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ABSTRACT 
 
As the total number of birds has declined in the billions over the last 50 years, an accurate method for classifying bird 
species is necessary for conservation efforts and population monitoring. One promising method is using machine 
learning models to classify birds by their sounds, which has emerged due to benefits such as being less affected by 
environmental factors (e.g., habitat, time of day), and lower disturbances to bird species during the data collection 
process, contrary to other processes such as image classification. As audio processing may eventually become the 
main method of classifying birds and may be used as an important conservation tool, it is imperative to understand 
the challenges that must be overcome before it can be successfully applied. In this work, the programming language 
Python and the machine learning model Convolutional Neural Networks were used to process and classify audio 
recordings from over 150 different bird species. This study demonstrates that although audio classification is a prom-
ising method of classification, many challenges are still present in the field, such as the amount of variety in the 
different calls of a single bird, the presence of background noises in many audio recordings, and the difficulty in 
efficiently representing an audio signal with images, highlighting the importance of overcoming these challenges for 
conservation efforts.  
 

Introduction and Related Works 
 
There are an estimated 17,000 to 18,000 bird species in the world (Barrowclough et al., 2016). Birds play crucial roles 
in environmental ecosystems, from preying on crop damaging insects and providing pest control, to pollination and 
seed dispersion (Sekercioglu et al., 2016). Additionally, birds may be used to measure environmental quality and 
ecosystem sustainability (Kalisińska, 2019), further highlighting their importance in ecosystems and conservation. 
Unfortunately, in the past fifty years, the population of breeding birds has suffered a net loss of 2.9 billion in numbers 
(Rosenberg et al., 2019), making it crucial to find a method that will accurately classify birds in order to monitor their 
population trends and gain a better understanding of their conservation statuses.  

Multiple attempts have been made at bird population monitoring. Various types of monitoring were often 
used to collect data on birds, including traditional field surveys and citizen science surveys (Lepczyk, 2005), video 
monitoring (Verstraeten et al., 2010), and acoustic monitoring (Pérez-Granados & Traba, 2021). Initially, the most 
often used method of classification on collected bird data was visual classification, and many methods emerged for 
classifying images of birds. Classification of bird species based on images was often based on machine learning mod-
els such as Random Forests (Roslan et al., 2017), K Nearest Neighbors (KNN) (Budiman et al., 2022), and most 
commonly, Convolutional Neural Networks (CNN) (Kahl et al., 2017). However, recently, classification based on 
bird calls has come to light as a different way to classify birds, as audio classification has certain benefits over image 
classification that make it valuable. Firstly, audio recordings are not impacted by any visual factors such as light 
obstruction or time of the day, and audio monitoring methods do not cause disturbances to birds from human activity 
(Pérez-Granados et al., 2019). In addition, audio classification is similar to image classification in that audio repre-
sentations must be converted to visual representations before being classified, so similar methods may be used between 
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image and audio classification with better effects in audio classification. However, audio classification requires more 
significant preprocessing steps. Therefore, numerous preprocessing methods have been applied to audio data (Wang 
et al., 2022), (Ramashini et al., 2022), before applying the aforementioned machine learning methods for classification 
(Kahl et al., 2017), (Ghani & Hallerberg, 2021), (Yang et al., 2021).  
 

Technical Introduction 
 
In this section, technical background, and common practice in machine learning with audio data are provided. The 
aim of this introduction is to familiarize readers with key technical concepts since concepts introduced in this section 
will be partly utilized in this study. 
 
Spectrograms and Short Time Fourier Transform (STFT) 
 
All audio signals can be expressed as the sum of many distinct frequencies. In order to convert signals from the time 
domain to the frequency domain, a fast Fourier transform (FFT) is typically applied. However, in a regular Fourier 
transform, information from the time domain is lost. Since information about time is also important in real world audio 
classification, the short-time Fourier transform (STFT) is often used instead. An STFT uses a sliding window time 
signal (often a Hamming or Hanning window) to compute FFTs for each windowed segment, then combines the results 
of each FFT into one graph in which frequency is rotated to be the y axis. In turn, a 3D graph is produced, including 
information on time, frequency, and amplitude. The amplitude at each point on this new graph is represented by a 
color (color is the 3rd dimension), with darker colors representing lower amplitudes and brighter colors representing 
higher amplitudes. This type of colored representation is known as a spectrogram, which is in the form of an image 
and can be trained upon with a classifier. The above process is displayed in Figure 1 (Gao & Yan, 2021), where a fast 
Fourier transform is performed on each window, and the results are combined to form one graph.  
 

 
Figure 1. Illustration of short time Fourier transform (Gao & Yan, 2021) 
 

However, initially, the combined graph usually displays very little information and likely will consist of very 
dark colors throughout. This is because most sounds humans hear fall into a narrow range of amplitudes. In fact, 
humans perceive amplitude logarithmically rather than linearly. Therefore, to account for the human perception of 
amplitude, the amplitudes of the spectrogram are converted to the decibel (dB) scale (a logarithmic scale of amplitudes 
where an increase of 10 dB means a tenfold increase in amplitude), and the colors of the spectrogram are represented 
by the decibel scale.  
 

Volume 12 Issue 1 (2023) 

ISSN: 2167-1907 www.JSR.org 2



Mel Spectrogram 
 
In addition to perceiving amplitudes logarithmically, humans also perceive frequencies logarithmically. On a linear 
scale, human ears do not correctly perceive distances between frequencies. Humans are more sensitive to lower fre-
quencies than higher frequencies: for example, humans are much better at identifying the distance between 100 Hz 
and 200 Hz than the distance between 10,000 Hz and 11,000 Hz. Therefore, a logarithmic scale called the mel scale 
is used to represent frequencies. Frequencies of equal distance on the mel scale are also perceived to be equal in 
distance by human ears. Frequencies are converted from Hz to their corresponding mels based on the curve shown in 
Figure 2, whose logarithmic equation is commonly expressed in equation (1) (O'Shaughnessy, 1987) and is plotted in 
Figure 2. As shown in Figure 2, frequencies at lower Hz have greater distances between them in mels, and frequencies 
at higher Hz have smaller distances between them in mels. A spectrogram that uses the mel scale for frequencies is 
known as a mel spectrogram.  
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                                                        𝑓𝑓 = 700 ∙ (10

𝑚𝑚
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Figure 2. Relationship between mel frequency scale and Hz frequency scale 
 
CNN 
 
Convolutional Neural Networks (CNNs) have often been used in classification problems as they can learn features by 
themselves and do not require feature extraction. CNNs are known to successfully classify on images, representing 
each image as a matrix. Since many audio classification tasks can be converted to image classification tasks, CNNs 
are useful for audio classification as well. A typical CNN is composed of an input layer to begin, fully connected 
layers to end, and multiple hidden layers between, as shown in Figure 3. The hidden layers are composed of layers 
named convolution layers, batch normalization layers, and pooling layers.  
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Figure 3. CNN structure 
 

The convolution layer carries the main portion of the network's computational load. Convolution layers per-
form a dot product between a kernel matrix and a portion of the layer input matrix, called the receptive field. The 
convolution process is shown in Figure 4. Notice that the dot product is taken for each 2x2 matrix, by moving the 
receptive field (the gray area) by 1 unit (the stride length).  Next is the pooling layer. Pooling layers come after 
convolution layers. Pooling layers summarize the previous convolution layer and help to reduce input sizes, while 
maintaining important features. Additionally, note that extra layers called batch normalization layers can be added to 
apply a transformation that makes the mean output close to 0 and the output standard deviation close to 1, which helps 
improve the training speed of the model. Finally, the last layers of the CNN are called fully connected layers. The 
fully connected layers take the inputs from the previous layers and outputs a single prediction (Alzubaidi et al., 2021).  
 

 
 
Figure 4. Convolution being performed with a 2x2 kernel when stride length is 1 (Goodfellow et al., 2016) 
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Methods 
 
The paper is organized as follows. Preprocessing, image generation, and CNN creation steps are discussed in the 
methods section. Results evaluated based on four metrics are discussed in the results section, and future directions and 
a conclusion are presented in the conclusion section. The flowchart in Figure 5 demonstrates all research steps. All 
images and models used for classification were generated using Python.  

 
Figure 5. Flowchart of research steps 
 
Dataset 
 
In this study, a dataset of birds provided by the Kaggle BirdCLEF competition 2022 was used. The dataset is composed 
of crowdsourced labeled bird recordings from the xeno-canto database, and contains 151 labeled classes, each repre-
senting a different species of bird. Each class of bird contains multiple recorded ogg sound files, organized in folders 
for each class. In total, there are 16,753 audio recordings, ranging from a few seconds to up to a few minutes in length. 
All audio data were sampled at 44.1kHz.  
  
Preprocessing 
 
Upon generating mel spectrograms, it was discovered that many audio samples in the dataset contained significant 
background noise or silent segments, negatively impacting classification accuracy, as shown in Figure 6. Therefore, 
it became crucial to reduce the noise and remove the silence.  
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Figure 6. Noisy signal of African Silverbill bird audio recording 
 
Noise reduction and silence removal libraries 
 
In the first step of preprocessing, the function reduce_noise() from the noisereduce Python library (Sainburg, 2019) is 
used, implementing a form of noise gate called a spectral gate, which estimates a noise threshold for each frequency 
band of an inputted signal. The threshold is calculated through the usage of statistics: any frequency which is 1.5 
standard deviations from the mean is classified as an outlier, which means noise. A noise mask is then computed using 
this threshold, and the mask gates all noise outside of the aforementioned frequency range, allowing for the separation 
and removal of background noise. The signal after noise reduction is displayed in Figure 7.  
 

 
Figure 7. African Silverbill bird audio signal after noise reduction 
 

Next, the durations of silence between bird calls were removed. In order to do this, the function silence_re-
moval() from the Python library pyAudioAnalysis (Giannakopoulos, 2015), which takes audio signals and outputs the 
endpoints of audio events that are not silent, was used. The function achieves this by using support vector machines 
(SVM). An SVM is trained to distinguish between both low and high energy frames. 10% of the lowest and highest 
energy frames are used to train the SVM, giving a general range of the audio. Finally, for each frame sequence, the 
SVM outputs the probability that this frame sequence is not silent. All segments that are not silent are returned. Using 
Python splicing, these segments are then extracted, leaving out the silent segments, as shown in Figure 8.  
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Figure 8. African Silverbill bird audio signal after noise reduction and silence removal 
 
 Finally, after both noise reduction and silence removal have been performed, all remaining segments are 
combined to form a single large file. This combined file is then split into 10 second time intervals, each of which will 
later be used to generate a spectrogram with the same label as the original large sample. If there are any time intervals 
less than 10 seconds, zero padding will be applied so that the interval is 10 seconds. 
 
Image Generation 
 
Image generation is carried out in several stages. In the BirdCLEF dataset, audio recordings were in the format ogg. 
and were represented as an array of numbers depicting the amplitude of the audio recording at each timestep. This 
array of numbers can then be expressed as a signal in the time domain. An example of such a signal representation is 
shown on the left in Figure 9, with time on the x axis in seconds and amplitude on the y axis. Upon applying an FFT 
to the original signal using the function np.fft.fft() from the NumPy Python library (Harris et al., 2020) the frequency 
spectrum was generated, as shown on the right in Figure 9.  

 

 
 
Figure 9. House Finch bird audio signal in time domain (left) and frequency domain (right) 
 
In order to get a spectrogram of the original audio signal, an STFT was performed using the function librosa.stft() 
from the librosa python library (McFee et al., 2022). The resulting spectrogram is shown below in Figure 10.  
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Figure 10. Spectrogram of House Finch bird audio recording  
 
Notice that the above spectrogram (Figure 10) is fairly dark with little color concentration. In order to generate a more 
representative spectrogram, a logarithmic amplitude transformation using the function librosa.amplitude_to_db() from 
the librosa Python library was applied to generate the following spectrogram shown below in Figure 11.  
 

 
Figure 11. Spectrogram of House Finch bird audio recording with amplitude in dB 
 
To convert the spectrogram to a mel spectrogram, the frequency scale was converted to a mel scale with 80 mel bands 
using the function librosa.feature.melspectrogram() from the librosa library. The final mel spectrogram is shown be-
low in Figure 12.  
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Figure 12. Finished Mel Spectrogram of House Finch Bird 
 
This process of converting to mel spectrogram was repeated for the audio recordings of every bird. The respective mel 
spectrograms for each audio file were saved as images with their original labels. 
 
CNN Architecture  
 
In order to classify the data, a CNN was constructed using the Python library TensorFlow Keras (Abadi et al., 2016). 
In total, the CNN had 18 layers, including an input layer, 3 convolution layers, 3 pooling layers, a final dense layer, 
and other intermediary layers. Relu activation and same padding were used for each convolution layer, and batch 
normalization layers were added after convolutional and pooling layers. Finally, a flatten layer was included to make 
the multidimensional input one dimensional, and a dropout layer was included to prevent overfitting. All layers are 
displayed in Table 1. 
 
 
 
Table 1. CNN architecture with all layers 
 

Layer 
Sequential layer and Input Layer  
Conv 1: Input size: 442 x 858 x 3 

• Number of filters = 32 
• Kernel size = 3x3 
• Stride = 2 
• Number of parameters = 896 
• Output size: 221 x 429 x 32 

Batch normalization layer 1 
• Number of parameters = 128 

Max Pooling layer 1: pool size 2x2 
• Output size: 110 x 214 x 32 

Batch normalization layer 2 
• Number of parameters = 128 
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Conv 2: Input size: 110 x 214 x 64 
• Number of filters = 64 
• Kernel size = 3x3 
• Stride = 1 
• Number of parameters = 18,496 
• Output size: 110 x 214 x 64 

Batch normalization layer 3 
• Number of parameters = 256 

Max pooling layer 2: pool size 2x2  
• Output size = 55 x 107 x 64 

Batch normalization layer 4 
• Number of parameters = 256 

Conv 3: Input size: 110 x 214 x 6 
• Number of filters = 128 
• Kernel size = 3x3 
• Stride = 1 
• Number of parameters = 73,856 
• Output size: 55 x 107 x 128 

Batch normalization layer 5 
• Number of parameters = 512 

Max Pooling layer 3: pool size 2x2 
• Output size = 27 x 53 x 128 

Batch normalization layer 6 
• Number of parameters = 512 

Flatten layer 
• Output size = 183168 

Dense layer: 256 units, relu activation  
• Output size = 256 
• Number of parameters = 46,891,264 

Batch normalization layer 7 
• Number of parameters = 1024 

Dropout layer: frequency rate 0.5 
• Output size = 256 

Dense layer: softmax activation 
• Output size = 152 
• Number of parameters = 39,064 

 
For the optimizer function, the CNN used RMSProp, a gradient based optimizer that has an adaptive learning rate. 
Categorical cross entropy was used as the loss function.  
 

Results and Discussion 
 
The model used 100 epochs and took a total of 6 hours to run. 4 metrics were used to evaluate the model, as shown in 
Table 2. Refer to the confusion matrix in Figure 13 for better understanding.  
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Table 2. Metrics for evaluating model 
Metric Definition 

Accuracy (TP + TN)/(TP + TN + FP + FN) 
Precision TP/(TP + FP) 
Recall TP/(TP + FN) 
Loss The penalty for a prediction: 0 loss means a perfect 

prediction. 
 

 
Figure 13. Confusion matrix  
 
The results of all 4 metrics for both the train and validation data over all 100 epochs are shown in figures 14, 15, 16, 
and 17 respectively. 
 

 
Figure 14. Model accuracy for both train and validation data 
 
 

 
Figure 15. Model precision for both train and validation data 
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Figure 16. Model recall for both train and validation data 
 

 
 
Figure 17. Model loss for both train and validation data 
 
A summary of the results for each metric is displayed below in Table 3.  
 
Table 3. Summary of 4 different result metrics 

Category Training Validation 
Accuracy 1 Between 0 and 0.4 
Precision 1 Between 0 and 0.6 

Recall 1 Between 0 and 0.4 
Loss 0 Between 4 and 25 

 
Clearly, the model achieved high results in training, reaching up to nearly perfect results, but achieved poor results in 
validation, indicating that there were some problems. One such problem is overfitting, which is likely present in this 
model, as much better training metrics compared to validation metrics is a clear sign of overfitting.  

In order to reduce overfitting in this study, two methods were already utilized during training. Batch normal-
ization and dropout were used on the convolutional and fully connected layers at the end of the CNN network. How-
ever, little improvement was reached from these efforts, showing that a deeper look into the image data is required. 
One likely reason for the low validation results may be due to certain aspects of the original data that were not suffi-
ciently addressed during preprocessing, including variations in calls of the same bird species, multiple birds present 
in a recording, and no birds present in a recording. Firstly, birds typically have a wide variety of different vocalizations 
(eg. fighting, mating) for different tasks. An example of this is shown in Figure 18, which displays two very different 
spectrograms despite being the same bird.  
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Figure 18. Two spectrograms generated from audio recordings of the bird Black-crowned Night-Heron 

 
These alternate vocalizations of the same bird may be mistaken for vocalizations of another bird during clas-

sification. Next, due to the nature of data collection in terms of bird calls, audio recordings may have no bird calls or 
multiple bird calls in them, as recordings are inevitably subjected to the environment. These conditions must be ac-
counted for during preprocessing.  

Finally, the nature of spectrograms themselves may also contribute to the lower validation results, as spec-
trograms are different from regular images. For example, regular images that are shifted or rotated still carry the same 
information, leading to CNNs being skilled at recognizing images under transformations as the same image. However, 
in spectrograms, transformations often change the information of the spectrogram entirely. In a spectrogram, transfor-
mations such as rotations do not make sense, and other transformations, such as shifts along the frequency (y) axis, 
may cause two spectrograms to look similar for the CNN. However, these shifted spectrograms represent completely 
different audio signals with different pitches. This may cause the CNN to incorrectly identify two different birds as 
the same bird if they have similar frequency patterns but different pitches.  
 

Conclusion and Future Works  
 
In this work, a straightforward method of classifying on mel spectrograms with CNNs was applied, generating an 
audio classification model that did not produce high validation results. This study demonstrates that although audio 
classification of birds using machine learning is promising, it still faces multiple challenges before it can accurately 
be used for conservation purposes. Therefore, multiple future improvements could be made to different aspects of this 
project. In terms of preprocessing, a possible improvement would be to first predict when there is no call or more than 
one call present in any audio recording, then to create separate classes for these two instances. Classes with no bird 
calls should be removed from the training data, and classes with more than one call should be handled separately from 
those with one call. Additionally, further preprocessing work could be to use a K nearest neighbors model to divide 
each bird class into subgroups based on the appearance of spectrograms before actually classifying with a CNN. 
Finally, one last future research direction would be to further examine the qualities of mel spectrograms to find a way 
to reduce the impacts of certain transformations, such as vertical axis shifts.   
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