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ABSTRACT 

Web services for storing, annotating, and sharing sports videos by high-school athletic teams have become more 
prevalent in recent years. However, most services lack the ability for coaches to automatically tag film, leading 
to many hours of manual annotation. For American football videos, coaches need to label formations, plays, 
and field positions in order to extract insights and create strategic game plans. This paper presents an end-to-
end machine learning pipeline for automatically labeling American football offensive formations in videos. The 
pipeline includes pre-processing of videos, image classification, and a novel inference approach. The study 
compares a custom CNN model with pre-trained image classifier models using transfer learning. Specifically, 
CNN-based architectures (MobileNet, Inception, EfficientNet, etc.) and a transformer-based Vision Trans-
former (ViT) are compared. All models are trained on ~1400 images with the three most popular formation 
labels extracted from video clips of high-school football team games. The results show that several models, 
including the custom CNN model, achieved greater than 90% classification accuracy on the test dataset. The 
inference is performed by sampling multiple frames from a video clip, passing them through a trained image 
classifier, and taking a majority vote on the classification results to determine the final outcome. Our study 
found that using a sampling rate of 0.5 seconds, starting at 1 second, and taking five frames yields the highest 
inference accuracy of 95.4% using a trained customized CNN model. This system can assist all levels of football 
coaches in the analysis of game footage and formation identification. 

Introduction 

High school football coaches often analyze extensive collections of game film to discover patterns in opponent 
play and create a corresponding strategic decision. However, before these insights can be found, coaches must 
annotate hours of play clips to provide context for these patterns. During annotation, it is natural for humans to 
commit errors because of the repetitiveness and sheer size of video data. 

In football, there are two main types of plays: offense and defense. In this paper, we focus on one 
crucial feature of every offensive/defensive play: offensive formation. A formation is the configuration that the 
offensive players line up in before a play starts. The type of formation usually determines the type of plays the 
offense will run and also how the defensive team will align against the offense. Detection of teams’ offensive 
formation tendencies enables further analysis in play detection and strategic recommendations.  

Previous papers have done work on classifying offensive football formations; however, these studies 
do not achieve a high enough accuracy to replace manual annotation and mostly use traditional machine-learn-
ing techniques instead of deep neural network-based approaches. One paper in this area is (Ajmeri & Shah, 
2018), in which researchers used five models (Classification and Regression Trees, Naive Bayes, SVM, K 
Neighbors, and Logistic Regressions) to classify the quarterback position and formation. The researchers’ best-
performing model used classification and regression trees to classify 29 total formations with a 72.3% accuracy 
and quarterback position with an 86.5% accuracy. Another paper (Atmosukarto et al., 2013) approaches the 
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problem using an SVM classifier to classify three top-level formations and eight second-level labels. They 
classify their top-level labels with a 67.1% accuracy and achieve an overall classification accuracy of 31.1% 
for all eight classes using a multi-class classifier. This approach requires manual feature extraction and heavy 
pre-processing, which is tedious and not scalable. Ultimately, both approaches do not utilize SOTA techniques, 
such as CNNs (Li et al., 2022) or Transformers (Vaswani et al., 2017), which have demonstrated significantly 
higher accuracy on image/video classification tasks.  

CNNs (Convolutional Neural Networks) are deep learning neural networks that are particularly effec-
tive at image classification tasks. They have become the dominant technology in this field due to their ability 
to learn hierarchical features from input data, making them highly effective at identifying patterns and features 
within images. Additionally, CNNs can learn from large amounts of data, which is essential for achieving high 
levels of accuracy in image classification tasks. A transformer is another breakthrough neural network archi-
tecture introduced in 2017 and has since dominated the field of natural language processing (NLP). It is based 
on the concept of self-attention, which allows the model to focus on different parts of the input sequence and 
weigh their importance. This allows transformers to achieve parallelization within the model, making it highly 
efficient at processing long data sequences. It has also been applied to other domains beyond NLP, such as 
computer vision, with promising results. These advancements can certainly improve sports analytics, including 
the ability to automatically label football formations more accurately.  

In this study, we designed a three-stage machine learning pipeline including video clip pre-processing, 
image classification model training, and a novel inference approach. In addition to building a customized CNN-
based image classifier and training it from scratch, we also explored a transfer learning technique that uses a 
pre-trained image classification model as a feature extractor and trains the appended final layers on top. Ten-
sorFlow hub includes a rich set of pre-trained classifiers as well as corresponding feature extractors. We exam-
ined the most popular CNN-based architectures such as MobileNet (Howard et al., 2017), Inception (Szegedy 
et al., 2015), ResNet (He et al. 2016), and EfficientNet (Tan et al., 2019). We also compared the transformer-
based ViT (Dosovitskiy et al., 2020) model with others in terms of the total number of model parameters, 
training time using GPU, and test accuracy. While the customized CNN model achieves 94% accuracy on the 
test dataset, EfficientNet gets the highest accuracy of 96% followed by MobileNet at 93%. The ViT model’s 
89% accuracy may be due to insufficient training data. The inference is performed by taking multiple frames, 
sampled at a fixed rate of 0.5 seconds, from a video clip, feeding them into a trained classifier, and using a 
majority vote to determine the outcome. Our study shows that properly selecting the number of frames and the 
time window for sampling can improve performance compared to using only one frame from the video clip.  
 

Methods 
 
Datasets 
 
As with any supervised machine learning task, acquiring high-quality labeled data is key to success. There were 
few ways previous studies were able to compile a dataset. In one study, the authors collected formation images 
from the Madden NFL 2020 PC game (Newman, 2022) and another study (Atmosukarto et al., 2013) complied 
their own dataset of 815 distinct videos combined with 51 formation images from the Oregon State University 
Digital Scout Project (Hess, Fern, & Mortensen, 2007).  
 Football formations are defined at the start of each play and the plays are captured in separate video 
clips. In our study, we started with three popular formations with the greatest number of video clips that are 
downloaded from the local football team video repository, including the school district football games for the 
past few years. Table 1 lists the number of video clips for each of the three formations. Those video clips have 
been analyzed and properly labeled through the Hudl Assist service. Figure 1 shows some images sampled from 
video clips for those three formations (Trio, Empty, and Doubles).  
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Table 1. Three Football Formations and Corresponding Number of Video Clips. 

Formations Trio Doubles Empty 
Number of Videos 240 203 56 

 
 
 
 
Machine Learning Pipeline 
 
Figure 2 shows the proposed pipelines based on deep-learning neural network architectures. The pipeline in-
cludes video pre-processing, training, and inference. 
 

 
Figure 1. Football Formation Images Sampled from Video Clips 
 

 
Figure 2. Machine Learning Pipeline for Football Formations Classification 
 
Video Pre-Processing 
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For each video clip, four frames are sampled from 1s to 3s at a half-second sampling rate to capture the start of 
each play. Every frame is resized to 224x224 in order to match the input format of the downstream image 
classification model. A Python function using OpenCV libraries is written to implement the video to frame 
sampling and resizing.  

The generated frames and the corresponding formation label are put under the corresponding directory. 
The TensorFlow utility function (tf.keras.utils.image_dataset_from_directory) is used to create the dataset that 
can be efficiently used for training the models. The dataset is partitioned into batches where each batch includes 
32 randomly sampled images. It is standard to split the data into train, validation, and test where validation data 
can be used to fine-tune hyperparameters such as learning rate, model architectures, etc while the test dataset is 
reserved to report the final accuracy at the end. We split the data into three datasets using a 70/10/20 ratio.     
Training Process 
 
The training stage starts with building the image classification models using TensorFlow. Next, we define the 
loss function using cross entropy for classification. We use the popular Adam optimizer to train the model for 
40 epochs. Plotting the loss and accuracy curve allows us to spot whether the selected model overfits. Several 
techniques such as dropout, data augmentation, and regularization can be deployed to counter the overfit if 
needed. Those architecture selections and modifications are done iteratively using the validation dataset. In the 
end, the trained model is used on the test dataset to report classification accuracy.   
 
Inference 
 
At deployment, the new video clip goes through the video processing to sample N frames every half second 
starting at T seconds. The final formation prediction is the majority vote of N model predictions for each frame 
where N and T are hyperparameters. This novel idea makes prediction robust to a timing shift of video clip cuts. 
For example, Figure 3 shows the model prediction and how the majority vote correctly labels the video as 
Doubles formation even though the first and fifth frames were wrongly predicted as “Trio”. In this case, N is 
set to eight and T is set to 0 seconds.  
 

 
Figure 3. Example Inference for Video Clip. 
 
Image Classification Models 
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Figure 4. Customized CNN Model.  
We first built a customized CNN classifier as shown in Figure 4. After multiplying the input image pixel by 
1/255 to scale the values between 0 and 1, three 2D convolutional layers followed by max pooling layers are 
stacked. Finally, two dense layers are attached on top to output 3 numbers corresponding to three target classes. 
Dropout layers are inserted in between to avoid overfitting.  

Transfer learning is a machine learning technique where a model trained on one task is used as a 
starting point for a model on a second, related task. In the context of Convolutional Neural Networks (CNNs), 
transfer learning is the process of using a pre-trained CNN as a starting point for training a new CNN on a 
different dataset. This is done by taking a pre-trained CNN, such as one trained on a large dataset like ImageNet, 
and using its learned feature maps as the starting point for training a new CNN on a different dataset. The new 
CNN can then be fine-tuned on the new dataset, allowing it to learn task-specific features while still leveraging 
the knowledge gained from the pre-trained model. This can significantly reduce the amount of data and com-
putational resources needed to train a high-performing CNN on a new task. 

TensorFlow Hub is a repository of trained machine learning models that can either be directly deployed 
or fine-tuned for customized tasks. There are hundreds of image classification models trained on various large 
datasets (e.g. Imagenet). Corresponding to each model, a feature extractor is also provided. When using a pre-
trained feature extractor for transfer learning, the initial layers of the pre-trained CNN are used as a fixed feature 
extractor, and the final layers are replaced with new layers that are trained on the new dataset for the new task. 
This allows the model to leverage the knowledge gained from the pre-trained model, while still being able to 
adapt to the specific characteristics of the new dataset. In Figure 5, the highlighted layer indicates the instanti-
ation of pre-trained feature extractors from Tensorflow Hub. It outputs a feature map of length 1280 in this 
case. Similar to the customized CNN model built earlier, two dense layers with one dropout layer in between 
are attached and will be trained to our own data for three formations identification.  
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Among hundreds of feature extractors available in TensorFlow Hub, we picked the following few 
representative architectures for comparison: 

MobileNet: is a family of mobile-friendly CNN architectures that are designed to be light-weight, 
efficient, and perform well on mobile devices with limited computational resources. MobileNet models are built 
using depth-wise separable convolutions, which are a form of convolution that applies a single filter to each 
input channel, as opposed to the standard convolution that applies a different filter to each input channel. This 
allows for a reduction in the number of parameters and computation required, while still preserving the ability 
to extract features from the input. 

Inception: The key feature of the Inception model is the use of multiple parallel convolutional filters 
of different sizes, which are applied to the input image at the same time. This allows the model to learn features 
at multiple scales, which can be useful for recognizing objects in images with varying sizes and orientations. 

EfficientNet: The main goal of the EfficientNet architecture is to improve the efficiency of CNN mod-
els by automatically scaling up their capacity (i.e., the number of filters and layers) while also scaling up the 
input image resolution. The architecture also uses a compound scaling method that scales up the depth, width, 
and resolution of the model in a more optimal way. The EfficientNet architecture achieved state-of-the-art per-
formance on image classification tasks while being more efficient in terms of computation and the number of 
parameters compared to previous models such as Inception and MobileNet. 

 
Figure 5. Transfer Learning Model using pre-trained feature extractor.  

ResNet-50: The main idea behind the ResNet architecture is to use "shortcut connections" or "skip 
connections" that bypass one or more layers and allow the information to flow through the network more di-
rectly. This allows the network to learn the residual mapping, which can be easier for the network to learn 
compared to the original mapping. This idea of residual learning allows the network to learn more complex 
functions and improve the accuracy of the model. The original ResNet architecture had 152 layers and has since 
been extended and improved upon, with deeper and wider versions such as ResNet-50. 
ViT (Vision Transformer): ViT (Vision Transformer) is a variant of the transformer architecture, which was 
originally designed for natural language processing tasks such as language translation. The main idea behind 
the ViT architecture is to treat images as a sequence of patches rather than a grid of pixels, and then apply 
transformer-based models to process this sequence of patches. The input image is divided into a fixed-size grid 
of non-overlapping patches and each patch is then flattened and fed into a transformer-based model. The trans-
former model learns the representations of the patches and the relationships between them. 
 Table 2 compares the model parameters of the customized CNN model and selected transfer learning 
models. While the custom CNN model has around 6.4 million parameters and all are trainable, the trainable 
parameters for the transfer learning models range from 794K to 4.2M. As mentioned earlier, MobileNet is 
lightweight with only 2.2 million pre-trained parameters compared to other models that all have more than 20 
million pre-trained weights.  
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Table 2. Image Classification Models Parameter Comparison. 
 Custom CNN MobileNet 

(v2) 
Inception 

(v3) 
EfficientNet 

(v2) 
Resnet50 ViT 

Total Params 6446627 4887619 26005283 22960995 27702851 22460291 
Trainable Params 6446627 2629635 4202499 2629635 4202499 794627 
Non-trainable params 0 2257984 21802784 20331360 23500352 21665664 

 

Results 
 
Model Training 
 
The Adam optimizer is used to train all the models for 40 epochs. The customized CNN model uses the default 
learning rate of 0.001 while all other transfer learning models use a smaller learning rate of 0.0005 due to the 
majority of the weights of the model being pre-trained.  

Table 3 compares the training time per epoch using GPU on Google Colab. Both the customized CNN 
model and MobileNet only take 2 seconds due to their limited model capacity (6 to 7 million total parameters). 
Among all other models with a similar number of parameters (greater than 20 million total parameters), Resnet-
50 is the slowest and Inception only takes 4 seconds to train an epoch even though it has ~26 million total 
parameters.  
 
Table 3. Training Time Comparison. 

 Custom CNN MobileNet 
(v2) 

Inception 
(v3) 

EfficientNet 
(v2) 

Resnet-50 ViT 

GPU Training time (sec-
onds per Epoch) 

2 2 4 7 11 6 

 
Training and Validation Accuracy/Loss Curve 
 
Figure 6 shows both accuracy and loss curve for training and validation over the 40 epochs. Even though drop-
out is used in all the models to mitigate overfitting, validation accuracy flattened at various levels while training 
accuracy reaches 100% (except for Resnet-50) indicating some sort of overfitting that may be due to insufficient 
training data. One area for future improvement is to collect more video clips for each formation.  
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Figure 6. Model Training and Validation Accuracy/Loss Curve. A - Custom CNN; B – MobileNet; C – Incep-
tion; D – EfficientNet; E – ResNet50; F – Vision Transformer (ViT) 
 
Test Accuracy 
 
For each model, we use the reserved test dataset to report classification results including accuracy, precision, 
recall, and f1-scores. Figure 7 shows the classification report for the customized CNN model with overall 94% 
accuracy on the test dataset.  
 

 
Figure 7. Custom CNN Classification Report on Test Dataset 
 

Figure 8 shows the comparison of model test accuracy. EfficientNet reaches the highest accuracy of 
96% followed by customized CNN and MobileNet which achieve 94% and 93% accuracy respectively.  

Recently, transformer-based architectures have gained significant popularity and have demonstrated 
state-of-the-art results in multiple domains beyond natural language processing, including computer vision. ViT 
(Vision Transformer) is a transformer-based architecture that has been shown to achieve state-of-the-art results 
on image classification tasks. One of the key characteristics of ViT is that it treats an image as a sequence of 
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tokens, rather than a 2D array of pixels, which allows it to take advantage of the powerful self-attention mech-
anism of transformers. However, this approach also means that ViT models typically require more data to per-
form well compared to other architectures such as CNNs. This is because the self-attention mechanism requires 
large amounts of context to work effectively, and this context is provided by the large amounts of data used 
during training. Additionally, since the tokens can be seen as patches of an image, the more patches, the more 
diverse and richer the representation, hence more data is needed to learn all the possible variations. This may 
be a contributing factor to the lower performance of the ViT model, as it only achieved a test accuracy of 89%. 
 

 
Figure 8. Model Test Accuracy Comparison. 
 
Inference Results 
 
In the process of inference, each video clip of a play goes through a preparatory step where several images from 
a play clip are selected and sent to a pre-trained model for identifying the formation of the play. The formation 
is established at the beginning of each play, but the starting point of the video can vary. To overcome this 
uncertainty, a time window of 2-4 seconds is chosen, and images are taken at a rate of half a second within the 
window. For instance, 8 frames can be taken from the start of the video, at a rate of half a second, which would 
cover the first 4 seconds of the video. Each of the sampled frames goes through the trained classification model 
and the majority vote decides the outcome.  
 We compared this multi-frame approach with only using one frame at a fixed time (the frame at the 
beginning of the second video). The study also looks at how the number of frames used, and the time window 
of sampling affect the results. In this experiment, the trained customized CNN model is used to analyze all 499 
video clips, which belong to 3 different formations. The inference accuracy is measured as the number of cor-
rectly classified videos divided by the total number of video clips tested.  
 Figure 9-A presents different methods for sampling frames, each with varying start times and window 
sizes. For example, 4_frames_S_0 refers to sampling 4 frames starting at the beginning of the video, while 
5_frames_S_1 indicates taking 5 frames starting at 1 second, with a sampling rate of half a second. The baseline 
method, 1_frame_fix, uses only 1 frame taken at the first second of the video. Figure 9-B compares the inference 
accuracy of these methods. The 5_frames_S_1 method achieves an accuracy of 95.4%, which is better than the 
baseline 1_frame_fix method. However, other multi-frame schemes perform worse than the baseline, likely due 
to the presence of noisy frames (players are still in motion and getting ready for the play) in the first second. 
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Figure 9. Inference Scheme and Accuracy Comparison. A – using one fixed frame vs. using multiple frames at 
different time windows. B – Video inference accuracy comparison.  
 

Discussion 
 
In our study, a batch size of 32 was used during the training of the image classification model. It would be worth 
exploring the impact of using other batch sizes, such as 16 and 64, on the model's performance. Another area 
for further research is to investigate other techniques for addressing overfitting, such as data augmentation and 
layer regularization. Additionally, it would be beneficial to evaluate more recent architectures that have been 
developed to improve the efficiency and accuracy of image classifiers. A few are listed below: 

● ResNeSt (Zhang et al., 2020): This model is an extension of the ResNet architecture that incorporates 
a simple yet effective split-attention mechanism to improve performance. 

● RegNet (Radosavovic et al., 2020): is a family of CNNs that are designed to be more scalable and 
efficient than previous models. 

 
 Recent years have seen significant progress in the field of video understanding, with several state-of-
the-art models for video classification achieving high accuracy. The Two-Stream CNN (Simonyan et al., 2014) 
is a popular model that analyzes both visual and motion information by using spatial and temporal CNNs. The 
Temporal Segment Networks (TSN) (Wang et al., 2016) break down videos into segments for classification 
and then aggregate the results. 3D CNNs (Ji et al., 2013), which use 3D convolutional kernels like C3D, I3D, 
and SlowFast, have also gained popularity for their ability to learn both spatial and temporal features. 
TimeSformer (Bertasius et al., 2021), a transformer-based model, is also gaining attention for its ability to 
process video frames as a sequence of image patches and use self-attention mechanisms to learn spatiotemporal 
representations of the video.  
 It would be interesting to compare the performance of these video-based models to the image classifier 
evaluated in this paper. The formation of football teams at the beginning of each play may mean that including 
later video frames would not be beneficial. An important next step would be to develop methods for automati-
cally identifying different offensive play types. Incorporating temporal information is likely to be crucial for 
this task. 
 Incorporating object detection techniques is a potential avenue for future research in the field of video 
understanding. Object detection can provide more detailed information about the objects and their locations 
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within the video, which can be used to improve the performance of the model. For example, by using object 
detection to identify and locate the players on a football field, it would be possible to gain insight into the 
formation of the team. However, it is important to keep in mind that using object detection techniques may 
come with added computational costs and may require a large amount of labeled data. 

Conclusion 
 
Machine learning is increasingly being used in sports analytics to gain insights and improve performance. It 
can be used to analyze large amounts of data, such as video footage, statistics, and sensor data, to identify 
patterns, predict outcomes, and make strategic decisions. In American football, studying the offensive for-
mations used by opposing teams in past games is critical for developing a successful play strategy. This is 
because different formations can signal the type of plays that a team is likely to run, and by understanding these 
tendencies, coaches can anticipate and prepare for them. Manually labeling offensive formations in video clips 
can be a tedious and error-prone process. The process requires a person to watch the video clip and identify the 
formation used at each point in the game, which can be time-consuming and can lead to inconsistencies in the 
labels. Additionally, it is also prone to human error, as people may misidentify formations or make mistakes in 
the labeling process. 
 This paper presents a machine learning pipeline that can automatically label offensive formations in 
video clips. The pipeline includes video pre-processing, image classification, and a novel inference approach. 
The study compares a custom CNN model with pre-trained image classifier models using transfer learning, 
including architectures such as MobileNet, Inception, EfficientNet, and the transformer-based Vision Trans-
former (ViT). The models were trained on approximately 1400 images with the three most popular formation 
labels extracted from high-school football team matches. The results demonstrate that several models, including 
the custom CNN model, achieved over 90% classification accuracy on the test dataset. An inference is done by 
sampling multiple frames from a video clip at a fixed rate, passing them through a trained classifier, and taking 
a majority vote to determine the outcome. Our study found that the optimal inference accuracy of 95.4% is 
achieved by sampling five frames at a rate of 0.5 seconds starting at 1 second with a trained customized CNN 
model.  

This machine learning system for identifying offensive formations in American football videos can 
assist high school and college football coaches in analyzing game footage. By automating the process of for-
mation identification, the system can save coaches time and effort, allowing them to focus on other aspects of 
game analysis and strategy development. 
 

Limitations 
 
Getting labeled video clips that cover all the possible formations is a challenging task. In this study, we focused 
on the three most popular formations from our school football games. However, to make the model more gen-
eralizable, an ongoing effort is to collect more videos that cover a greater variety of football formations. This 
would allow us to train the models on a more diverse set of data, and ensure that the classification accuracy 
remains high even when the model is applied to new, unseen formations. Additionally, we also plan to evaluate 
the model's performance on a larger dataset of football games from different schools, colleges, or professional 
teams to increase the diversity of the data and evaluate the robustness of the model. Furthermore, we are looking 
into incorporating more advanced techniques and the latest image/video classification models to improve the 
performance and generalization of the model. 
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