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ABSTRACT 
 
Quick Clean Water can detect water contamination in private wells, piped water, surface water, and water used for 
agriculture, recreation, and other purposes in developed and developing countries. Current testing systems are slow, 
costly, low in availability, and give back minimal results of 10-16 contaminants using expensive strips. Quick Clean 
Water is reusable, easy-to-use, portable, affordable, and gives advanced results of presently 21 contaminants. First, 
the Quick Clean Water device calculates the pH, turbidity, temperature, total dissolved solids, conductivity, and sa-
linity using sensors. Inputting the pH, turbidity, conductivity, and TDS, a machine learning model using the Random 
Ensemble algorithm predicts whether the water is safe at a 55% accuracy rate, which can be improved through data 
augmentation. Several algorithms were tested and evaluated by the precision, recall, f-score, specificity, negative pre-
dictive value, and accuracy rates. The hypothesis was that the K-Means Clustering would result in the best model, but 
Random Ensemble was the most efficient. If the water is classified as non-potable, users can enter the odor, color, and 
taste of their water into a 99% accurate ML model using the Random Ensemble algorithm to identify the exact con-
taminant in their water, which can be advanced by researching more contaminants.    
 

Introduction 
 
Common water contamination sources are nearby agricultural fertilizers causing high nitrogen concentrations, indus-
trial or textile work causing chemical or heavy metal contaminants, metal pipes leaching impurities, sewage or 
wastewater, organic chemicals, and radioactive elements.1 Water contamination commonly occurs in private wells, 
farms, surface water, and piped water.   

• Private Wells  
In 2015, about 43 million US households used private wells for water and were responsible for their groundwater and 
any possible contaminants. However, a study in 2009 indicated that 23% of samples of groundwater from over 2,000 
domestic wells contained metallic ions or organic substances at a level that is a concern to human health.2  

• Farms  
At farms including plantations, market farms, and shifting cultivation, contaminated water used for irrigation, food 
processing, and hygiene of workers can affect the health of workers and crops and eventually consumers. In farming 
techniques like pastoral nomadism and mixed crop and livestock, low-quality water can harm livestock and surround-
ing communities through waste.3  

• Surface Water  
144 million people use surface water and 435 million use unprotected wells and springs that with increasing offshoring 
and industrialization in developing countries cause industrial waste to flow into water systems.4  

• Piped Water  
Water that travels through pipes can also be contaminated through the leaching and corrosion of copper, lead, and 
metal pipes and faucets. This causes heavy metals to be present in water and is the main cause of lead contamination 
in homes.5  
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Drinking water contaminated with nitrites/nitrates can cause methemoglobinemia and “blue baby syndrome”. 
Heavy metals including copper and lead put people at risk of liver, kidney, and intestinal damage, anemia, and cancer. 
Organic chemicals result in liver, kidney, circulatory, reproductive, and nervous system damage. Radionuclides can 
cause potential kidney damage and cancer. An excess amount of fluoride tooth discoloration and skeletal fluorosis. 
High amounts of sewage and bacterial contamination cause the spread of disease and fatal disease. Therefore, it is 
imperative to ensure clean water sources at farms, wells, and surface waters. 
  Water contamination is an increasingly pervasive issue caused by the expansion of industrial and agricultural 
industries. Beginning in the 1970s, mass consumption around the globe led to mass production and an increase in the 
number of factories; however, at that time, few government policies on environmental safety were enacted and the 
developing technology was prone to explosions and accidental leaks. The biggest water-related disaster was possibly 
the incident in Lanzhou, China, where over 20 times the legal and safe amount of benzene was detected in water 
sources due to explosions at a nearby plant. Environing communities facing prolonged exposure to the carcinogenic 
chemical experienced escalated rates of cancer and hematopoietic system damage. To worsen the issue, 34 tons of 
benzene seeped into the groundwater throughout the 27 years (1987 to 2014) the toxic buildup remained unnoticed. 
Similar devastating events include the accumulation of cyanide from a mine in Ghana in 2001. As stricter regulations 
are being made on the disposal of industrial wastewater and locations of storage facilities, oil spills and sewage are 
still running into rivers. Major lead contamination from corroding pipes was found in Flint, Michigan in 2014. In-
creased cases of illness and lead poisoning followed in the city of Flint but no legislation to prevent further catastro-
phes. One of the most detrimental oil spills to date occurred in Bligh Reef in 1989. The 38 gallons of crude oil can as 
of 2015 be found in the ocean and has proved life-threatening to aquatic animals especially several pods of orcas that 
died off completely. Furthermore, in recent decades the Yamuna River water supply for 70% of India, 500 million 
gallons of sewage enters the river every day making the river unrecognizable to older locals. Additionally from 2009 
to the present, residents of Mutare, Zimbabwe are exposed to wastewater from local diamond mining operations con-
taining high levels of chromium, nickel, and bacteria causing typhoid and cholera. 

For these reasons and incidents of unexpected and unnoticed contamination, water testing is crucial to know 
whether or not the water is safe to be consumed or used for other purposes to prevent widespread communal illness. 
Current water testing systems do not meet the needs of consumers as they are slow, costly, low in availability, and 
give back minimal results. Inspections can take a couple of hours, and tests generally take 3 days to 2 weeks. Consid-
ering my experiences, when I send a water test for my drinking water, it would take days or weeks to receive results 
even if I need them quickly. Sending tests to laboratories costs 25-400 dollars. Quality testing kits are 100-200 dollars. 
Water testing centers are not available at all locations. Testing kits check for about 1-2 possible contaminants, and 
water testing strips that test for more impurities can be misread. Do-it-yourself tests simply provide information on 
whether or not pH or another metric are off. And neither inform about the reasons for contamination. 
 The purpose of Quick Clean Water is to provide a quick, inexpensive, reusable, portable, easy-to-use, and 
advanced water testing method for piped water, wells, surface water, and farms in developed and developing countries. 
The objective is to develop the most efficient machine learning models to predict potability and the contaminant. The 
engineering goal of Quick Clean Water is to create an IoT and machine learning-based water contamination detection 
system. 
 
Methods 
 
Hardware 
 
The hardware system includes pH, turbidity, temperature, and total dissolved solid sensors, an Arduino microproces-
sor, and a 3D printed exterior. These sensors collect the pH, turbidity, temperature in Celsius and Fahrenheit, and total 
dissolved solids.   
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The total dissolved solids (ppm) found using the TDS meter and temperature sensor can be converted to conductivity 
and salinity. 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜇𝜇𝜇𝜇/𝐶𝐶𝑐𝑐) = 𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇 𝐷𝐷𝐶𝐶𝜇𝜇𝜇𝜇𝐶𝐶𝑇𝑇𝐶𝐶𝐷𝐷𝐶𝐶 𝑆𝑆𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝜇𝜇(𝑝𝑝𝑝𝑝𝑐𝑐) / .67 
 
𝑆𝑆𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑚𝑚/𝐿𝐿) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜇𝜇𝜇𝜇/𝐶𝐶𝑐𝑐) * .55 
  
The schematics for the circuits are shown below (Figure 1). 
 

   
 Figure 1 Quick clean water hardware schematics  
  
Machine Learning Models: Predicting Potability 
 
When multiple factors can affect the output, it is best to use Machine Learning to receive accurate predictions.9 In this 
case, the output is dependent on the pH, conductivity, TDS, and turbidity; therefore, machine learning is used to make 
predictions. A model utilizing machine learning would consider all readings before making a prediction allowing for 
more precise results.   
 The data in this model is acquired from the water quality dataset available online on Kaggle.10 The first steps 
in coding a machine learning model are data cleaning and feature engineering. To do this, the Chloramines, Sulfate, 
Organic carbon, Trihalomethanes, and Hardness columns are deleted, which are irrelevant to the experiment. Rows 
that contain null values are deleted, and the Solids column is divided by 100. Data visualization assists in identifying 
and deleting outliers to slowly make the features more correlated with one another and data more accurate. This can 
be executed by using pairwise bivariate distributions of data to identify outliers and using pandas to delete data points 
in each column that are above or below a certain value that defines the boundary between outliers and correlated 
points. In the pH column, outliers lie below 2 or above 12.5. For Solids, outliers lie above 500. For Conductivity, 
outliers lie above 700. For Turbidity, outliers lie above 6. The data is then split into X and y datasets, and the X dataset 
is standardized using StandardScaler. The scaled data can be arranged into two components using principal component 
analysis. To begin training, the data is split so that 30% is used for testing and 70% is used for training.   

The correlation of the online data is not known; therefore, the algorithm that returns the most efficient model 
is tested for. There are several regression and classification algorithms including linear regression, logistic regression, 
decision tree, random forest, K nearest neighbors, K-means clustering, and support vector machines that can be applied 
to the data. The random_state is set to 101 to ensure that the data split is consistent throughout all of the algorithm 
tests. The X_train and y_train dataset are fit to each of the algorithms being tested as described above. Each model 
and class are evaluated using precision, recall, f-score, specificity, negative predictive value, and accuracy. After first 
calculating these five metrics for each feature, they can be averaged to find the macro-average metrics for the model 
as a whole. The dependent variables are the precision, recall, f-score, negative predictive value, and overall accuracy 
rates of the model. The independent variable is the algorithm used. The training and testing data, procedure to clean 
data, and all Python code except for the algorithm stays the same within each model. There is no control group. 
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Machine Learning Models: Predicting the Contaminant  
  
This model is built by engineering a dataset using background research on the odor, color, and taste of water containing 
Algae; Ammonia; Arsenic; Bacteria; Clay, Silt, and Sand; Copper; Disinfectant; Fluoride; Gasoline/Petrol; Hydrogen 
Sulfide; Lead/Iron; Manganese; Nitrates/Nitrites; Potassium Permanganate; Radioactive elements (Radium, Radon, 
or Uranium); Sodium; and Zinc. To begin training, the data is split into X and y datasets. Since the data contains 
qualitative data, not quantitative data, the OneHotEncoder Transformer can be applied to convert all categories in the 
columns into numeric values presented in a matrix. Next, the transformed data (X and y datasets) is fit to the Random 
Forest algorithm. The model is then used to predict the testing data, and the predictions are used to evaluate the model 
and classes using the precision, recall, f-score, specificity, negative predictive value, and accuracy. The data is self-
engineered; therefore, it is known that the Random Forest algorithm best fits this data. 
 
Quick Clean Water Testing 
 
This test evaluates the accuracy of the Quick Clean Water system against water testing strips that test for 16 different 
contaminants. First, 300mL water samples are collected from Kirkland Signature Purified Water with Added Minerals, 
tap water from Irving, Texas, Pensacola Beach, Big Lagoon State Park, and public restroom in Destin, Florida. These 
samples were picked due to being from different reservoirs and areas from the Southeast of the United States. The 
samples are versatile in what contaminant they could contain, which emulates the unpredictability of water testing in 
real life. One sample is then poured into a larger bucket of 29.4 cm by 19.8 cm by 13.9 cm dimensions, and a water 
strip from the 16 in 1 Drinking Water Test Kit is inserted into the sample for 2 seconds. Once the results are read in 
30 seconds, each of the 16 metrics and their values is recorded in a table with metric names and a yes or no for whether 
or not the water is safe. To test the device, the Quick Clean Water device is inserted into the bucket so that all the 
sensors are touching the water sample. Like before, the pH, turbidity, temperature in both units, TDS, conductivity, 
salinity, and potability metrics are recorded in a table with metric names, values, and a yes or no for whether or not 
the water is safe.38-40 If the water is not safe, the contaminant quiz or the contaminant-predicting model is used to find 
the specific contaminant. When taking the quiz, the sample is wafted to find the odor, and if the water has not been 
tasted or is not from the ocean, which has a salty taste, the taste can be entered as None. Similarly, the odor, taste, and 
color entered in the Machine Learning model and the output given is recorded in a table. If the water was predicted to 
be safe, the contaminant quiz does not need to be taken. According to UC San Diego, if the pH values are safe, and 
there are no oils or radioactive elements in the samples, the sample is safe to dispose of in the drain. Otherwise, the 
sample is buffered with tap water.41  

 

Results and Discussion 
 
Hardware 
  
Improvements 
The dimensions of the Quick Clean Water device (210 mm by 190mm by 75mm) (Figure 2) can be reduced signifi-
cantly to 150 mm by 80 mm by 40 mm using a printed PCB board. This would make the device more portable and 
easier to hold and handle.  
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Figure 2 Quick clean water hardware and interior.  
 
Machine Learning Models: Predicting Potability 
 
Linear Regression 
 
Table 1 Class evaluation metrics of linear regression model. 

Class TP TN FP FN Preci-
sion 

Re-
call 

F-
Score 

Specific-
ity 

Negative Predictive 
Value 

Accu-
racy 

0 0 236 0 361 0% 0% 0% 100% 40% 40% 

0 236 0 361 0 40% 100% 57% 0% 0% 40% 

 
 
Table 2 Overall evaluation metrics of linear regression model. 

Precision 20% 

Recall  50% 

F-Score 28% 

Specificity 50% 

Negative Predictive Value 20% 

Overall Accuracy 40% 

 
This model classifies all test data as safe. Due to this trend in predictions, this network cannot be applied in 

the real world as evaluating all water samples as potable would not be accurate. The precision rate is 0% for Class 0 
and 40% for Class 1. This indicates that the model and both classes need to be better trained to not predict false data 
as true. The recall rate is 0% for Class 0 and 100% for Class 1. The large difference shows that the model needs to be 
better trained to predict true points as true. This model predicts all points as Class 1. The specificity rate was high for 
Class 0, showing the model can successfully predict negative points; however, it must be taken into consideration that 
all inputs of this class were outputted as false. The negative predictive value indicates that 0% of negative values in 
Class 0 were predicted correctly, and 60% of negative values in Class 1 were classified accurately. For the same reason 
of the skew in outputs, the specificity of Class 0 was 0%. The accuracy rate is 40% for both classes. This demonstrates 
the model’s ability to correctly predict both true and false data points (Table 1). The precision rate of this model is 
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20%, indicating that 210 of the points that were predicted as positive were actually true. 50% of the data that was 
actually true was evaluated by the model as positive. The f-score is another accuracy metric used when an emphasis 
on the incorrectly predicted values is needed as it is the harmonic mean of the precision and recall rates. Furthermore, 
50% of the negative data samples were predicted to be false by the computer. The negative predictive value of this 
model is 30%, suggesting that 310 of the points that were predicted as negative were actually false. 60% of the testing 
data was classified correctly (Table 2).   
 
Logistic Regression 
 
Table 3 Class evaluation metrics of logistic regression model. 

Class TP TN FP FN Preci-
sion 

Re-
call 

F-
Score 

Specific-
ity 

Negative Predictive 
Value 

Accu-
racy 

0 361 0 236 0 60% 100% 75% 0% 0% 60% 

0 0 361 0 236 0% 0% 0% 100% 60% 60% 

 
Table 4 Overall evaluation metrics of logistic regression model. 

Precision 30% 

Recall  50% 

F-Score 38% 

Specificity 50% 

Negative Predictive Value 30% 

Overall Accuracy 60% 

 
This model predicts all inputs as non-potable. This cannot be applied in deployment. The precision rate is 

60% for Class 0 and 0% for Class 1. This indicates that the model and both classes need to be better trained to not 
predict false data as true. The recall rate is 100% for Class 0 and 0% for Class 1. The large difference between the two 
recall rates shows that the model needs to be strengthened in predicting true points as true. As shown by the matrix as 
well, the linear regression model predicts all points as Class 0, classifying all Class 0 data points correctly but never 
a Class 1 point. The specificity rate was high for Class 1, showing the model can successfully predict negative points; 
however, it must be taken into consideration that all inputs of this class were outputted as false. The negative predictive 
value indicates that 0% of negative values in Class 0 were predicted correctly, and 60% of negative values in Class 1 
were classified accurately. The accuracy rate is also low for both classes. This demonstrates the model’s ability to 
correctly predict both true and false data points (Table 3). 30% of the points that were predicted as positive were 
actually true. 50% of the data that was actually true was evaluated by the model as positive. The f-score is approxi-
mately 38%. Furthermore, 50% of the negative data samples were predicted to be false by the computer. 30% of the 
points that were predicted as negative were actually false. 60% of the testing data was classified correctly (Table 4). 
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Decision Tree 
 
Table 5 Class evaluation metrics of decision tree model. 

Class TP TN FP FN Preci-
sion 

Re-
call 

F-
Score 

Specific-
ity 

Negative Predictive 
Value 

Accu-
racy 

0 227 79 157 134 59% 63% 61% 33% 37% 51% 

0 79 227 134 157 37% 33% 35% 63% 59% 51% 

 
 
Table 6 Overall evaluation metrics of decision tree model. 

Precision 48% 

Recall  48% 

F-Score 48% 

Specificity 48% 

Negative Predictive Value 48% 

Overall Accuracy 51% 

 
The model did not accurately predict all inputs in each class. Both classes have high false positive and false 

negative values. The model is better at accurately predicting non-potable water samples, but compared to the previous 
models, this model has a clearer distinction between non-potable and potable water. The classes have a low precision 
and recall rate. The low precision rates show that a small amount of the data predicted as true is actually true. Class 0 
has a precision rate above 50% indicating less false data was predicted to be in Class 0 than true data was predicted 
to be in Class 0, but Class 1 has a precision rate below 50% indicating more false data was predicted to be in Class 1 
than true data was predicted to be in Class 1. The classes are weak in predicting true as positive and are not able to 
form a clear distinction between the two classes. The specificity scores are also relatively low, ranging from 63% and 
33%, and both classes need to be better trained in predicting false as false according to the low negative predictive 
values. Both classes have accuracy rates of 51%. This is due to the high number of false positives in each class (Table 
5). The model only precisely evaluates 48% of predicted positive samples and only 48% of true testing data is predicted 
true. The low precision and recall rates result in a low f-score of 48%. However, the model has proven that it is capable 
of predicting 48% of false data points as negative, and out of points evaluated as false, 48% were actually false. These 
metrics are almost 50%, implying a high amount of error in predictions. It can be concluded that the model accurately 
predicts 51% percent of the testing data, indicated by the overall accuracy (Table 6).  
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Random Ensemble 
 
Table 7 Class evaluation metrics of random ensemble model. 

Class TP TN FP FN Preci-
sion 

Re-
call 

F-
Score 

Specific-
ity 

Negative Predictive 
Value 

Accu-
racy 

0 247 82 154 114 62% 68% 65% 35% 71% 55% 

0 82 247 114 154 71% 35% 52% 68% 62% 55% 

 
 
Table 8 Overall evaluation metrics of random ensemble model. 

Precision 66% 

Recall  52% 

F-Score 59% 

Specificity 52% 

Negative Predictive Value 66% 

Overall Accuracy 55% 

 
The model did not accurately predict all inputs. The safe water class has a high false positive value, and the 

unsafe water class has a high false negative value. The model predicts more inputs as non-potable. The classes have a 
high precision rate compared to other model results. This implies a low number of false positives. There is a large 
difference of approximately 33% between the recall rates of both classes. Class 0 has a higher recall rate as more 
points were predicted as Class 0, allowing for a comparatively low number of false negatives. The same reason that 
more predictions being Class 0 applies to the large difference between specificity rates. Both classes have high nega-
tive predictive values because both classes have a low number of true negatives. Both classes have accuracy rates of 
55% (Table 7). This model has an overall accuracy of 55%, suggesting that the model accurately predicts 55% of 
given data. As per the precision rate, 66% of the data predicted to be true was actually true. However, 52% of the 
water metrics that were actually true were predicted as true, which is concluded by the recall rate. As an accuracy 
metric that emphasizes false predictions, the f-score of this model was 59%. 52% of the negative points were predicted 
as false by the model, which is represented by the specificity score. Furthermore, out of data classified as false, 66% 
were true negatives (Table 8).  
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K-Nearest Neighbors 
 

 
Figure 3. Error Rate vs K Value 
 
Overall K values of 12, 16-18, and 20-21 inclusive performed the best, and earlier values out of which 5 resulted in 
the highest error rate. The K value of 16 resulted in the lowest error rate by a small margin.  
 
Table 9 Class evaluation metrics of k-nearest neighbors model. 

Class TP TN FP FN Preci-
sion 

Re-
call 

F-
Score 

Specific-
ity 

Negative Predictive 
Value 

Accu-
racy 

0 307 37 199 54 61% 85% 71% 16% 41% 57% 

0 37 307 54 199 41% 16% 23% 85% 61% 57% 

 
Table 10 Overall evaluation metrics of k-nearest neighbors model. 

Precision 51% 

Recall  50% 

F-Score 47% 

Specificity 50% 

Negative Predictive Value 51% 

Overall Accuracy 57% 

 
The model did not correctly predict all test data. Similar to the last model, the safe water class has a high 

false positive value, and the unsafe water class has a high false negative value. Compared to the models using Random 
ensemble and Decision Tree, this model predicts more inputs as non-potable. This indicates that this model has a more 
blurred distinction between the classes. The classes have a low precision rate in the range of approximately 40-60%. 
This indicates that the number of false positives for both non-potable and potable is almost equal to the number of 
true positives. The model needs to be better trained in identifying false data as false and not true. On the other hand, 
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the recall rates, as in the prior model, have a difference of 69% between them. This model tends to classify more points 
as of Class 0, causing Class 1 to have more false negatives. The specificity score presents the conclusion that the 
algorithm does not have a clear line between the two classes and results in more water samples to be predicted as Class 
0. Similar to the precision rates, the negative predicted values are in the range of approximately 40-60%. The number 
of false negatives is almost equal to the number of true negatives. The overall accuracy rate is 57%. The number of 
true positives is higher compared to most models, excluding the Linear and Logistic models, even though the model 
predicts more Class 0, indicating that Class 1 needs to be better distinguished (Table 9). The K-Nearest Neighbor 
model precisely classifies 51% of predicted positive points, and 50% of true testing data is predicted true. Conse-
quently, the f-score is 47%, by a small margin below 50%. With current testing, the model is capable of predicting 
50% of false data samples as negative. Additionally, the negative predictive values 51%, indicating that the model 
needs to be better trained. Both the recall and specificity rates are low because of the skew of predictions to be Class 
0. Considering the overall metrics, it can be observed that the model accurately predicts 57% percent of water samples 
(Table 10).   
 
K-Means Clustering 
 
Table 11 Class evaluation metrics of k-means clustering model. 

Class TP TN FP FN Preci-
sion 

Re-
call 

F-
Score 

Specific-
ity 

Negative Predictive 
Value 

Accu-
racy 

0 180 120 116 181 61% 61% 50% 55% 40% 50% 

0 120 180 181 116 41% 40% 51% 45% 61% 50% 

 
Table 12 Overall evaluation metrics of k-means clustering model. 

Precision 50% 

Recall  50% 

F-Score 50% 

Specificity 50% 

Negative Predictive Value 50% 

Overall Accuracy 50% 

 
The model did not correctly predict all data. Both classes have a high false negative and high false positive 

value. This number of inputs predicted as potable and non-potable are approximately equal. The overall precision rate 
is in the range of 40-60%, suggesting that approximately between 25 and 35 of the data points that were predicted as 
true were actually true. The recall rates and specificity rates, unlike in the prior models, do not have a significant 
difference between them. This is because the model tends to classify an equal number of points as Class 1 and Class 
0, but considering the unbalanced data, the accuracy rate is low. The negative predictive value is also in the range of 
the precision rate and shows that between 25 and 35 of the data points that were predicted as false were actually false. 
The overall accuracy rate is 50%, meaning that the model can predict approximately 50% of the testing data correctly 
(Table 11). The K-Means Clustering model precisely evaluates 50% of predicted true points, and 50% of positive data 
is predicted true. The f-score is 50%. The model evaluates 50% of false points as negative. The negative predictive 
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value is 50%. The precision, recall, f-score, specificity, and negative predictive scores are all about 50%, showing that 
there are a significant number of false positives and false negatives. But all predictions in this model are not concen-
trated in Class 0; instead, both classes have almost equal predictions. Considering the accuracy, the model accurately 
predicts 50% percent of points (Table 12).   
 
Support Vector Machine 
 
Table 13 Class evaluation metrics of support vector machine model. 

Class TP TN FP FN Preci-
sion 

Re-
call 

F-
Score 

Specific-
ity 

Negative Predictive 
Value 

Accu-
racy 

0 361 0 236 0 60% 100% 75% 0% 0% 60% 

0 0 361 181 236 0% 0% 0% 100% 60% 60% 

 
Table 14 Overall evaluation metrics of support vector machine model. 

Precision 30% 

Recall  50% 

F-Score 38% 

Specificity 50% 

Negative Predictive Value 30% 

Overall Accuracy 60% 

 
This model classifies all test data as unsafe which is not appropriate for production. The Support Vector Machine 
algorithm classified the data in the same way as the Logistic Regression algorithm, and the same conclusions can be 
made (Table 13 and Table 14).  
 
Machine Learning Models: Predicting the Contaminant  
 
Table 15 Class evaluation metrics of the predicting the contaminant model. 

Class TP TN FP FN 
Preci-
sion 

Re-
call 

F-
Score 

Speci-
ficity 

Negative Pre-
dictive Value 

Accu-
racy 

Algae 4 30 0 0 100% 100% 100% 100% 100% 100% 

Ammonia 1 33 0 0 100% 100% 100% 100% 100% 100% 

Arsenic 1 33 0 0 100% 100% 100% 100% 100% 100% 

Bacteria 2 32 0 0 100% 100% 100% 100% 100% 100% 

Clay, Silt, Sand 2 32 0 0 100% 100% 100% 100% 100% 100% 
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Class TP TN FP FN 
Preci-
sion 

Re-
call 

F-
Score 

Speci-
ficity 

Negative Pre-
dictive Value 

Accu-
racy 

Copper 2 32 0 0 100% 100% 100% 100% 100% 100% 

Disinfectant 2 32 0 0 100% 100% 100% 100% 100% 100% 

Fluoride 0 33 0 1 0% 0% 0% 100% 97% 97% 

Gasoline/ 
Petrol 

2 32 0 0 100% 100% 100% 100% 100% 100% 

Hydrogen Sulfide 6 28 0 0 100% 100% 100% 100% 100% 100% 

Lead/Iron 4 30 0 0 100% 100% 100% 100% 100% 100% 

Manganese 2 32 0 0 100% 100% 100% 100% 100% 100% 

Nitrates/ 
Nitrites 

0 33 0 1 0% 0% 0% 100% 97% 97% 

Potassium Permanganate 1 33 0 0 100% 100% 100% 100% 100% 100% 

Radioactive Elements (Ra-
dium, Radon, Uranium) 

1 31 2 0 33% 100% 65% 94% 100% 94% 

Sodium 1 33 0 0 100% 100% 100% 100% 100% 100% 

Zinc 1 33 0 0 100% 100% 100% 100% 100% 100% 

 
Table 16 Overall evaluation metrics of the predicting the contaminant model. 

Precision 84% 

Recall  88% 

F-Score 86% 

Specificity 100% 

Negative Predictive Value 100% 

Overall Accuracy 99% 

 
The model predicts data not in the Fluoride or Nitrates/Nitrites classes accurately with values of zero for the 

false positive and false negative. The Fluoride and Nitrates/Nitrites classes were trained to have no distinct smell, 
odor, or color. The Radioactive Elements class is trained with the same characteristics, implying that the two incor-
rectly predicted data points were correctly evaluated. Therefore, for the data and contaminants inputted, the model can 
be deployed successfully. The classes with the lowest precision rates that are not 100% include the Fluoride, Ni-
trates/Nitrites, and Radioactive Elements (Radium, Radon, and Uranium) classes. The low rate shows that a small 
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amount of the data points predicted as that class is actually true; however, due to the small amount of testing data, the 
Fluoride and Nitrates/Nitrites classes have true positive and false positive values of 0. Similarly, the Fluoride and 
Nitrates/Nitrites all have recall rates of 0%. These classes are weak in predicting true as positive. This does not imply 
that the Fluoride will never have a true positive value above 0 since very little data is provided that no clear conclusion 
can be drawn. The negative predictive value is always above 97% due to a large number of true negatives compared 
to the false negatives. Overall, this model has high overall accuracy and specificity rates. For most classes, the preci-
sion, recall, f-score, specificity, negative predictive value, and accuracy rates are all 100%. The Fluoride and Ni-
trates/Nitrites classes that do not have 100% accuracy both were trained to have no distinct smell, odor, or color. The 
Radioactive Elements class is trained with the same characteristics, implying that the two incorrectly predicted data 
points were correct. The distinction between fluoride, nitrates/nitrites, and radioactive elements will be made through 
the app and not the model. Considering real-life situations, the accuracy is approximately 100% but not quite because 
of the self-engineered data and lack of variability in data. The model predicts all data accurately for the contaminants 
that it was trained for. 
 
Sources of Error 
 

 
Figure 19 Amount of data in each class of the predicting potability model data set. 
 

 
Figure 20 Amount of data in each class of the predicting the contaminant model data set. 
 

The bar graphs above show the differences between data available for classes within each dataset. In both 
models, specifically, the contaminate user quiz model, there was a low amount of data available. This small amount 
of data does not accurately represent the potential of the model, for example, in the aluminum and ammonia classes. 
This results in inaccurate precision, recall, f-score, specificity, negative predictive value, and accuracy as a low number 
of data points were tested. Another source of systematic error includes that the dataset is unbalanced or does not have 
about the same amount of data between classes, which also returns imprecise evaluation metrics for each class. For 
example, in the water quality dataset, Class 0 has 1,666 points while Class 1 has 1,083. 
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Improvements 
 
Any future advancement in this innovation would require more data. Low amounts of data do not train the model to 
its full potential using as many scenarios as possible. With more data samples, models have the capability to predict 
more varied data and be more efficient. In addition to this problem and area of possible improvement, the current data 
is unbalanced when regarding data points in each class, which results in imprecise precision, recall, f-score, specificity, 
negative predictive value, and accuracy scores. This can be improved through data augmentation. This is when data 
is duplicated and altered in some way to provide more variability. For example, changing the pH of 7 to 7.2 but 
keeping the rest the same provides another data point for training. By performing data augmentation, there will be 
more data that is also more balanced, and this method will prevent overfitting the network as well. The Quick Clean 
Water Django Python application allows users to input their metrics into Quick Clean Water anonymously to improve 
ML datasets if the user has completed a lab test on their water. Regarding the model for the contaminant test, the odor, 
color, and taste of more contaminants such as Aluminum and dyes/paints need to be researched, to identify taste, or 
tested for, to record odor and color in water. Validating this model only through current data would be insufficient 
and inaccurate since it was generated through research. As a more promising alternative to reduce bias, Quick Clean 
Water can partner with a local water treatment lab to conduct anonymous surveys with consumers about their water 
odor, color, taste, and contaminant. Data is the base of a good machine learning model; therefore, the model should 
train using relevant data. 
 
Quick Clean Water Testing 
 
Kirkland Signature Purified Water with Added Minerals 
 
Water is sourced from Niagara Falls and is filtered using Advanced Filtration, Ozone, and Reverse Osmosis technol-
ogies. Ingredients include purified water, potassium bicarbonate, sodium bicarbonate, calcium citrate, sodium chlo-
ride, and magnesium oxide.  
 
Table 17 Kirkland signature purified water with added minerals water testing strips results. 

Metric Reading Safe for Drinking 

Total Hardness (mg/L) 0 Yes 

Free Chlorine (mg/L) 0.5 Yes 

Iron (mg/L) 5 Yes 

Copper (mg/L) 0.5 Yes 

Lead (mg/L) 0 Yes 

Nitrate (mg/L) 0 Yes 

Nitrite (mg/L) 0 Yes 

MPS (mg/L) 0 Yes 

Total Chlorine (mg/L) 0.5 Yes 
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Metric Reading Safe for Drinking 

Fluoride (mg/L) 0 Yes 

Cyanuric Acid (mg/L) 0 Yes 

Ammonia Chloride (mg/L) 0 Yes 

QUAT/QAC (mg/L) 5 No 

Total Alkalinity (mg/L) 20 Yes 

Carbonate (mg/L) 20 Yes 

pH 6.8 Yes 

 
 
Table 18 Kirkland signature purified water with added minerals quick clean water device results 

Metric Reading Safe for Drinking 

pH 6.97 Yes 

Turbidity (NTU) 0.4 Yes 

Temperature (Celsius) 24.29 Yes 

Temperature (Farenheit) 75.72 Yes 

Total Dissolved Solids (ppm) 42.15 Yes 

Conductivity (s/cm) 62.19 Yes 

Salinity (mg/L) 34.6 Yes 

ML Safe for Drinking NOT SAFE No 

 
 
Table 19 Kirkland signature purified water with added minerals quick clean water contaminant quiz results. 

Metric Output 

Odor None 

Color None 

Taste None 

Contaminant Prediction Fluoride, Nitrites/Nitrates, or Radioactive Elements 
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Out of the sixteen metrics that the water testing strips tested for, only QUATs, which are disinfectant chem-
icals, were present in the water at an unsafe level. The Quick Clean Water software did alert the user that the water 
has a low amount of total dissolved solids and is non-potable. Since the water was evaluated to be unsafe, the user 
proceeded to take the contaminant quiz and entered None for all three categories. Quick Clean Water’s ML predicted 
there to be fluoride, nitrites/nitrates, or radioactive elements in the water. This indicates that minimally distinct odors 
cannot be identified by the user to claim that the water has chemical-like or disinfectant properties. These could pos-
sibly be combated by training the model to recognize inputs of None for odor, color, and taste as disinfectants along 
with fluoride, nitrites/nitrates, or radioactive elements. Further discriminating between the contaminants could utilize 
sensor readings from additional sensors.            
                                                                                                                         
Tap Water from Irving, Texas 
 
Water is sourced from Lake Ray Hubbard, Lake Tawakoni, Elm Fork of the Trinity River, Lake Chapman, Lake 
Grapevine, Lewisville Lake, and Lake Ray Roberts.  
 
Table 20 Tap water from irving, texas water testing strips results 

Metric Reading Safe for Drinking 

Total Hardness (mg/L) 50 Yes 

Free Chlorine (mg/L) 0.5 Yes 

Iron (mg/L) 0 Yes 

Copper (mg/L) 0 Yes 

Lead (mg/L) 0 Yes 

Nitrate (mg/L) 0 Yes 

Nitrite (mg/L) 0 Yes 

MPS (mg/L) 0 Yes 

Total Chlorine (mg/L) 0.5 Yes 

Fluoride (mg/L) 0 Yes 

Cyanuric Acid (mg/L) 0 Yes 

Ammonia Chloride (mg/L) 0 Yes 

QUAT/QAC (mg/L) 0 Yes 

Total Alkalinity (mg/L) 20 Yes 

Carbonate (mg/L) 80 Yes 

pH 7.2 Yes 
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Table 21 Tap water from irving, texas quick clean water device results. 

Metric Reading Safe for Drinking 

pH 7.17 Yes 

Turbidity (NTU) 0.7 Yes 

Temperature (Celsius) 23.84 Yes 

Temperature (Farenheit) 74.92 Yes 

Total Dissolved Solids (ppm) 221.35 Yes 

Conductivity (s/cm) 330.37 Yes 

Salinity (mg/L) 181.7 Yes 

ML Safe for Drinking NOT SAFE No 

 
 
Table 22 Tap water from irving, texas quick clean water contaminant quiz results. 

Metric Output 

Odor None 

Color None 

Taste None 

Contaminant Prediction Fluoride, Nitrites/Nitrates, or Radioactive Elements 

 
The water testing strips claim that all metrics tested for are within safe levels; however, the Quick Clean Water device 
classified that sample as non-potable and that it contained fluoride, nitrites/nitrates, or radioactive elements. This can 
be concluded as an error by the Machine Learning model that predicts potability as the accuracy is 55%.  
 
Pensacola Beach 
 
Pensacola Beach is located in Pensacola, Florida, and provides a view of the Gulf of Mexico.  
 
Table 26 Pensacola beach water testing strips results. 

Metric Reading Safe for Drinking 

Total Hardness (mg/L) 425 Yes 

Free Chlorine (mg/L) 0.5 Yes 

Iron (mg/L) 0 Yes 
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Metric Reading Safe for Drinking 

Copper (mg/L) 0 Yes 

Lead (mg/L) 0 Yes 

Nitrate (mg/L) 0 Yes 

Nitrite (mg/L) 0 Yes 

MPS (mg/L) 0 Yes 

Total Chlorine (mg/L) 0.5 Yes 

Fluoride (mg/L) 0 Yes 

Cyanuric Acid (mg/L) 0 Yes 

Ammonia Chloride (mg/L) 0 Yes 

QUAT/QAC (mg/L) 5 No 

Total Alkalinity (mg/L) 0 Yes 

Carbonate (mg/L) 0 Yes 

pH 6.6 Yes 

 
 
Table 27 Pensacola beach water quick clean water device results. 

Metric Reading Safe for Drinking 

pH 6.89 Yes 

Turbidity (NTU) 0.3 Yes 

Temperature (Celsius) 23.74 Yes 

Temperature (Farenheit) 74.74 Yes 

Total Dissolved Solids (ppm) 778.45 No 

Conductivity (s/cm) 1161.87 Yes 

Salinity (mg/L) 639.03 Yes 

ML Safe for Drinking NOT SAFE No 
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Table 28 Pensacola beach water quick clean water contaminant quiz results. 

Metric Output 

Odor None 

Color None 

Taste Salty 

Contaminant Prediction Sodium 

 
According to the water testing strips, Pensacola Beach has an unsafe amount of QUATs in the water, but 

similar to other salt-water samples, the strips lack the ability to detect salinity. The Quick Clean Water device and 
quiz both are able to evaluate the high salinity but fail to distinguish disinfectants. The user is often not able to identify 
chemical-like odors, and the Arduino is unable to notify the user that the disinfectant levels should be unsafe. More 
and higher-quality sensor readings could be used to combat this problem.  
 
Big Lagoon State Park 
 
Big Lagoon State Park features a saltwater lagoon and natural environment. 
 
Table 38 Big lagoon state park water testing strips results. 

Metric Reading Safe for Drinking 

Total Hardness (mg/L) 425 Yes 

Free Chlorine (mg/L) 0.5 Yes 

Iron (mg/L) 0 Yes 

Copper (mg/L) 0 Yes 

Lead (mg/L) 0 Yes 

Nitrate (mg/L) 0 Yes 

Nitrite (mg/L) 0 Yes 

MPS (mg/L) 0 Yes 

Total Chlorine (mg/L) 0.5 Yes 

Fluoride (mg/L) 0 Yes 

Cyanuric Acid (mg/L) 0 Yes 

Ammonia Chloride (mg/L) 0 Yes 

QUAT/QAC (mg/L) 10 No 
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Metric Reading Safe for Drinking 

Total Alkalinity (mg/L) 10 Yes 

Carbonate (mg/L) 0 Yes 

pH 7.2 Yes 

 
Table 39 Big lagoon state park water quick clean water device results. 

Metric Reading Safe for Drinking 

pH 7.5 Yes 

Turbidity (NTU) 0.2 Yes 

Temperature (Celsius) 23.97 Yes 

Temperature (Farenheit) 75.15 Yes 

Total Dissolved Solids (ppm) 772.11 No 

Conductivity (s/cm) 487.66 Yes 

Salinity (mg/L) 268.21 Yes 

ML Safe for Drinking NOT SAFE No 

 
Table 40 Big lagoon state park quick clean water contaminant quiz results. 

Metric Output 

Odor None 

Color Yellow 

Taste None 

Contaminant Prediction Arsenic 

 
The lagoon at Big Lagoon State Park has one of the highest measured QUATs rates measured in this exper-

iment, so Quick Clean Water efficiently and accurately evaluates the water to the unsafe for consumption. The water 
strips portray a high QUATs amount while the Quick Clean Water contaminate quiz predicted arsenic. It is true that 
the strips detect a limited number of contaminants, but in this case, it is more likely that the disinfectants showed no 
obvious sign of presence. This contaminant could be detected using additional sensors, and the contaminant ML model 
should be trained to classify disinfectants if the water has no odor, color, or taste. With arsenic and disinfectants, the 
sample is saltwater but was not detected to be so due to entering taste as None. To address multiple contaminants, the 
model can output the top predictions based on percent.  
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Public Restroom in Destin, Florida 
 
Water is sourced from the upper Floridan Aquifer, which is made of limestone. 
 
Table 41 Public restroom in destin, florida water testing strips results. 

Metric Reading Safe for Drinking 

Total Hardness (mg/L) 50 Yes 

Free Chlorine (mg/L) 0.5 Yes 

Iron (mg/L) 0 Yes 

Copper (mg/L) 0 Yes 

Lead (mg/L) 0 Yes 

Nitrate (mg/L) 0 Yes 

Nitrite (mg/L) 0 Yes 

MPS (mg/L) 1 Yes 

Total Chlorine (mg/L) 0.5 Yes 

Fluoride (mg/L) 0 Yes 

Cyanuric Acid (mg/L) 0 Yes 

Ammonia Chloride (mg/L) 0 Yes 

QUAT/QAC (mg/L) 5 No 

Total Alkalinity (mg/L) 20 Yes 

Carbonate (mg/L) 80 Yes 

pH 7.6 Yes 

 
 
Table 42 Public restroom in destin, florida water quick clean water device results. 

Metric Reading Safe for Drinking 

pH 7.3 Yes 

Turbidity (NTU) 0.1 Yes 

Temperature (Celsius) 23.97 Yes 
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Metric Reading Safe for Drinking 

Temperature (Farenheit) 75.19 Yes 

Total Dissolved Solids (ppm) 218.91 Yes 

Conductivity (s/cm) 326.73 Yes 

Salinity (mg/L) 179.7 Yes 

ML Safe for Drinking NOT SAFE No 

 
 
Table 43 Public restroom in destin, florida quick clean water contaminant quiz results. 

Metric Output 

Odor Chemical-Like 

Color None 

Taste None 

Contaminant Prediction Disinfectants 

 
Water in a public restroom in Destin, Florida is found to contain high amounts of disinfectants. The non-potability of 
the water was predicted accurately by the Quick Clean Water device and Potability ML model. The water had a clear 
chemical-like smell and was not tasted, but the model was still able to classify the impurity in the sample accurately.  
 

Conclusion 
 
Machine Learning Models: Predicting Potability 
 
The hypothesis was at first that the K-Means Clustering would allow the model to perform the best compared to other 
classification and regression algorithms tested. The K-Means Clustering algorithm proved to be limiting as the model 
using the Random Ensemble algorithm performed the best and better satisfied the objective of the research. The mod-
els Linear Regression, Logistic Regression, and Support Vector Machine all classified all test data as one class. These 
models cannot be applied in the real world as evaluating all water samples as non-potable or potable would not be 
accurate. The K-Nearest Neighbors model has a large difference between recall rates between the two classes. This 
model tends to classify more points as of Class 1, causing Class 0 to have more false positives and Class 1 to have 
more false negatives. Unlike this model, the K-Means Clustering model classifies approximately an equal number of 
data points into both of the classes, but they are evaluated mostly incorrectly indicated by the accuracy rate of 50%. 
Similar to the Linear, Logistic, and SVC models discussed above, applying the Random Ensemble and Decision Tree 
models in the real world would provide results slightly skewed towards Class 0 compared to the previously referred 
to models. Between the Decision Tree model and Random Ensemble model, the values of all metrics for the Random 
Ensemble model are greater, presenting a more efficient and accurate algorithm to utilize for this task.   
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Quick Clean Water Testing 
 
The only contaminant present in harmful amounts in the samples is QUATs/QACs. According to the testing strips, 
the chemicals are present in four out of the five samples: Kirkland Signature purified water with added minerals, 
Pensacola beach, Big Lagoon State Park, and the public restroom in Destin, Florida. Out of four, only one was pre-
dicted to contain disinfectants by the Quick Clean Water device. This low accuracy is due to high concentrations of 
sodium present in the samples as well, which is a contaminant not detected by the strips but is detected by the Quick 
Clean Water device. Since the Quick Clean Water software does test for more contaminants, the system did evaluate 
the sample from Pensacola Beach better than the strips. Identifying more than one impurity can be done by utilizing 
sensor readings from additional sensors or by outputting the top predictions for each input based on percent. Another 
reason for the low accuracy rate in detecting disinfectants is that users are unable to identify the properties of these 
contaminants. As stated before, further distinctions could involve more sensors and training the model to recognize 
disinfectants as possibly having no odor, color, or taste. Samples from the Gulf of Mexico beaches were not evaluated 
as having unsafe amounts of salinity by the Arduino. This can be improved using higher-quality sensors. These inves-
tigations primarily focused on the classification of disinfectants, and to improve the device and software, varied water 
samples containing other contaminants must be tested. 
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