
even cryptocurrencies [7].
 Despite the advantages of using deep reinforcement learning for trading, current literature [7, 8, 9, 10,
11] is limited to using the historical data related to one particular security being traded with very few exceptions
[12, 13]. The tendency to heavily depend on the historical data of one particular security may not be as effective
as observing the time series of multiple securities where more useful relationships and trading signals can be
exploited. This is indeed crucial in a broader economic perspective because any security is related to other
securities and a variety of external factors that may not be evident from the historical data of one particular

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 1

security. Generalizability and reproducibility are also some other limitations in current literature. Specifically,
continuous reward functions based on observed profit or loss used to optimize a trading agent’s behavior in
previous works may have overfitting issues due to the volatility of certain securities and sectors. Moreover,
many previous works proposed deep reinforcement learning algorithms that are specialized to trade a very
limited number of securities. Institutionalized or undisclosed dataset, code, and important learning parameters
also increased the difficulty in generalizing and reproducing such works. Furthermore, as previous works pri-
marily focused on increasing profitability, fundamental issues in deep reinforcement learning, such as improv-
ing learning performance, are not addressed.
 This paper proposes a novel trading model that utilizes the known advantages of deep reinforcement
learning for trading while attempting to address the limitations in current literature. Specifically, instead of
observing time series data related to one particular security being traded, the historical data of multiple market-
indicating securities are used by the proposed trading model to trade any stock based on important market
trends. Furthermore, a discrete reward function based on the correctness of a trading action and a standard deep
q-network (DQN), one of the major algorithms in deep reinforcement learning, optimizes the trading model’s
reward-maximizing behavior on many stocks along with adaptive synchronization that stabilizes and enables
to track learning performance. For better generalization, the trading model was trained on the top 50 holdings
of the S&P 500 and tested on the top 100 holdings of the S&P 500, a major index fund in the US. For better
reproducibility, daily historical data obtained from an open-sourced API were used, and the source code of the
trading model is also open-sourced. Experimental results suggest that the trading model yields an annualized
return of 23.75%, a Sharpe ratio of 0.6622, and a maximum drawdown of 48.70% from the top 100 holdings of
the S&P 500, all of which significantly exceeds the 100% long-strategy benchmark.
 The remainder of this paper is organized as follows. Section 2 outlines the technical background of the
three major algorithms in deep reinforcement learning. Section 3 provides a review of current literature on deep
reinforcement learning for trading. Section 4 outlines the method of the proposed trading model. Section 5 and
6 reports and discusses the results of the trading model. Lastly, section 7 concludes this paper with a summary
and suggestions for further work.

Background

In a Markov Decision Process (MDP), an agent interacts with an environment by observing a state at time t that
represents the environment (𝑠𝑠𝑡𝑡), performing an action (𝑎𝑎𝑡𝑡), and receiving a reward (𝑅𝑅𝑡𝑡+1). The objective of an
agent is to find an optimal policy that maximizes reward. An agent’s reward-maximizing behavior can be opti-
mized through the following three unsupervised algorithms in deep reinforcement learning: deep q-networks
(DQN), policy gradients (PG), and advantage actor-critic models (A2C). This paper is primarily interested in
DQNs since it is the algorithm in which the proposed trading model is based upon.

Deep Q-Networks (DQN)

In Q-learning, the optimal value of selecting an action (𝑎𝑎) under some policy (𝜋𝜋) when given some state (𝑠𝑠) is
defined as the maximum expected sum of the observed reward and future rewards discounted by 𝛾𝛾 [5, 6, 8, 14,
15].

Equation 1: Optimal action value in Q-learning:

𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) = max
𝜋𝜋

𝔼𝔼 ��𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+1+𝑘𝑘

∞

𝑘𝑘=0

| 𝑠𝑠, 𝑎𝑎�

Due to practical constraints, the optimal value of an action is defined as 𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) =
𝔼𝔼 �𝑟𝑟 + 𝛾𝛾max

𝑎𝑎′
𝑄𝑄∗(𝑠𝑠′, 𝑎𝑎′) | 𝑠𝑠, 𝑎𝑎� where 𝑠𝑠 is the current state, 𝑎𝑎 is the selected action, 𝑟𝑟 is the observed reward,

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 2

and 𝑎𝑎′ is some action selected at 𝑠𝑠′ that follows 𝑠𝑠. DQNs can be used to estimate 𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) through trial-and-
error and converge to some reward-maximizing policy without modeling the environment. Specifically, a neural
network with parameters 𝜃𝜃𝑖𝑖 uses the epsilon-greedy policy that either explores a random action by a certain
probability (𝜀𝜀) or exploits a greedy action that is expected to yield the highest reward. Once a reward is observed
for the selected action, a neural network with parameters 𝜃𝜃𝑖𝑖−1 chooses some action that is expected to yield the
highest reward in the future. The optimal value of the selected action is then estimated as 𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟 +
𝛾𝛾max

𝑎𝑎′
𝑄𝑄(𝑠𝑠′, 𝑎𝑎′; 𝜃𝜃𝑖𝑖−1). 𝜃𝜃𝑖𝑖 is updated by minimizing the squared temporal difference, 𝐿𝐿(𝜃𝜃𝑖𝑖), through gradient

descent in the direction of ∇𝜃𝜃𝑖𝑖𝑄𝑄(𝑠𝑠, 𝑎𝑎; 𝜃𝜃𝑖𝑖) based on random samples from previous experiences such that its
approximation of 𝑄𝑄(𝑠𝑠, 𝑎𝑎; 𝜃𝜃𝑖𝑖) → 𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) where 𝑄𝑄(𝑠𝑠, 𝑎𝑎; 𝜃𝜃𝑖𝑖) is a linear approximator that follows a series of non-
linear hidden layers in a DQN.

Equation 2: Loss function in DQNs:

𝐿𝐿(𝜃𝜃𝑖𝑖) = [𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎; 𝜃𝜃𝑖𝑖)]2 = ��𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′; 𝜃𝜃𝑖𝑖−1)� − 𝑄𝑄(𝑠𝑠, 𝑎𝑎; 𝜃𝜃𝑖𝑖)�
2

Note that 𝜃𝜃𝑖𝑖 and 𝜃𝜃𝑖𝑖−1 are identical in shape, and 𝜃𝜃𝑖𝑖−1 is typically held constant until it is synchronized
to 𝜃𝜃𝑖𝑖 after a fixed number of experiences. 𝜃𝜃𝑖𝑖 and 𝜃𝜃𝑖𝑖−1 are often referred to as the agent network and target
network, respectively.

Policy Gradients (PG)

Unlike DQNs, PGs modify an existing policy to directly find an optimal policy that maximizes reward [8, 14,
15]. Specifically, if a neural network with parameters 𝜃𝜃 representing some policy is defined as 𝜋𝜋(𝑎𝑎 | 𝑠𝑠; 𝜃𝜃) and
the expected cumulative reward is defined as 𝔼𝔼[𝑅𝑅𝑡𝑡], PGs update 𝜃𝜃 through gradient ascent in the direction of
∇𝜃𝜃 log𝜋𝜋(𝑎𝑎 | 𝑠𝑠; 𝜃𝜃)𝑅𝑅𝑡𝑡 to find a reward-maximizing policy. Since PGs output a probability for each possible
action, PGs are useful for tasks that involve continuous action spaces.

Advantage Actor-Critic (A2C)

To reduce variance and improve learning performance in PGs, A2C was proposed as an algorithm that can learn
both a policy and a state-value function by using two distinct neural networks: an actor network and a critic
network [8, 14, 15]. The objective of A2C is to update the actor network outputting a policy 𝜋𝜋(𝑎𝑎 | 𝑠𝑠; 𝜃𝜃) by
maximizing 𝐽𝐽(𝜃𝜃) = 𝔼𝔼[log𝜋𝜋(𝑎𝑎 | 𝑠𝑠; 𝜃𝜃)𝐴𝐴(𝑠𝑠, 𝑎𝑎)] through gradient ascent where the advantage function is
𝐴𝐴(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = 𝑅𝑅𝑡𝑡 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1 | 𝑤𝑤) − 𝑉𝑉(𝑠𝑠𝑡𝑡 | 𝑤𝑤) and the state-value function 𝑉𝑉(𝑠𝑠 | 𝑤𝑤) is outputted by the critic net-
work that is updated through gradient descent. While A2C is a synchronous model having one actor, some
works have shown effective applications of an asynchronous model known as A3C that has multiple parallel
actors [16].

Literature Review

Current literature on deep reinforcement learning for trading primarily focused on futures contracts of various
assets. For instance, [8] proposed an algorithm that can trade 50 futures contracts of various commodities, equity
indexes, fixed income, and foreign exchanges. Similarly, the E-mini S&P 500 futures (ES) and the HS300
futures from the China Financial Futures Exchange (IF) were studied in [9] along with three stocks (AAPL,
IBM, and PG). [10] also proposed an algorithm that can trade IF contracts as well as silver (AG) and sugar (SU)
contracts, and ES was also studied in [11] along with two stocks (JPM and MSFT). Other studies such as [12]
focused on foreign exchanges (EUR/USD) and [13] focused on trading the 30 stocks held in the Dow Jones
Industrial Average.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 3

Starting from futures contracts of various assets to stocks and foreign exchanges, current literature
studied applications of deep reinforcement learning for trading financial securities in various markets. However,
besides [8] where a relatively large number of securities were studied, the scope of most previous works is very
limited. Although [9] studied both the futures market and stock market, only two futures contracts and three
stocks were studied. Likewise, [10] only studied three futures contracts, [11] only studied one futures contract
and two stocks, and [12] focused on one specific foreign exchange. In fact, the 30 stocks studied in [13] cannot
be considered enough because those 30 stocks held in the Dow Jones Industrial Average are mainly value stocks
having similar market behavior and volatility. Therefore, this may raise questions about the generalizability of
current literature on deep reinforcement learning for trading because the algorithms proposed by previous works
are specialized to trade a limited number of securities. Moreover, previous works mostly used intraday historical
data that are often institutionalized, thereby increasing the difficulty of reproducing results. Thus, focusing on
a particular financial market and maximizing the number and diversity of securities with more accessible his-
torical data would be preferrable.

Given the type of securities studied in previous works, it is integral to discuss the Markov Decision
Process formulation of current literature on deep reinforcement learning for trading as follows. The state space
proposed in previous works heavily rely on technical indicators of a particular security. For instance, [8] used
normalized price series and multiple momentum indicators (periodic returns, MACD, RSI) of a particular se-
curity being traded. Similarly, [10] used raw price and momentum changes of a particular security and [9] used
various technical indicators (MACD, MA, EMA, ATR, ROC) and the open-close-high-low-volume data
(OCHLV) of a particular asset being traded. It is interesting to note that [9] also included remaining cash and
Sharpe ratio (return-over-risk) of previous transactions to provide interactive feedback. A more unique approach
was used in [11] where the raw price data of some asset with different time intervals were combined to create
an image such that convolutions can be applied for feature extraction. Very few works used time series data of
multiple securities for their state space. For instance, [12] used the raw price series of multiple cross-correlating
currencies and [13] used the raw prices series of 30 stocks held in the Dow Jones Industrial Average.

Both discrete and continuous action spaces were used in current literature on deep reinforcement learn-
ing for trading [7]. Specifically, the discrete action space 𝑎𝑎 ∈ {−1, 0, 1} was conventionally used in previous
works to enable short, no holding, and long positions. For continuous action spaces, previous works used 𝑎𝑎 ∈
[−1, 1] such that multiple trading positions with different weightings can be executed for some asset. The re-
ward functions proposed in current literature slightly varied, albeit they generally used a continuous reward
function based on observed profit or loss [8, 9, 10, 11]. Transaction costs and price slippage in futures contracts
were also included in such continuous reward functions, albeit [7] surveyed that the impact they have on con-
verging to an optimal policy is unknown. A rare exception to using a continuous reward function was shown in
[12] where discrete rewards (+1 or -1) were given based on the correctness of trend predictions.

A major limitation in the Markov Decision Process formulation of current literature on deep reinforce-
ment learning for trading is the over-reliance on technical indicators and other time series data related to one
particular security being traded. Although technical analysis is widely used in the financial industry for trend-
following decision-making, a survey of previous works suggests that technical indicators and historical prices
of a particular security are lagging indicators that cannot provide profitable forecasts [17]. Thus, rather than
depending on the time series data being predicted, some works [7, 12] proposed that more useful relationships
and trading signals can be exploited when the historical data of multiple correlated securities are used as inputs.
The latter is indeed preferable because the price of any financial security is influenced by a variety of external
factors: the relationship between correlated securities, corporate performance, popularity, competition, federal
monetary policy, and domestic and international events are some examples to name a few. Therefore, using the
time series data of multiple securities with known economic significance would provide a more effective state
representation of the financial market that is integral to learning performance [18], yet previous works did not
study such a state space [7].

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 4

The reward functions used in current literature on deep reinforcement learning for trading also raise
some questions. Specifically, a major issue in continuous reward functions based on observed profit or loss is
that a trading model can be restricted to trade a limited number of securities as shown in previous works. This
is because observed profit or loss can vary and have extreme values depending on the volatility of certain
securities and sectors, thereby increasing the likelihood of overfitting into a limited number of securities. Thus,
an alternative approach could be using a discrete reward function where a trading model is rewarded +1 point
for placing a winning bet that returns a profit and -1 point for a losing bet that returns a loss. Such a discrete
reward function based on the correctness of a trading action and independent of volatility would enable a trading
model to avoid overfitting issues and precisely estimate the optimal value of some trading action for many
different securities.

A mix of DQNs, PGs, and A2Cs were used in current literature on deep reinforcement learning for
trading. DQNs tend to be used as baseline models, whereas A2Cs and A3Cs were most used as an outperforming
alternative to PGs that were rarely used. LSTMs were the most common neural network architecture used in
previous works, albeit some applied other neural network architectures to enhance feature extraction from state
representations. Fuzzy neural networks used in [10] and ensembled convolutional neural networks used in [11]
are some examples. All three deep reinforcement learning algorithms significantly outperformed the 100%
long-strategy benchmark and other traditional techniques in both returns and Sharpe ratio. However, [8] showed
that DQNs outperformed PGs and A2Cs across multiple financial markets while others [9, 10] suggested that
A2C and A3C models are better than DQNs and other baseline techniques.

Current literature on deep reinforcement learning for trading have proposed distinct Markov Decision
Processes with different input variables and powerful deep learning models to improve profitability. However,
[7] suggests that previous works rarely address the fundamental issues in deep reinforcement learning. For
instance, [19] mentioned that synchronizing the target network to the agent network in DQNs after a fixed
number of frames can cause the loss of properly learned networks, yet previous works in deep reinforcement
learning for trading did not address these problems anyhow. Furthermore, [7] also suggests that it is difficult to
identify and compare the individual factors that affected performance because previous works used drastically
different datasets, Markov Decision Processes, and deep learning models. Reproducing such works are also
difficult because most previous works did not open-source their code. Considering these limitations in current
literature, implementing a new Markov Decision Process that improves generalization and using a standard
DQN to effectively test the new environment while improving learning performance through some method
adaptive synchronization and open-sourcing code would be preferrable.

Method

Figure 1 shows the pipeline of generalized deep reinforcement learning with multivariate state space, discrete
rewards, and adaptive synchronization that enables the proposed trading model to trade any stock held in the
S&P 500. Note that the S&P 500 is one of the largest index funds in the US that holds a diverse list of publicly
tradeable companies. Thus, unlike previous works that proposed trading models specialized to trade a very
limited number of securities, training and testing the proposed trading model on the S&P 500 holdings ensures
generalizability to many US stocks as possible. A multivariate state space consisting of the historical data of a
stock and multiple market-indicating securities allows the trading model to trade a stock based on major market
trends. A discrete reward function based on the correctness of a trading action and a standard DQN optimizes
and generalizes the trading model’s behavior on any stock held in the S&P 500. Adaptive synchronization
stabilizes the trading model’s learning performance and enables to track its improvement on generalizing new
experiences from each stock during training. A detailed outline of such methodologies is provided throughout
this section.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 5

Figure 1. Model pipeline of generalized deep reinforcement learning with multivariate state space, discrete
rewards, and adaptive synchronization for trading.

Markov Decision Process Formulation

Multivariate State Space
The state space proposed in previous works on deep reinforcement learning for trading have shown over-reli-
ance on technical indicators and other time series data related to one particular security being traded [7, 8, 9,
10, 11]. Very few exceptions [12, 13] can be found where the historical data of multiple correlated securities
were used to exploit more useful information and trading signals [7]. Therefore, a novel multivariate state space
consisting of the historical data of several market-indicating securities is used by the trading model as follows.
To trade a stock held in the S&P 500 at the end of every market day (t), the proposed trading model observes a
state (𝑠𝑠𝑡𝑡) that consists of the adjusted and standardized daily price series of the following five securities during
the past 100 days before t inclusive: the stock of interest, the S&P 500 (SPY), the 10-year Treasury Bond (IEF),
the USD/EUR exchange rate (EUR=X), and the S&P GSCI Commodity-Indexed Trust (GSG). The latter four
(SPY, IEF, EUR=X, GSG) were selected as market-indicating securities used by the trading model because of
their macroeconomic significance. Thus, with the adjusted and standardized daily price series of the five secu-
rities being concatenated to each other to form a single state, the trading model is given a multivariate state
space to trade a stock based on important market trends. Table 1 provides a detailed reasoning behind the se-
lection of the four market-indicating securities used by the trading model.

Table 1. Market-indicating securities included in the multivariate state space of the proposed trading model.

Indicator Ticker Description

S&P 500

SPY

The historical data of the S&P 500 is used by the trading model because
the index fund is representative of the overall stock market and can be
used to compare the relative performance of the stock being traded.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 6

10-year
Treasury
Bond

IEF

The historical data of the 10-year treasury bond is used by the trading
model because the bond has a significant role in macroeconomic cycles
impacted by US federal monetary policy.

USD/EUR

EUR=X

The historical data of the USD/EUR exchange rate is used by the trading
model because the exchange rate indicates macroeconomic cycles in
terms of the relative value of the dollar impacted by US federal mone-
tary policy.

S&P GSCI Commod-
ity-Indexed Trust

GSG

The historical data of the S&P GSCI Commodity-Indexed Trust is used
by the trading model because the commodity index is a leading indicator
that holds multiple commodity assets, such as energy, industrial metals,
agricultural materials, and livestock, that are indicative of overall mar-
ket and supply chain health.

Action Space
Some previous works used the continuous action space 𝑎𝑎 ∈ [−1, 1] such that short and long positions can be
placed with varying weightings for a particular security, albeit the discrete action space 𝑎𝑎 ∈ {−1, 0, 1} is most
prevalent in current literature where each of three possible discrete actions typically correspond to short, no
holdings, and long, respectively [7]. Thus, the proposed trading model also uses the discrete action space 𝑎𝑎 ∈
{−1, 0, 1} to trade a particular stock held in the S&P 500. Note that the trading model updates its trading action
for a stock at the end of every market day and that no changes are made to the trading model’s position if the
same action is selected consecutively.

Discrete Reward
Most previous works used a continuous reward function based on observed profit or loss along with transaction
costs and price slippage that occur in futures contracts [8, 9, 10, 11]. However, such continuous reward functions
can only specialize in trading a limited number of securities because observed profit or loss can vary and have
extreme values depending on the volatility of certain securities and sectors. Besides this overfitting issue, it is
also unknown whether the restrictions included in those continuous reward functions, such as transaction costs
and price slippage, significantly impact the optimal policy being learned [7].

Equation 3: Discrete reward function used by the proposed trading model.

𝑅𝑅𝑡𝑡+1 = � 𝑎𝑎𝑡𝑡 (∆𝑃𝑃 ≥ 0)
−𝑎𝑎𝑡𝑡 (∆𝑃𝑃 < 0)

Taking these limitations into account, the discrete reward function shown above is used such that the
proposed trading model is rewarded at the end of every market day based on whether 𝑎𝑎𝑡𝑡 was a winning bet
when the daily price change of the stock being traded is denoted as ∆𝑃𝑃 = 𝑃𝑃𝑡𝑡+1 − 𝑃𝑃𝑡𝑡. Specifically, the trading
model is rewarded +1 point for a long position and -1 point for a short position when ∆𝑃𝑃 ≥ 0 and -1 point for
a long position and +1 point for a short position when ∆𝑃𝑃 < 0. The trading model is rewarded 0 points for no
holdings regardless of the sign of ∆𝑃𝑃. Although simple, it is important to note that the proposed discrete reward
function is only based on the correctness a selected trading action and independent of the volatility of stocks.
Therefore, when combined with the proposed state space consisting of the historical time series of multiple
market-indicating securities, the discrete reward function enables the trading model to effectively generalize
which trading action is best rewarded based on major market trends without overfitting to the behavior of a
limited number of stocks.

Generalized Deep Reinforcement Learning

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 7

Previous works [8, 9, 10, 11, 12, 13] have shown effective applications of deep reinforcement learning for
trading various financial securities. However, many were specialized to a limited number of securities, did not
consider the fundamental challenges in learning performance, and made it difficult to identify which individual
factor affected the reported results as previous works used different datasets, Markov Decision Processes, and
deep learning models [7]. With important learning parameters, code, and datasets being institutionalized or
undisclosed, reproducing the results of previous works is also difficult. Therefore, the proposed trading model
uses a standard DQN to effectively test its Markov Decision Process that is designed to improve generalizability
by having a multivariate state space based on publicly accessible historical data of several market-indicating
securities and a discrete reward function based on the correctness of trading actions. Furthermore, a method of
synchronization that is adaptive of learning sequence is also used to stabilize and precisely track the trading
model’s improvement on generalizing new experiences from each stock during training.

Data Preprocessing
The dataset used for training the proposed trading model is denoted as 𝒟𝒟 = (𝒟𝒟1,𝒟𝒟2,𝒟𝒟3, … ,𝒟𝒟50) where 𝒟𝒟𝑖𝑖
contains the adjusted daily historical data of a stock included in the top 50 holdings of the S&P 500 and the
four market-indicating securities (SPY, IEF, EUR=X, GSG). The adjusted daily historical data of stocks and
the four market-indicating securities used for the trading model are retrieved from Yahoo Finance where his-
torical data are publicly available. For every 𝒟𝒟𝑖𝑖, the historical data of the stock of interest and the four market-
indicating securities are ensured to have no mismatching dates, though the matching dates (typically 2006 ~
2022) varies for each 𝒟𝒟𝑖𝑖 depending on the stock of interest. Moreover, using the look back duration of 100 days
and the number of matching dates in each 𝒟𝒟𝑖𝑖, the number of observable states in each 𝒟𝒟𝑖𝑖 is determined. For
training purposes, the size of entire dataset 𝒟𝒟 is subsequently determined by adding the number of observable
states in each 𝒟𝒟𝑖𝑖.

Learning Setup and Algorithm
Among the various algorithms in deep reinforcement learning, DQNs are consistently used as baseline models
to test and compare novel solutions [8, 9, 10]. Thus, to effectively test the proposed trading model’s Markov
Decision Process, the trading model’s reward-maximizing behavior is optimized by using a standard DQN with
five fully connected hidden layers (450-400-350-300-250) having rectified linear units. The pseudocode of the
algorithm used to train the trading model is shown as follows.

Shuffle 𝒟𝒟 (prevents the ranking of the top 50 holdings of the S&P 500 from causing learning bias)
Initialize replay memory ℳ
for 𝒟𝒟i in 𝒟𝒟
…. start = look_back – 1 (look_back = 100 days)
…. terminal = 𝒟𝒟i.stock().len() – 2
…. for t in [start, terminal]
…. …. Sample 𝑠𝑠 (100-day closing price series of a stock and the four market-indicating securities)
…. …. Select 𝑎𝑎 through the ε-greedy policy (𝑎𝑎 ∈ {−1, 0, 1}; short, no holdings, long)

…. …. Observe reward 𝑟𝑟 = � 𝑎𝑎 (∆𝑃𝑃 ≥ 0)
−𝑎𝑎 (∆𝑃𝑃 < 0) where ∆𝑃𝑃 = 𝑃𝑃𝑡𝑡+1 − 𝑃𝑃𝑡𝑡 is the price change of the stock in 𝒟𝒟i

…. …. Calculate 𝑄𝑄∗(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′; 𝜃𝜃𝑖𝑖−1)

…. …. Store new experience (𝑠𝑠, 𝑎𝑎, 𝑄𝑄∗(𝑠𝑠, 𝑎𝑎)) in ℳ
…. …. if ℳ.size() is ℳ.capacity()
…. …. …. Sample a random batch from ℳ
…. …. …. Update 𝜃𝜃𝑖𝑖 through gradient descent by minimizing 𝐿𝐿(𝜃𝜃𝑖𝑖) in the direction of ∇𝜃𝜃𝑖𝑖𝑄𝑄(𝑠𝑠, 𝑎𝑎; 𝜃𝜃𝑖𝑖)
…. …. …. Remove oldest experience in ℳ
…. Adaptive synchronization (𝜃𝜃𝑖𝑖−1 ← 𝜃𝜃𝑖𝑖 when 𝒟𝒟i ← 𝒟𝒟i+1)

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 8

Relevant learning parameters are outlined as follows. The exploration probability (𝜀𝜀) decreases line-

arly from 1.00 during the first 10% of the entire dataset 𝒟𝒟 until it is held constant once it reaches a minimum
of 0.10. The discount rate for future rewards is 𝛾𝛾 = 0.80 to better account for long-term rewards. The replay
memory (ℳ) capacity is set to 10% of the size of the entire dataset 𝒟𝒟. To learn which action is best rewarded
when given certain states through experience replay, a random batch of 10 samples from ℳ is selected to train
the agent network (𝜃𝜃𝑖𝑖) of the trading model through gradient descent where the learning rate has an initial value
of 1.0 × 10−5 that decreases exponentially until it reaches 1.0 × 10−8 at the last frame in 𝒟𝒟. L2 regularization
constant of 0.10 is also used throughout the entire training process to prevent exploding gradients. It is important
to note that the target network (𝜃𝜃𝑖𝑖−1) is adaptively synchronized to the agent network (𝜃𝜃𝑖𝑖) after observing all
states in 𝒟𝒟𝑖𝑖 before transitioning to 𝒟𝒟𝑖𝑖+1 rather than after observing a fixed number of frames as widely practiced
in previous works such as [8]. The issue with synchronizing after a fixed number of frames is that the number
of states in each 𝒟𝒟𝑖𝑖 are not necessarily identical due to date differences in the historical data of each stock,
hence learning can be unstable and difficult to track if synchronization occurs in the middle of learning to trade
some stock in 𝒟𝒟𝑖𝑖. However, the proposed adaptive synchronization updates the target network of the trading
model after testing the existing parameters on each 𝒟𝒟𝑖𝑖, thereby stabilizing learning performance by preserving
well-learned parameters and allowing to precisely track how well the trading model generalize new experiences
from each stock in 𝒟𝒟𝑖𝑖.

Data Collection and Implementation

The proposed trading model was compared to the 100% long-strategy benchmark during training and testing.
To track the trading model’s learning performance, the mean return-on-investment of the trading model and the
100% long-strategy benchmark were recorded as the trading model gained experience on the top 50 holdings
of the S&P 500. After training on the top 50 holdings of the S&P 500, the trading model was tested on the top
100 holdings of the S&P 500. The following metrics [8] were collected to evaluate the performance of the
trading model throughout the entire historical period available (typically 2006 ~ 2022) for each of the top 100
holdings of the S&P 500.

Table 2. Metrics collected to evaluate the proposed trading model.

Metric Description
E(R) Annualized return
S(R) Standard deviation of annualized returns
Sharpe E(R) / S(R) measures the return-over-risk ratio
MDD Maximum drawdown measures maximum volatility

The mean of annualized returns, standard deviation of annual returns, and the maximum drawdown of

the trading model on the top 100 holdings of the S&P 500 were calculated. The mean of annualized returns and
standard deviation of annual returns were then used to derive the mean Sharpe ratio of the trading model. The
actions selected by the trading model during the entire historical period of each stock were also recorded to
compare the decisions made by the trading model for different stocks. Full build and test data are open-sourced
at [20] along with the source-code of the trading model that is built in C++ from scratch.

Results

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 9

Figure 2 shows how the cumulative mean return-on-investment of the trading model and the 100% long-strategy
benchmark compared to each other as the trading model gained experience on the top 50 holdings of the S&P
500. Note that the number of experiences is the number of stocks the trading model learned to trade out of the
top 50 holdings of the S&P 500 and the y-axis represents mean return-on-investment on x stocks in terms of n-
times the initial investment.

Figure 2. Cumulative mean return-on-investment of the trading model and 100% long-strategy benchmark as
the trading model gained experience in trading the top 50 holdings of the S&P 500.

The box plots in Figures 3 and 4 compare the distribution of annualized returns, Sharpe ratios, and
maximum drawdowns of the trading model’s performance and the 100% long-strategy benchmark’s perfor-
mance on the top 100 holdings of the S&P 500. Table 3 shows the mean of annualized returns, standard devia-
tion of returns, Sharpe, and maximum drawdown of the trading model’s performance and the 100% long-strat-
egy benchmark’s performance on the top 100 holdings of the S&P 500.

Figure 3. Comparing the distribution of annualized returns, Sharpe ratios, and maximum drawdowns of the
trading model and the 100% long-strategy benchmark on the top 1st to 50th holding of the S&P 500 (trained).

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 10

Figure 4. Comparing the distribution of annualized returns, Sharpe ratios, and maximum drawdowns of the
trading model and the 100% long-strategy benchmark on the top 51st to 100th holding of the S&P 500 (un-
trained).

Table 3. Mean performance of the trading model and 100% long-strategy on the top 100 holdings of the S&P
500.

S&P 500 Top 100 Holdings (Mean Performance)
 E(R) S(R) Sharpe MDD
Benchmark 0.1251 0.3093 0.4044 0.5975
DQN 0.2375 0.3587 0.6622 0.4870

Figures 5 through 14 compare the return-on-investment of the trading model (light gray) and the 100%

long-strategy benchmark (dark gray) from the top 10 holdings of the S&P 500. Note that the black graphs below
the comparison of historical return-on-investments in Figures 5 through 14 show the actions selected by the
trading model where 0, 1, and 2 indicates short, no holdings, and long, respectively. Table 4 in the Appendix
contain full test results on the top 100 holdings of the S&P 500.

Figure 5. Return-on-investment of the trading model and 100% long-strategy on AAPL.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 11

Figure 6. Return-on-investment of the trading model and 100% long-strategy on MSFT.

Figure 7. Return-on-investment of the trading model and 100% long-strategy on AMZN.

Figure 8. Return-on-investment of the trading model and 100% long-strategy on TSLA.

Figure 9. Return-on-investment of the trading model and 100% long-strategy on GOOG.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 12

Figure 10. Return-on-investment of the trading model and 100% long-strategy on BRK-B.

Figure 11. Return-on-investment of the trading model and 100% long-strategy on UNH.

Figure 12. Return-on-investment of the trading model and 100% long-strategy on JNJ.

Figure 13. Return-on-investment of the trading model and 100% long-strategy on XOM.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 13

Figure 14. Return-on-investment of the trading model and 100% long-strategy on JPM.

Discussion

The proposed adaptive synchronization occurs after completely learning to trade each of the top 50 holdings of
the S&P 500. This stabilizes learning by allowing to test and update the trading model’s existing parameters on
each stock and precisely track how the trading model improved on generalizing new experiences form each
stock. Indeed, this can be observed from Figure 2 where the mean return-on-investment of the trading model
consistently increased as it gained experience in trading the top 50 holdings of the S&P 500. In the beginning,
the trading model underperformed the 100% long-strategy benchmark, yet the trading model surpassed the
benchmark after learning to trade 20 stocks out the top 50 holdings of the S&P 500, suggesting that the trading
model quickly acquired a reward-maximizing behavior that converted to higher returns.
 Further data suggests that the trading model significantly outperforms the 100% long-strategy bench-
mark on the top 100 holdings of the S&P 500. Specifically, Figure 3 shows that, in terms of annualized return,
Sharpe ratio, and maximum drawdown, the trading model outperforms the 100% long-strategy benchmark on
stocks it was trained on (top 50 holdings of the S&P 500). Figure 4 shows the trading model also outperforms
the 100% long-strategy benchmark on stocks it was not trained on (top 51st to 100th holding of the S&P 500).
Randomized simulations suggest that the observed differences in mean annualized return, Sharpe ratio, and
maximum drawdown of the trading model and the 100% long-strategy benchmark on the top 100 holdings of
the S&P 500, both trained and untrained, are statistically significant with p-values substantially below the sig-
nificance level of 0.01, indicating that the trading model effectively yields higher returns with lower risk than
the 100% long-strategy benchmark. It is also notable that the trading model yields higher returns with lower
risk from stocks it was trained on (top 50 holdings of the S&P 500) than from stocks it was not trained on (top
51st to 100th holding of the S&P 500). However, the observed differences in trained and untrained performance
have p-values above the significance level of 0.01, suggesting that such differences are likely due to differences
in the volatility and growth of the top 100 holdings of the S&P 500 rather than an overfitting issue. Overall,
Table 3 shows that, on average, the trading model yields an annualized return of 23.75% a Sharpe ratio of
0.6622, and a maximum drawdown of 48.70%, all of which significantly exceeds the 100% long-strategy bench-
mark that yields an annualized return of 12.51%, a Sharpe ratio of 0.4044, and a maximum drawdown of 59.75%
from the top 100 holdings of the S&P 500. Such high performance of the trading model can also be observed
from Figures 5 through 14 where the trading model yields a significantly higher historical return-on-investment
than the 100% long-strategy benchmark. Note that the trading model behaves in a similar manner for different
stocks as shown in the action graphs in Figures 5 through 14, albeit the actions selected for each stock are not
necessarily identical. This suggests that the trading model generally chooses similar trading actions based on
major market trends represented by the four market-indicating securities with some variability depending on
how the price history of a stock relates to such major market trends. As a cohesive whole, these results ultimately
suggest that the trading model’s high performance on many stocks held in the S&P 500 can be attributed to the

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 14

proposed multivariate state space based on relationship between the price history of a stock and major market-
indicating securities and the proposed discrete reward function that is based on the correctness of trading actions
and independent of volatility. Indeed, the use of a standard DQN instead of other deep reinforcement learning
algorithms and neural network architectures makes it reasonable to identify the proposed multivariate state
space and discrete reward function as the primary contributors to the trading model’s high performance and
generalizability. However, it is important to note that some inconsistency in performance was observed when
the trading model did not perform well in trading JPM compared to other top 10 holdings of the S&P 500 as
shown in Figures 5 through 14. This likely occurred because the trading model may not have quickly exited
from shorting JPM after the 2008 financial crisis. Exiting from a short position later than preferred is a common
issue the trading model had when tested on some stocks (VRTX, MO, CI, AMD, PG) where the annualized
return of the trading model underperforms the 100% long-strategy benchmark.

Conclusion

This paper proposed generalized deep reinforcement learning with multivariate state space, discrete rewards,
and adaptive synchronization for trading any stock held in the S&P 500. Experimental results obtained by test-
ing the proposed trading model on the top 100 holdings of the S&P 500 suggest that the trading model, on
average, yields higher returns with lower risk than the 100% long-strategy benchmark. Such results can be
attributed to the proposed multivariate state space and discrete reward function that allows the trading model to
generalize on many stocks held in the S&P 500 based on major market trends. Furthermore, adaptive synchro-
nization helps to stabilize learning performance and track the trading model’s improvement on generalizing
new experiences from each stock. To improve the trading model’s performance and robustness, implementing
a method to prevent losses from short positions by adding interactive feedback for past actions and rewards to
the state space of the trading model would be an important topic to study in the future. Researching other
effective market-indicating securities, studying other financial securities, and testing other deep reinforcement
learning algorithms with more robust neural network architectures would also be some valuable topics for fur-
ther work.

Acknowledgments

I would like to thank my advisor for the valuable insight provided to me on this topic.

References

[1] A. W. Li and G. S. Bastos, “Stock Market Forecasting Using Deep Learning and Technical Analysis:
A Systematic Review,” IEEE Access, vol. 8, pp. 185232–185242, 2020, doi:
10.1109/ACCESS.2020.3030226.
[2] B. Lim, S. Zohren, and S. Roberts, “Enhancing Time-Series Momentum Strategies Using Deep
Neural Networks,” The Journal of Financial Data Science, 2019, doi: 10.3905/jfds.2019.1.015.
[3] S. Siami-Namini and A. S. Namin, “Forecasting Economics and Financial Time Series: ARIMA vs.
LSTM.” arXiv, 2018. doi: 10.48550/ARXIV.1803.06386.
[4] Q. Guo, S. Lei, Q. Ye, and Z. Fang, “MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN
and LSTM to Predict Bitcoin Price,” in 2021 International Joint Conference on Neural Networks
(IJCNN), 2021, pp. 1–8. doi: 10.1109/IJCNN52387.2021.9534453.
[5] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529–533, Feb. 2015, doi: 10.1038/nature14236.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 15

https://doi.org/10.1109/ACCESS.2020.3030226
https://doi.org/10.3905/jfds.2019.1.015
https://doi.org/10.48550/ARXIV.1803.06386
https://doi.org/10.1109/IJCNN52387.2021.9534453
https://doi.org/10.1038/nature14236

[6] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning.” arXiv, 2013. doi:
10.48550/ARXIV.1312.5602.
[7] A. Millea, “Deep Reinforcement Learning for Trading—A Critical Survey,” Data, vol. 6, no.
11, 2021, doi: 10.3390/data6110119.
[8] Z. Zhang, S. Zohren, and S. Roberts, “Deep Reinforcement Learning for Trading,” The Journal of
Financial Data Science, vol. 2, no. 2, pp. 25–40, 2020, doi: 10.3905/jfds.2020.1.030.
[9] Y. Li, W. Zheng, and Z. Zheng, “Deep Robust Reinforcement Learning for Practical Algorithmic
Trading,” IEEE Access, vol. 7, pp. 108014–108022, 2019, doi: 10.1109/ACCESS.2019.2932789.
[10] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep Direct Reinforcement Learning for Financial
Signal Representation and Trading,” IEEE Transactions on Neural Networks and Learning Systems, vol.
28, no. 3, pp. 653–664, 2017, doi: 10.1109/TNNLS.2016.2522401.
[11] S. Carta, A. Corriga, A. Ferreira, A. S. Podda, and D. R. Recupero, “A multi-layer and multi-
ensemble stock trader using deep learning and deep reinforcement learning,” Applied Intelligence, vol.
51, no. 2, pp. 889–905, Feb. 2021, doi: 10.1007/s10489-020-01839-5.
[12] F. Rundo, “Deep LSTM with Reinforcement Learning Layer for Financial Trend Prediction in FX
High Frequency Trading Systems,” Applied Sciences, vol. 9, no. 20, 2019, doi: 10.3390/app9204460.
[13] X.-Y. Liu, Z. Xiong, S. Zhong, H. Yang, and A. Walid, “Practical Deep Reinforcement Learning
Approach for Stock Trading.” arXiv, 2018. doi: 10.48550/ARXIV.1811.07522.
[14] Y. Li, “Deep Reinforcement Learning: An Overview.” arXiv, 2017. doi:
10.48550/ARXIV.1701.07274.
[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,” Journal of
artificial intelligence research, vol. 4, pp. 237–285, 1996, doi: https://doi.org/10.1613/jair.301.
[16] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,” 2016, doi:
10.48550/ARXIV.1602.01783.
[17] L. Menkhoff, “The use of technical analysis by fund managers: International evidence,” Journal of
Banking & Finance, vol. 34, no. 11, pp. 2573–2586, 2010, doi:
https://doi.org/10.1016/j.jbankfin.2010.04.014.
[18] J. W. Lee, J. Park, J. O, J. Lee, and E. Hong, “A Multiagent Approach to Q-Learning for Daily
Stock Trading,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,
vol. 37, no. 6, pp. 864–877, 2007, doi: 10.1109/TSMCA.2007.904825.
[19] S. A. Badran and M. Rezghi, “An adaptive synchronization approach for weights of deep
reinforcement learning.” arXiv, 2020. doi: 10.48550/ARXIV.2008.06973.
[20] https://github.com/junyoung-sim/quant

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 16

https://doi.org/10.48550/ARXIV.1312.5602
https://doi.org/10.3390/data6110119
https://doi.org/10.3905/jfds.2020.1.030
https://doi.org/10.1109/ACCESS.2019.2932789
https://doi.org/10.1109/TNNLS.2016.2522401
https://doi.org/10.1007/s10489-020-01839-5
https://doi.org/10.3390/app9204460
https://doi.org/10.48550/ARXIV.1811.07522
https://doi.org/10.48550/ARXIV.1701.07274
https://doi.org/10.1613/jair.301
https://doi.org/10.48550/ARXIV.1602.01783
https://doi.org/10.1016/j.jbankfin.2010.04.014
https://doi.org/10.1109/TSMCA.2007.904825
https://doi.org/10.48550/ARXIV.2008.06973
https://github.com/junyoung-sim/quant

