
A Graph Algorithm to Eliminate Hunger and Food
Waste by Matching Excess Food to Demand

Neil Makur1 and Maya Mathews#

1Fremont Christian High School, Freemont, CA, USA
#Advisor

ABSTRACT

Millions of tons of food from grocery stores go to waste every year in the US, while many people consistently
depend on community food banks. Having a plan to transport food surplus to the needy will eliminate both
food waste and hunger at the same time. This problem is modeled as a bipartite graph with one set of vertices
representing food donors with certain excess food of various types, and the other set representing food banks
with demand of different types of food, and a cost of transportation on each edge. We create four heuristic
algorithms to find low-cost transportation plans that satisfy all food needs, and compare them in terms of plan
cost and runtime. We find that the basic greedy algorithm does the best in both aspects.

Introduction

Large quantities of food go to waste every day, including food surplus from retailers [REFED] while several
local community food banks see a growing need of food [DAILYBOWL]. Several retailers are open to donat-
ing extra food to the local food banks. Food banks have partnerships with food donors, but food banks don’t
typically talk to each other. Similarly, food donors don’t have visibility into what other donors may have to
contribute. These blind spots lead to wasted food because of reasons such as food not reaching required food
bank before it spoils, or too much of one kind of food at one food bank.

In this paper, we will implement and analyze different algorithms that generate a food distribution
plan that sends all the surplus food to the right place where it is needed, thus eliminating both food waste and
hunger in the local community. We aim to find an algorithm that generates a plan that distributes all food,
minimizes transportation cost, and can be generated in a timely manner every day.

Related Work

There has been prior research that solves food distribution for food delivery where sources and sinks are not
interchangeable services [Joshi et al.][Gupta et al.], for general supply chain for big firms like Walmart and
Amazon-not including groceries[Chiles et al.], or for long-term relationships with food vendors [Michelson et
al.] but no research that holistically looks at daily local food surplus and demand for optimum distribution,
that this paper does. Bipartite graphs [Asratian et al.] used as the model in this paper has been used for food
distribution[Joshi et al.][Gupta et al.], robot work distribution[Jain et al.] but not for solving a problem such
as the one here where an optimal plan requires playing around with multiple parameters - edges, their cost,
and supply/demand at vertices. By taking a holistic approach to process local food distribution problem, this
paper presents various algorithms and determines their feasibility and application for small as well as large
areas. Moreover, it builds a foundation that can be used for other distribution problems.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 1

There are also several graph algorithms available for different types of problems (e.g. Max-Flow,
Max-Flow/Min-Cost, Fixed Charge Transportation etc). However, the food distribution problem in this paper
is fundamentally different. Max-flow problem is based on edge capacity alone, not on edge cost and can be
solved in Polynomial time using Edmonds-Karp. Max-flow/min-cost takes cost into account but the cost is
per unit of flow, unlike the problem presented in this paper where the cost of an edge is fixed. The fixed
charge transportation problem, which is proven to be NP-Hard[Hochbaum et al.], can be used for edges with
fixed cost. However, it only distributes one kind of item. To solve the local food distribution problem, we
need consider multiple food types from each food donor to bank. This effectively makes it a fixed-charge-
transportation with multiple graphs superimposed on each other to create one graph.

While matching for bipartite graphs is a well studied problem via theorems such as Hall’s Theorem
and algorithms such as the Hungarian Algorithm [Vassilev et al.], the food distribution problem in this paper
is different from the bipartite graph matching problem because it has different quantities of food of various
food types that need to be transported.

Food Distribution Problem as a Bipartite Graph

In order to study the problem from ground up and find solutions, we first restrict the problem with two attrib-
utes. Firstly, we only consider produce (fruits and vegetables) and not meat or dairy, as they require special
handling such as cold storage and considering expiry dates. Produce also has a shelf life, but it is more uni-
form and manageable. Secondly, we only consider local area (~10 mile radius) so as to have transportation by
road (vans/trucks). This is a reasonable limitation for timely food surplus distribution to local food banks.

The Model

Suppose that we have 𝑑𝑑 places that donate food at the end of each day, 𝑏𝑏 food banks that will accept food to
distribute to the needy, and 𝑡𝑡 food types (potatoes, lettuce, etc.). We call the food donors 1𝐷𝐷 , 2𝐷𝐷, … ,𝑑𝑑𝐷𝐷, the
food banks 1𝐵𝐵 , 2𝐵𝐵, … , 𝑏𝑏𝐵𝐵, and number the types of food 1,2, … , 𝑡𝑡. Suppose that the donor 𝑖𝑖𝐷𝐷 outputs 𝑑𝑑𝑖𝑖𝑥𝑥 items
of food type 𝑥𝑥, that the bank 𝑗𝑗𝐵𝐵 needs at most 𝑏𝑏𝑗𝑗𝑥𝑥 items of food type 𝑥𝑥, and that ∑ 𝑑𝑑𝑖𝑖𝑥𝑥 = ∑ 𝑏𝑏𝑗𝑗𝑥𝑥𝑏𝑏

𝑗𝑗=1
𝑑𝑑
𝑖𝑖=1 for 1 ≤

𝑥𝑥 ≤ 𝑡𝑡. Suppose further that there is a cost 𝑐𝑐𝑖𝑖,𝑗𝑗for the road between 𝑖𝑖𝐷𝐷 and 𝑗𝑗𝐵𝐵.
We can make this into a bipartite graph with 𝑋𝑋 = [𝑑𝑑] and 𝑌𝑌 = [𝑏𝑏]. The set of vertices on the left

represents food donors, and the set of vertices on the right represents food banks. The edge between a donor
and food bank has a cost of transporting food along that edge, which can be a function of distance.

Figure 1. Representation of the bipartite graph with d=5 and b-=3

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 2

Definitions

Definition 1: Distribution Problem: A (𝑑𝑑,𝑏𝑏, 𝑡𝑡)-distribution problem is a tuple (𝒟𝒟,ℬ,𝒞𝒞), such that 𝒟𝒟: [𝑑𝑑] →
(ℤ≥0)𝑡𝑡 is a function mapping 𝑖𝑖 to a tuple 𝐷𝐷𝑖𝑖 = (𝑑𝑑𝑖𝑖1,𝑑𝑑𝑖𝑖2, … . .𝑑𝑑𝑖𝑖𝑡𝑡), ℬ: [𝑏𝑏] → (ℤ≥0)𝑡𝑡 is a function mapping 𝑗𝑗 to a
tuple 𝐵𝐵𝑗𝑗 = �𝑏𝑏𝑖𝑖1, 𝑏𝑏𝑖𝑖2, … . . 𝑏𝑏𝑗𝑗𝑡𝑡�, ∑ 𝒟𝒟(𝑖𝑖)𝑑𝑑

𝑖𝑖=1 = ∑ ℬ(𝑗𝑗)𝑏𝑏
𝑗𝑗=1 , and 𝒞𝒞 ∶ [𝑑𝑑] × [𝑏𝑏] → ℤ≥0 is a function mapping (𝑖𝑖, 𝑗𝑗) to

a value 𝑐𝑐𝑖𝑖,𝑗𝑗.
The idea is that 𝒟𝒟 gives the amount of food surplus at a given donor, ℬ gives the amount of food

need at a given bank, and 𝒞𝒞 gives the cost of travel between a given donor and bank.
Definition 2: Distribution Plan: Let(𝒟𝒟,ℬ,𝒞𝒞) be a (𝑑𝑑, 𝑏𝑏, 𝑡𝑡)-distribution problem. A distribution plan

is a pair 𝑃𝑃 = (𝐸𝐸,𝒮𝒮), where 𝐸𝐸 ⊆ [𝑑𝑑] × [𝑏𝑏] and 𝑆𝑆 ∶ 𝐸𝐸 → (ℤ≥0)𝑡𝑡, such that

� 𝒮𝒮(𝑖𝑖, 𝑗𝑗)
1 ≤𝑗𝑗 ≤𝑏𝑏
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

≤ 𝒟𝒟(𝑖𝑖) 𝑖𝑖 ∈ [𝑑𝑑]

� 𝒮𝒮(𝑖𝑖, 𝑗𝑗)
1 ≤𝑖𝑖 ≤𝑑𝑑
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

≤ ℬ(𝑗𝑗) 𝑗𝑗 ∈ [𝑏𝑏]

 We write

𝐷𝐷(𝑖𝑖) = 𝒟𝒟(𝑖𝑖) − � 𝒮𝒮(𝑖𝑖, 𝑗𝑗)
1 ≤𝑗𝑗 ≤𝑏𝑏
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

 𝑖𝑖 ∈ [𝑑𝑑]

𝐵𝐵(𝑗𝑗) = ℬ(𝑗𝑗) − � 𝒮𝒮(𝑖𝑖, 𝑗𝑗)
1 ≤𝑖𝑖 ≤𝑑𝑑
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

 𝑗𝑗 ∈ [𝑏𝑏].

The idea of a distribution plan is that 𝐸𝐸 represents which donors send food to which banks, and that
𝒮𝒮 represents how much food is sent from each donor to each back. At any given point in time, 𝐷𝐷(𝑖𝑖) and 𝐵𝐵(𝑗𝑗)
are the remaining supply and need respectively. We see from the definition that 𝐷𝐷(𝑖𝑖),𝐵𝐵(𝑗𝑗) ≥ 0.

Definition 3: Full Distribution Plan: Let (𝒟𝒟,ℬ ,𝒞𝒞) be a (𝑑𝑑, 𝑏𝑏, 𝑡𝑡)-distribution problem, and let 𝑃𝑃 =
(𝐸𝐸,𝒮𝒮) be a distribution plan. We say that 𝑃𝑃 is a full distribution plan if the following two conditions hold.

� 𝒮𝒮(𝑖𝑖, 𝑗𝑗)
1 ≤𝑗𝑗 ≤𝑏𝑏
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

= 𝒟𝒟(𝑖𝑖) 𝑖𝑖 ∈ [𝑑𝑑]

� 𝒮𝒮(𝑖𝑖, 𝑗𝑗)
1 ≤𝑖𝑖 ≤𝑑𝑑
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

= ℬ(𝑗𝑗) 𝑗𝑗 ∈ [𝑏𝑏]

Alternatively, 𝑃𝑃 is a full distribution plan if 𝐷𝐷(𝑖𝑖) = 𝐵𝐵(𝑗𝑗) = 0 for 𝑖𝑖 ∈ [𝑑𝑑], 𝑗𝑗 ∈ [𝑏𝑏]. A full distribution
plan is one in which all supply is used and all need is fulfilled.

Definition 4: Cost of a Plan: Let (𝒟𝒟,ℬ,𝒞𝒞) be a (𝑑𝑑, 𝑏𝑏, 𝑡𝑡)-distribution problem, and let 𝑃𝑃 = (𝐸𝐸,𝒮𝒮) be a
distribution plan. The cost of 𝑃𝑃, 𝐶𝐶(𝑃𝑃) is

� 𝒞𝒞(𝑖𝑖, 𝑗𝑗)
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

We therefore want to find a full distribution plan 𝑃𝑃 such that 𝐶𝐶(𝑃𝑃) is minimized.We can also prove
some results about our definitions that we will use later to prove that the algorithms are correct.

Proposition 5: Let (𝒟𝒟,ℬ,𝒞𝒞) be a (𝑑𝑑, 𝑏𝑏, 𝑡𝑡)-distribution problem, and let 𝑃𝑃 = (𝐸𝐸,𝒮𝒮) be a distribution
plan. Then∑ 𝐷𝐷(𝑖𝑖) = ∑ 𝐵𝐵(𝑗𝑗)1≤𝑗𝑗≤𝑏𝑏1≤𝑖𝑖≤𝑑𝑑
Proof: We have that

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 3

�𝐷𝐷(𝑖𝑖)
𝑑𝑑

𝑖𝑖=1

= �

⎝

⎜
⎛
𝒟𝒟(𝑖𝑖) − � 𝒮𝒮(𝑖𝑖, 𝑗𝑗)

1≤𝑗𝑗≤𝑏𝑏
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸 ⎠

⎟
⎞

𝑑𝑑

𝑖𝑖=1

 = �𝒟𝒟(𝑖𝑖)
𝑑𝑑

𝑖𝑖=1

− � 𝒮𝒮(𝑖𝑖, 𝑗𝑗)
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

= �ℬ(𝑗𝑗)
𝑏𝑏

𝑗𝑗=1

− � 𝒮𝒮(𝑖𝑖, 𝑗𝑗)
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

= �

⎝

⎛ℬ(𝑗𝑗) − � 𝒮𝒮(𝑖𝑖, 𝑗𝑗))
1≤𝑖𝑖≤𝑑𝑑
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸 ⎠

⎞
𝑏𝑏

𝑗𝑗=1

= �𝐵𝐵(𝑗𝑗)
𝑏𝑏

𝑗𝑗=1

.

∎

Corollary 6: Let (𝒟𝒟,ℬ,𝒞𝒞) be a (𝑑𝑑, 𝑏𝑏, 𝑡𝑡)-distribution problem, and let 𝑃𝑃 = (𝐸𝐸,𝒮𝒮) be a distribution
plan. Then, P is not a full distribution plan if and only if there exist 𝑖𝑖 ∈ [𝑑𝑑] and 𝑗𝑗 ∈ [𝑏𝑏] with
min�𝐷𝐷(𝑖𝑖),𝐵𝐵(𝑗𝑗)� ≠ 0.
Proof: Suppose that 𝑃𝑃 is not a full distribution plan. Then, there is either some 𝑖𝑖 ∈ [𝑑𝑑] with 𝐷𝐷(𝑖𝑖) ≠ 0, or some
𝑗𝑗 ∈ [𝑏𝑏] with 𝐵𝐵(𝑗𝑗) ≠ 0. Without loss of generality, take 𝑖𝑖 ∈ [𝑑𝑑] with 𝐷𝐷(𝑖𝑖) ≠ 0, and let 𝐷𝐷(𝑖𝑖)𝑥𝑥 ≠ 0 in particu-
lar. Then, ∑ 𝐷𝐷(𝑖𝑖)1≤𝑖𝑖≤𝑑𝑑 = ∑ 𝐵𝐵(𝑗𝑗)1≤𝑗𝑗≤𝑏𝑏 , so that 0 ≠ ∑ 𝐷𝐷(𝑖𝑖)𝑥𝑥1≤𝑖𝑖≤𝑑𝑑 = ∑ 𝐵𝐵(𝑗𝑗)𝑥𝑥1≤𝑗𝑗≤𝑏𝑏 . Thus, there must be some
𝑗𝑗 with 𝐵𝐵(𝑗𝑗)𝑥𝑥 ≠ 0. Thus, min (𝐷𝐷(𝑖𝑖),𝐵𝐵(𝑗𝑗)𝑥𝑥) ≠ 0, so that min�𝐷𝐷(𝑖𝑖),𝐵𝐵(𝑗𝑗)� ≠ 0. Conversely, suppose that there
are 𝑖𝑖 ∈ [𝑑𝑑], 𝑗𝑗 ∈ [𝑏𝑏] with min�𝐷𝐷(𝑖𝑖),𝐵𝐵(𝑗𝑗)� ≠ 0. Then, in particular, 𝐷𝐷(𝑖𝑖) ≠ 0, so we have that 𝑃𝑃 cannot be a
full distribution plan. ∎

Building Block Algorithms

Before diving into any full algorithms, we present two algorithm modules that we will use as building blocks
in all full algorithms and prove some theorems related to those. It is always understood that we have a
(𝑑𝑑, 𝑏𝑏, 𝑡𝑡)-distribution problem (𝒟𝒟,ℬ,𝒞𝒞).

Algorithm 1. The send-food algorithm module that is used as a building block in Algorithms 3,4,5,6, and 7.
This algorithm takes in a set of edges, and returns a distribution plan using the given edges

Note that lines 7-9 are executed 𝑡𝑡 times, as the computations are done for each type of food. We can

find that this algorithm is 𝑂𝑂(𝑑𝑑𝑑𝑑𝑑𝑑). As 𝑡𝑡(number of types of food) is not expected to grow as much as 𝑑𝑑 (num-
ber of donors) and 𝑏𝑏 (number of food banks), we can consider this 𝑂𝑂(𝑑𝑑𝑑𝑑).

We want to show that 𝑃𝑃 = (𝐸𝐸,𝒮𝒮) generated by Algorithm 1 is a distribution plan.
Lemma 7: After executing Algorithm 1, 𝐷𝐷(𝑖𝑖) ≥ 0 for all 𝑖𝑖 ∈ [𝑑𝑑], and 𝐵𝐵(𝑗𝑗) ≥ 0 for all 𝑗𝑗 ∈ [𝑏𝑏].

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 4

Proof: The only time the value of 𝐷𝐷 changes is in line 8, so we only need to examine this line. 𝑆𝑆(𝑒𝑒) is defined
as 𝑆𝑆(𝑒𝑒) = min (𝐷𝐷(𝑖𝑖),𝐵𝐵(𝑗𝑗)) ≤ 𝐷𝐷(𝑖𝑖), meaning that 𝐷𝐷(𝑖𝑖) − 𝒮𝒮(𝑒𝑒) ≥ 0. Hence, getting a 𝐷𝐷(𝑖𝑖) ≱ 0 cannot hap-
pen in line 8, and so cannot happen at all. The same argument applies for 𝐵𝐵. ∎

Proposition 8: Algorithm 1 produces a distribution plan.
Proof: For 𝑖𝑖 ∈ [𝑑𝑑], 𝐷𝐷(𝑖𝑖) is given by 𝐷𝐷(𝑖𝑖) − ∑ 𝒮𝒮(𝑖𝑖, 𝑗𝑗)1≤𝑗𝑗≤𝑏𝑏

(𝑖𝑖,𝑗𝑗)∈𝐸𝐸
. Lemma 7 gives us that this is ≥ 0, so that

� 𝒮𝒮(𝑖𝑖, 𝑗𝑗)
1≤𝑗𝑗≤𝑏𝑏
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

≤ 𝒟𝒟(𝑖𝑖) 𝑖𝑖 ∈ [𝑑𝑑].

Similarly,

� 𝒮𝒮(𝑖𝑖, 𝑗𝑗)
1≤𝑖𝑖≤𝑑𝑑
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

≤ ℬ(𝑗𝑗) 𝑗𝑗 ∈ [𝑏𝑏].

∎

Thus, Algorithm 1 produces a distribution plan. We can also find full distribution plans.
Proposition 9: In the case that ℰis a permutation of [𝑑𝑑] × [𝑏𝑏], Algorithm 1 produces a full distribu-

tion plan.
Proof: Suppose that (𝐸𝐸,𝒮𝒮) is not a full distribution plan, and take 𝑖𝑖, 𝑗𝑗 with min (𝐷𝐷(𝑖𝑖),𝐵𝐵(𝑗𝑗)) ≠ 0 by

Corollary 6. Since ℰ is a permutation of [𝑑𝑑] × [𝑏𝑏], (𝑖𝑖, 𝑗𝑗) ∈ ℰ, and so 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗) for some iteration. Let 𝐷𝐷′(𝑖𝑖)
and 𝐵𝐵′(𝑗𝑗) be the values of 𝐷𝐷(𝑖𝑖)and 𝐵𝐵(𝑗𝑗) right after the iteration 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗), and 𝐷𝐷′′(𝑖𝑖) and 𝐵𝐵′′(𝑗𝑗) be the values
right before the iteration 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗). We have that 𝐷𝐷′(𝑖𝑖) = 𝐷𝐷′′(𝑖𝑖) − min (𝐷𝐷′′(𝑖𝑖),𝐵𝐵′′(𝑗𝑗)) and that 𝐵𝐵′(𝑗𝑗) =
 𝐵𝐵′′(𝑗𝑗) − min (𝐷𝐷′′(𝑖𝑖),𝐵𝐵′′(𝑗𝑗)). Thus, for each 𝑥𝑥, at least one of 𝐷𝐷′(𝑖𝑖)𝑥𝑥 and 𝐵𝐵′(𝑗𝑗)𝑥𝑥is 0, so that
min�𝐷𝐷′(𝑖𝑖),𝐵𝐵′(𝑗𝑗)� = 0 (running Algorithm 1 on all edges in ℰ before 𝑒𝑒 shows that 𝐷𝐷′′(𝑖𝑖),𝐵𝐵′′(𝑗𝑗) ≥ 0 so that
𝐷𝐷′(𝑖𝑖),𝐵𝐵′(𝑗𝑗) ≥ 0).. However, 𝐷𝐷′(𝑖𝑖) ≥ 𝐷𝐷(𝑖𝑖) and 𝐵𝐵′(𝑗𝑗) ≥ 𝐵𝐵(𝑗𝑗), so that min�𝐷𝐷′(𝑖𝑖),𝐵𝐵′(𝑗𝑗)� ≥
min (𝐷𝐷(𝑖𝑖),𝐵𝐵(𝑗𝑗)) ≠ 0, a contradiction. ∎

The following algorithm will check if an edge 𝑒𝑒 can be removed from a set of edges ℰ while still
providing a full distribution plan.

Algorithm 2. Algorithm module to check if an edge can be removed

The costliest step of Algorithm 2 is the call to Algorithm 1. Thus, this is also 𝑂𝑂(𝑑𝑑𝑑𝑑𝑑𝑑). Since 𝑡𝑡 (the
number of types of food) is not expected to grow as much as 𝑑𝑑 (number of donors) and 𝑏𝑏 (number of food
banks), we can consider this 𝑂𝑂(𝑑𝑑𝑑𝑑).

Algorithms for Optimal Cost

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 5

We will try five algorithms. Four of these algorithms will prioritize edges based on some heuristic, and one of
them will be a complete brute-force algorithm. The four heuristic algorithms are devised based on whether
they start with an empty set of edges or all edges, and what heuristic they use to pick an edge to add to the set,
or remove an edge from the set. This is demonstrated in the following table:

Table 1. Description of four heuristic algorithms: Take-Cheap, Take-Expensive-Delta, Avoid-Expensive, and
Avoid-Cheap-Delta
 Algorithm Converging Method

Pick Remove
Start with an empty set,
Add one edge at a time until all food is
distributed.

Start with all edges,
Remove edges from the set one at a time until
no more can be removed.

1st order Take Cheap
Pick cheapest of the remaining edges

Avoid Expensive
Remove costliest of remaining edges

2nd order Take Expensive Delta
Pick the one with the most gap with next
cheapest

Avoid Cheap Delta
Remove the one with least gap with next
costliest

Take-Cheap
In this algorithm, we order the edges between donors and banks from least to most expensive. Then we send
all food across each edge in order, as long as there is food left to send. Note that since there could be various
different types of foods, picking an edge does not mean that all the food available at one donor (or needed by
one bank) will be transported by that edge. Rather, for each food type, the minimum of the available amount
of food and the needed amount of food will be transported.

Algorithm 3. The Take-Cheap Algorithm

This algorithm iterates over each edge, as well as doing computations for each food type, and so is
𝑂𝑂(𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑑𝑑)). Since 𝑡𝑡 (the number of types of food) is not expected to grow as much as 𝑑𝑑 (number of
donors) and 𝑏𝑏 (number of food banks), we can consider this 𝑂𝑂(𝑑𝑑𝑑𝑑 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑑𝑑)).

Take-Expensive-Delta
There are some cases where picking the cheapest edge may not be the most optimal strategy. Consider the
following (2,2,1)-distribution problem:

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 6

Figure 2. Example for the Take-Expensive-Delta Algorithm

The Take-Cheap algorithm will pick edge of cost 1, followed by that of cost 100, giving a total cost
of 101. However, picking the edges of cost 2 will make a better plan with total cost of 4. The core reason for
this is that locally choosing the cheapest edge can be globally costly if the remaining edge choices are much
more expensive. We try to approach this by considering an ordering on the delta between different costs. For
the example in Figure 2, the costs in ascending order are {1,2,2,100} and the differences are{1,0,98,−1} (we
define the last difference to be −1 because there is nothing worse than it). Sorting the edges in descending
order of their difference with the next edge gives us {2,1,2,100}, and picking edges in this order gives us the
solution {2,2}, which is optimal in this case.

The intuitive way of thinking about this is that we pick the edge that, if not picked, will have the
most consequence down the line because the next edge is going to be a lot more expensive.

In this algorithm, we order the edges between donors and banks from least to most expensive, and
calculate the difference in cost between each edge and the following edge. Then order the edges from highest
difference to lowest difference, and send all food across each edge in order if there is still food left to send.

Algorithm 4. The Take-Expensive-Delta Algorithm

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 7

This algorithm also iterates over each edge, as well as doing computations for each food type, and so

is 𝑂𝑂(𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑑𝑑)). Since 𝑡𝑡 (the number of types of food) is not expected to grow as much as 𝑑𝑑 (number
of donors) and 𝑏𝑏 (number of food banks), we can consider this 𝑂𝑂(𝑑𝑑𝑑𝑑 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑑𝑑)).

Avoid-Expensive
This algorithm takes the opposite of Take-Cheap approach and removes the edges one by one until no more
edges can be removed. We order the edges between donors and banks from most to least expensive, and then
remove each edge in order, as long as it is possible to do so and still send all food across.

Algorithm 5. The Avoid-Expensive Algorithm

This algorithm is 𝑂𝑂(𝑑𝑑2𝑏𝑏2𝑡𝑡). Since 𝑡𝑡 (the number of types of food) is not expected to grow as much
as 𝑑𝑑 (number of donors) and 𝑏𝑏 (number of food banks), we can consider this 𝑂𝑂(𝑑𝑑2𝑏𝑏2).

Avoid-Cheap-Delta
Following the same intuition as Take-Expensive-Delta, we try Algorithm 5 but instead of removing the costli-
est edge, we remove the edge that is the most close in cost to the next edge. This edge, if not avoided, will
have the most consequence down the line because the next edge is cheaper and can likely lead to a satisfacto-
ry plan as well. We order the edges between donors and banks from least to most expensive, and calculate the
difference in cost between each edge and the following edge. Then, we order the edges from lowest difference
to highest difference, and remove each edge in order, as long as it is possible to do so and still send all food
across.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 8

Algorithm 6. The Avoid-Cheap-Delta Algorithm

We find that this is 𝑂𝑂(𝑑𝑑2𝑏𝑏2𝑡𝑡) Since 𝑡𝑡 (the number of types of food) is not expected to grow as much
as 𝑑𝑑 (number of donors) and 𝑏𝑏 (number of food banks), we can consider this 𝑂𝑂(𝑑𝑑2𝑏𝑏2).

Brute-Force
In this algorithm, we try all possible combinations of transportation, calculate the cost of each, and choose the
combination with the minimum cost. This will ensure that the best combination is found.

Algorithm 7. The Brute Force Algorithm

This is 𝑂𝑂(𝑑𝑑𝑑𝑑𝑑𝑑 ⋅ (𝑑𝑑𝑑𝑑)!). Since 𝑡𝑡 (the number of types of food) is not expected to grow as much as 𝑑𝑑
(number of donors) and 𝑏𝑏 (number of food banks), we can consider this 𝑂𝑂(𝑑𝑑𝑑𝑑 ∙ (𝑑𝑑𝑑𝑑)!)

We summarize the order of various algorithms in Table 2 below.

Table 2. Comparison of all algorithms for d=5, b=3.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 9

Algorithm Take Cheap Take Expensive
Delta

Avoid Expen-
sive

Avoid Cheap
Delta

Brute Force

Algorithm Order 𝑂𝑂(𝑑𝑑𝑑𝑑 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑑𝑑)) 𝑂𝑂(𝑑𝑑𝑑𝑑
∙ log (𝑑𝑑𝑑𝑑))

𝑂𝑂(𝑑𝑑2𝑏𝑏2) 𝑂𝑂(𝑑𝑑2𝑏𝑏2) 𝑂𝑂(𝑑𝑑𝑑𝑑 ∙ (𝑑𝑑𝑑𝑑)!)

Methods and Experiment Setup

A simulator is used to generate random integers for five inputs within a max range defined in Table 3. The
food quantity for each food type is distributed among donors and banks by randomly choosing one do-
nor/bank to increase the supply/demand repeatedly. We generated 50 inputs, and each experiment was repeat-
ed 10 times, and the average was taken.

Table 3. Integer range of different generated variables

Variable d b t D, B cij
Description 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
Range 1-100 1-100 1-10 1-10,000 1-100

Each experiment outputs:
• Runtime in nanoseconds
• Total cost of the plan
• Number of edges selected in the plan

We use the above output to generate the following secondary outputs:
• Runtime in milliseconds/seconds
• Plan cost as a percentage of max cost
• Number of selected edges as a percentage of total number of edges

Here is a sample of what the input and output fields look like:

Figure 3. Sample Data

All experiments were run on HP laptop 2.90 GHz core 11th Gen Intel Core i7-1195G7 with32 GB of
RAM using C++.

Results & Analysis

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 10

Comparison of Runtime and Plan Cost
We started with 2 experiments for 𝑑𝑑 = 3, 𝑏𝑏 = 3 and 𝑑𝑑 = 5, 𝑏𝑏 = 3. These experiments made clear that it is not
feasible to run any more experiments using Brute-Force Algorithm, which runs through all permutations and
checks them, making it exponential in computational complexity. Thus, it could only run to completion for a
very small dataset (d=3, b=3). As shown in Table 4 and Table 5, the other algorithms complete much faster
and also generate reasonable plans.

Table 4. Comparison of all algorithms for d=3, b=3.
Input Data Size: d=3, b= 3, t=3
Algorithm Take Cheap Take Expen-

sive Delta
Avoid Expen-
sive

Avoid Cheap
Delta

Brute Force

Cost of plan 290 264 375 302 225
Number of edges 5 6 5 5 5
Runtime (ns) 25,700 27,300 2,791,200 2,690,800 67,613,496,400

 The Take-Cheap and Take-Expensive-Delta algorithms finish in milliseconds, Avoid-Expensive and
Avoid-Cheap-Delta finish in seconds. The Brute Force Algorithm takes hours but generates the best plan. The
second best plan (Take-Expensive-Delta) is 17.33% worse than the best plan.

Table 5. Comparison of all algorithms for d=5, b=3.

Input Data Size: d=5, b= 3, t=3
Algorithm Take Cheap Take Expen-

sive Delta
Avoid Expen-

sive
Avoid Cheap

Delta
Brute Force

Cost of plan 628 580 461 573 542
Number of edges 12 11 10 10 9
Runtime (ns) 61,200 45,100 5,940,500 4,827,800 >3 days

 The Take-Cheap and Take-Expensive-Delta algorithms finish in milliseconds, Avoid-Expensive and
Avoid-Cheap-Delta finish in seconds. The Brute Force Algorithm did not finish in 3 days. By the time it was
terminated (in 3 days), it had not found the optimal plan (we know that there is at least one better plan availa-
ble: the plan generated by Avoid-Expensive algorithm).

As Brute-Force algorithm would not have run in a reasonable time for it to be practical, we decided
to omit that from further experiments. The next 3 subsections focus on the four heuristic algorithms and find
the best one.

Comparing Heuristic Algorithms

Each algorithm was run 10 times on 50 randomly generated data points. The runtime was slightly different
and was averaged for the purpose of analysis in this section.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 11

Figure 4. Cost of the plan generated by various algorithms for different number of edges in the graph.

The graph in Figure 4 shows the cost that each algorithm generates. It is evident that the basic greedy
algorithm (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒) generates the best possible plan consistently. It also shows that the algorithms that
reverse greedy (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) produce a much worse plans than the other two
algorithms and are probably not worth considering more.

Figure 5. Cost of the plan generated by various algorithms as a percentage of maximum cost (sum of all edg-
es)

The graph in Figure 5 shows the same data as the previous one, except that the cost is expressed as
percentage of the total possible cost (i.e. if all the 𝑑𝑑 × 𝑏𝑏 edges were used to transport the food). This analysis
is interesting because food banks and donors operate blindly today, without any knowledge of what is availa-
ble at a donor and what is needed at a bank. Thus, they might be incurring the total possible cost. If we com-
pare the different algorithms, the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒 algorithm does the best again. Another interesting insight from
this graph is that all algorithms seem to converge as the number of donors and banks get large.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 12

Figure 6. Number of edges selected by various algorithms as a percentage of maximum cost (sum of all edg-
es)

The graph in Figure 6 shows the edges selected by a plan as a percentage of total number of edges
(𝑑𝑑 𝑋𝑋 𝑏𝑏). Surprisingly, all algorithms select about the same number of edges. Since the cost of these algo-
rithms is different, as shown by last two graphs, it means that the algorithms like 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒 do a better job
of selecting which edges to select.

Figure 7. Runtime comparison for various algorithms

The graph in Figure 7 compares the runtime of various algorithms at log scale. The 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 algo-
rithms are much more expensive. This is because the part of the algorithm that checks if edges can be re-
moved makes it 𝑂𝑂(𝑑𝑑2𝑏𝑏2), while the other algorithms are 𝑂𝑂(𝑑𝑑𝑑𝑑 ∙ log (𝑑𝑑𝑑𝑑)).

Further Analysis of “Take Cheap”

The previous section conclusively proves that the basic greedy 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒 algorithm outperforms other
algorithms both in runtime and finding the best possible plan. We do some further analysis on this algorithm
to see how it would behave in the local area.

Based on Google Maps search results, our local urban area of 3 neighboring cities has about 110
grocery stores and 12 food banks. If we assume about 30% of the grocery stores participate in surplus food
donation, a reasonable upper bound for number of donors would be 33, and number of banks would be 12.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 13

We run two more experiments to analyze the “Take Cheap” algorithm on a small number of donors and
banks.

Figure 8. Take Cheap - studying convergence on small data by donors

The graph in Figure 8 plots the average (for number of banks 1 − 12) of percent of selected edges
for different number of donors. It shows that starting at 𝑑𝑑 = 4, 50% or less edges are selected, making it
meaningful to use the algorithm to determine a plan.

Figure 9. Take Cheap - studying convergence on small data by banks

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 14

The graph in Figure 9 plots the average (for number of donors 1 − 33) of percent of selected edges

for different number of donors. It shows that starting at 𝑏𝑏 = 3, 50% or less edges are selected, making it
meaningful to use the algorithm to determine a plan.

Based on this data, it seems that once 𝑑𝑑 or 𝑏𝑏 gets above a fairly small threshold (< 5), under half the
of the edges tend to be used.

Detailed Runtime Analysis of Heuristic Algorithms

Figure 10. Runtime of Take − Cheap and Take − Expensiv − Delta algorithms - all under 0.0001 minutes

Figure 11. Runtime of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 algorithms - all under 1.1 minutes

For d. b ≤ 1000, all 4 heuristic algorithms (Take − Cheap, Take − Expensive − Delta, Avoid − Expensive,
and Avoid − Cheap − Delta) run in a very reasonable time (under 1.1 minutes).

Future Work

The closest existing graph problem that is similar to the one presented in this paper is Fixed Charge Transpor-
tation, which is proven to be NP-Hard [Hochbaum et al.]. Researchers have tried heuristics and linear pro-
gramming solutions for this problem [Kim et al.] [Vyve] [KimHJ et al.]. Our problem is fundamentally differ-
ent from Fixed Charge Transportation problem as it takes into account various types of food, which can inde-
pendently vary in quantity for each transport along an edge. We can also try to formulate this problem as a
linear programming problem or a mixed-integer linear programming problem and see if it can find better
solutions in the same amount of time. We can additionally try a randomized algorithm with probabilities
based on costs to try and find an algorithm that does better than Take-Cheap.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 15

Conclusion

We found a new mathematical formulation of the seemingly well-known problem of distributing food from
donors to food banks, which can be used as a basis to design further algorithms for optimal distribution. Fur-
ther, the same formulation can be used in any problem in which multiple quantities need to be distributed
from sources to sinks while minimizing a fixed-edge cost.

The purpose of this paper was to find an algorithm that generates a plan to distribute all food, mini-
mizing the transportation cost. Our result provided useful insights into the various algorithms tried. Trying
every possible solution in a brute-force manner is infeasible, as it takes days. Our heuristic algorithms all run
in a reasonable amount of time, even for large number of donors and banks. They also generate reasonably
cheap plans, with the best one being the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒 algorithm. This algorithm tends to provide cheaper
plans than our other three algorithms.

In the real world, this can be applied to a local area where food banks can input their daily needs
based on what they see in the local community. Food donors can put in information about excess food at the
end of each day, with which the algorithm can quickly generate a plan and communicate to the food banks for
pickup from various donors.

Acknowledgments

I would like to thank volunteers at Tri City Food Bank (Fremont, CA) and employees from Safeway (Newark,
CA), Sprouts (Newark, CA), Whole Foods (Fremont, CA), Smart and Final (Fremont, CA), Raley’s
(Fremont, CA), Trader Joe’s (Fremont, CA) for taking the time to speak with me about how food is distribut-
ed in the local area.

References

[Asratian et al.] Asratian, A.S., Denley, T.M.J., &Haggkvist, R. [2008] Bipartite Graphs and Their
Applications

 [Chiles et al] Chiles, C.R., &Dau, M.T (2005). An analysis of current supply chain best practices in the retail
industry with case studies of Wal-Mart and Amazon.com. http://hdl.handle.net/1721.1/33314

[DAILYBOWL] Daily Bowl https://dailybowl.org

 [Gupta et al.] Gupta, A., Yadav, R., Nair, A., Chakraborty, Abhijnan.,Ranu, S.,Bagchi, A. (2022). Fairfoody:
Bringing in fairness in food delivery. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 11900-11907. https://doi.org/10.48550/arXiv.2203.08849

[Hochbaum et al.] Hochbaum, D.S., & Segev, A. [1989] Analysis of a flow problem with fixed charges. In
Network, An International Journal Volume 19, Issue 3. https://doi.org/10.1002/net.3230190304

 [Jain et al.] Jain, P., Goodrich, M.A. (2022). Processes for a Colony Solving the Best-of-N Problem Using
a Bipartite Graph Representation. In: Matsuno, F., Azuma, Si., Yamamoto, M. (eds) Distributed Autonomous
Robotic Systems. DARS 2021. Springer Proceedings in Advanced Robotics, vol 22. Springer,
Cham.https://doi.org/10.1007/978-3-030-92790-5_29

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 16

http://hdl.handle.net/1721.1/33314
https://dailybowl.org/
https://doi.org/10.48550/arXiv.2203.08849
https://doi.org/10.1002/net.3230190304
https://doi.org/10.1007/978-3-030-92790-5_29

 [Joshi et al.] Joshi, M., Singh, A., Ranu, S, Bagchi, A., Karia, P. & Kala, P. (2021). Batching and matching
for food delivery in dynamic road networks. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pages 2099-2104.https://doi.org/10.48550/arXiv.2008.12905

[Kim et al.] Kim, D., &Pardalos, P.M.,A solution approach to the fixed charge network flow problem using a
dynamic slope scaling procedure[1999]. In Operations Research Letters,Volume 24, Issue 4,Pages 195-
203,ISSN 0167-6377,https://doi.org/10.1016/S0167-6377(99)00004-8

[KimHJ et al.] Kim, HJ., &Hooker, J.N. Solving Fixed-Charge Network Flow Problems with a Hybrid
Optimization and Constraint Programming Approach. In Annals of Operations Research 115, 95–124
(2002).https://doi.org/10.1023/A:1021145103592

 [Michelson et al.] Michelson, H., Boucher, S., Cheng, X., Huang, J., & Jia, X. (2018). Connecting
supermarkets and farms: The role of intermediaries in Walmart China's fresh produce supply chains. In
Renewable Agriculture and Food Systems, 33(1), 47-59. https://doi.org/10.1017/S174217051600051X

 [REFED] ReFED Insights Engine https://insights-engine.refed.org

[Vassilev et al.] Vassilev, T.S., Huntington, L. Algorithms for Matchings in Graphs. In Algorithms Research ,
Vol. 1 No. 4, 2012, pp. 20-30 (2012).

[Vyve] Van Vyve, M. (2011). Fixed-Charge Transportation on a Path: Linear Programming Formulations. In
Günlük, O., Woeginger, G.J. (eds) Integer Programming and Combinatoral Optimization. IPCO 2011.
Lecture Notes in Computer Science, vol 6655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-
642-20807-2_33

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 17

https://doi.org/10.48550/arXiv.2008.12905
https://doi.org/10.1016/S0167-6377(99)00004-8
https://doi.org/10.1023/A:1021145103592
https://doi.org/10.1017/S174217051600051X
https://insights-engine.refed.org/
https://doi.org/10.1007/978-3-642-20807-2_33
https://doi.org/10.1007/978-3-642-20807-2_33

