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ABSTRACT  
 
Currently, there are applications such as Shazam that provides music matching. However, a limitation is that 
the same piece performed by the same musician cannot be identified if it is not the same recording. This is 
because Shazam matches the variation in volume, not the frequencies of the sound. This research attempts to 
match music the way humans understand it: by the frequency spectrum of music, not the volume variation. We 
pre-computed the frequency spectrums of the music, then took the unknown piece and tried to match its fre-
quency spectrum against every segment. We did so by sliding the window by 0.1 seconds and calculating the 
error by subtracting the normalized arrays and taking the sum of absolute differences. The segment that showed 
the least error was considered the candidate for the match. Matching simple pieces such as single-note pieces 
was successful, but complex pieces such as symphonies were not successful; that is, the algorithm couldn’t 
produce low error value in any of the music in the database. We suspect that it has to do with having “too many 
notes,” i.e., mismatches in the higher harmonics added up to significant amount of errors, which swamps the 
calculations.  
 

Introduction 
 
There are moments when one hears a beautiful piece of music but cannot figure out the name of it. Indeed, there 
is an app called Shazam which somewhat achieves this goal. However, Shazam does not match music. Instead, 
it identifies a particular recording of a particular music [1]. In fact, it cannot match the same music played by 
the same musician if they are two different recordings [1]. This is because Shazam isn’t comparing frequencies 
but, instead, it is comparing the loudness variation of the music in time [2]. However, this isn’t how humans 
perceive music. People hear pitches, and harmonies. Our algorithm tries to humanize the music recognition by 
emphasizing these two factors by using spectrogram. When somebody whistles or hums a melody, even if the 
rhythm and notes are different, we hope to find the correct match for the piece. 

According to Wolfram Documentation, Spectrogram plots the magnitude of the short-time Fourier 
transform (STFT), computed as a discrete Fourier transform (DFT) of partitions of list [3]. In simple terms, 
Spectrogram is a visual way of representing the signal, and strength, or “loudness,” of a signal over time at 
various frequencies present in a particular waveform [4]. By visualizing Spectrogram in 3D as shown Figure 1, 
I can see the fundamental frequency in the front and the harmonics building up behind it. The log scale was 
used to make the visuals clearer. For spectrograms that depict audios, its fundamental frequency is the clearest 
marker in the graph, always the bottom most one. In Spectrograms, the darker the line is, the louder its volume 
is. Figure 2 illustrates the following. The combination of all the harmonics in the spectrogram results in the 
timber of the sound.  

The SpectrogramArray returns the data that went into the construction of the SpectrogramArray, al-
lowing us to use the data from our analysis. Since the Fourier Transform used in the SpectrogramArray returns 
complex numbers, the absolute value of it was used [5]. 
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Another key part of the algorithm was the Partition command. Partition cuts lists into smaller portions. 
In Mathematica, by specifying an offset value, it was possible to cut the list with overlaps [6]. This was very 
useful for this code because there were more parts of the long music to compare the sample music to, which 
translated to the result being more accurate.  
 

 
Figure 1. Spectrogram in Log Scale 
 

 
Figure 2. Spectrogram of Mary had a Little Lamb 
 

Methods 
 
Preliminary Work 
 
First, we stored the files in the folders and read the names of the audio files. Also, we got all the files to be used 
as databases, i.e., music to be compared against, and stored them in a folder. The next step was to turn every 
music into spectrogram arrays. When we are matching the unknown piece, we found the Spectrogram Array of 
it, then matched it against every piece in the database, one at a time, keeping track of the error. The one with 
the least error will be declared the match if the error value is reasonable.  
 
Spectrograms & Function 
 
As stated in the introduction, spectrograms are a visual way of representing the signal strength, or “loudness,” 
of a signal over time at various frequencies present in a particular waveform. Mathematica has a great built-in 
function, and Figure 2 is a spectrogram of one of the audios used. It is clear the darker notes towards the bottom, 
which represent the fundamental frequencies, show the pattern and progression of the notes of Mary Had a 
Little Lamb. However, because Spectrogram is a plot, it is very difficult to extract any quantitative information 
from it. Therefore, we used SpectrogramArray instead, which gives the actual data. Figure 3 shows the mySpec-
tro function which gives us the spectrogram array data from an arbitrary segment within a music specified by 
its parameters. The AudioChannelMix command was used to convert stereo sound into mono so that audio 
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could be match one to one. The two channels were averaged to produce the center-panned stereo audio object. 
In the function, the length of the partitions (Fourier Transform time window) was set to 4096 samples for all 
the audio and the offset value was set to 512 samples. 

 
Figure 3. mySpectro function 
 
Partitioning SpectrogramArrays & Audio Normalization 
 
Now that the mySpectro function is complete, the next step was to partition the music into the length of the 
small music segment. We partitioned the songs in the database to match the unknown size with the offset value 
of 10 sample size. The offset value means that partitioning is done with the overlap of 10 samples.  
The whole idea of Audio Normalization was to avoid Shazam’s way of matching the volume variations. Thus, 
we wanted the matching to be immune to the loudness of particular performances or recordings by normalizing 
the music volume. If one performance is recorded at a higher volume than the other, even if the pieces are 
played perfectly matching, there will be errors when the spectrograms are subtracted because there will be 
height differences in them. Audio Normalization ensures that the maximum volume of each music segment is 
the same. As loud music has higher values (manifested as taller heights in 3D, darker colors in 2D) in spectro-
gram, normalization corrects for this variation reducing false error.  
 

 
Figure 4. Audio Normalization 
 

By dividing each element by the Max volume of each element, the values in the spectrum array be-
comes a volume ratio to the max, rather than absolute volume. This makes the comparison more apple to apple 
when comparing recordings of different volumes. The +1 added to the max value seen in the code was added 
in the denominator to prevent dividing by 0 when the max is zero. This could happen if the music was silent. 
The +1 doesn’t affect the value of the spectrum because they are in the thousands and +1 was added equally to 
both the database and the unknown segment. Therefore, if the music is truly identical, their error should be zero 
after their point-by-point subtraction. 
 
Subtracting SpectrogramArrays 
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Now, we subtracted the spectrogram arrays of the unknown from the ones in the database. The goal was to find 
the interval with the least error, which meant that the segment was found in the large music. To do this, we 
summed up all the Absolute values of the differences because error is defined to be the sum.  

 
Figure 5. ListLinePlot of Errors 
 

Figure 5 shows the ListLinePlot of errors. Clearly, the least error happened around at 11th seconds. 
Thus, we can identity the error by looking at the graph because the part with the dip is the part with least error, 
and thus is the interval we are looking for.  
 
Full Function  
 
We attach the full function for reference.  
 

 
Figure 6. Full Function 
 

We also attach a brief step by step summary of the function. 
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- Function trims the music based on its duration using mySpectro and gets the spectrogram arrays 
- The Partition command partitions the large spectrogram array into smaller portions that match the 

length of the sample, which is two seconds. 
- The music volume was normalized when the music was completely silent.  
- Partitioned spectrogram arrays were subtracted from the short spectrogram array and the ListPlot was 

drawn to identify the seconds with the least errors. The least errors were represented with the lowest 
Total value of the absolute values of the differences. 

 

Results and Discussion 
 
Successful Cases of Matching 
 
The algorithm was tested to see if it could identify the matching segment for identical piano pieces from the 
same recording. As shown in the Methods & Materials section, the clear low error values confirmed that iden-
tification worked. Figure 7 shows a clear low error at 12 seconds, which is indeed the center of the interval 
between 10 & 14.  
 

 
Figure 7. Errors between 10 & 14 seconds 
 
Some Unorthodox Cases of Matching 
 
Because Mary Had a Little Lamb has many parts of repetition, not all the results were as expected. Figure 8 
shows the two low errors around 6 seconds and 17 seconds. This happens because the notes repeated. Indeed, 
we can confirm this by listening to the music. However, because our original intent in this research was match-
ing the pieces, and the location of the match, so having multiple low error locations is beneficial for verifying 
that the match was correct. Also, the symmetry that happens at 6 seconds and at 17 seconds are very interesting 
too. 
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Figure 8. Errors between 16 & 18 seconds 
 
Matching When Mary Had a Little Lamb Was Played By Two Different Recordings 
 
This test showed that even when the same piece is played by two different players, the algorithm still can 
identify the matching segment with the least error. Figure 9 shows the low error at 12 seconds, which is the 
center of 10 and 14. Thus, the algorithm can find the matching segment in the case when the same music is 
played by two different people. However, compared to tests when the same player plays identical pieces, the 
errors are greater. Nonetheless, the algorithm found the correct match. This type of matching is one that Shazam 
cannot do. More tests were conducted to verify if it indeed worked, and the test results showed clear low errors 
unless the segment was repeated at another time in the music.  

 
Figure 9. Matching Audios played by different people 
 
Cello Music Matching 
 
We experimented with the cello, a string instrument with vibrations to see how well our algorithm performed. 
The cello music that we used was a five note scale with breaks in the middle played by the cello. As shown in 
Figure 10, the algorithm was able to correctly identify the matching interval. We see a clear point with the 
lowest error around 11 seconds which is where the matching happens.  
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Figure 10. Cello Matching between 10 & 12 seconds 
 
Matching A More Complex Piano Piece with The Same Recording 
 
Now that we’ve seen that the algorithm performs well with simple pieces, to test the boundaries of our algo-
rithm, we used complex piano pieces to see if the algorithm could find the match. The complex piece that we 
used was Chopin’s Ballade 4, a very rich and complex piano piece. A 30 second segment trimmed and out of 
the 30 second segment another one second segment was trimmed. Figure 11 shows the low error value at 5.5, 
which shows that the matching was successful since the example music was chosen between 5&6 seconds. 
Figure 12 shows the interval of 3 & 4 seconds to confirm that the algorithm works.  

 
Figure 11. Chopin's Ballade 4 matching between 5 & 6 seconds 
 

 
Figure 12. Chopin's Ballade 4 matching between 3 & 4 seconds 
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Matching Chopin’s Ballade 4 Played by Different Players 
 
This test was done to see if the algorithm could match a complex piece played by different players. The test 
was conducted with Chopin’s Ballade 4. Unfortunately, the match was unsuccessful as there wasn’t a certain 
low error value that was evident. Also, at 8.5 seconds, which was where the matching should have been, there 
isn’t a clear low error value. Figure 13 illustrates this occurrence. The fact that the algorithm breaks down for 
complex pieces is one limitation that can be addressed with further research.  
 

 
Figure 13. Chopin Ballade 4 matching played by different players 
 
 
Example of A Complete Mismatch 
 
We also provide an example of a complete mismatch for reference. The goal of this exploration was to see what 
the errors graph looked like when totally unrelated audios were put in. We compared Mary Had a Little Lamb 
to ocean sounds. As shown in Error! Reference source not found. 14, the graph was almost a straight line 
without any low error region as expected. 

 
Figure 14. Errors of Ocean & Mary Had a Little Lamb 
 

Conclusion 
 
Humans can recognize an orchestra piece by humming or whistling the melody line. This research attempted to 
get closer to how humans identify music. Based on experimental results when music with only single notes is 
played matching was very successful. However, once single note music was played by different recordings, the 
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success rate decreased. When a portion of a complex pieces was compared to the whole, the algorithm found 
where the portion came from in the timeline. However, when the portion was compared to different recordings 
of the same music, matching wasn’t successful. For future research, the goal is to improve this algorithm by 
making sure it can match complex pieces played by different recordings.  
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