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ABSTRACT 
 
Can running injuries be predicted using only a dataset and machine learning models? This paper explores this question 
using classification models, including the Logistic Regression model and the Random Forest Classifier model. In the 
dataset used, ten features were taken into account when predicting running injuries. With slight modifications, the 
Weighted Logistic Regression and over and down-sampling Random Forest Classifier models were used to mitigate 
the imbalance in the dataset. The results suggested that the best model was Weighted Logistic Regression and that the 
best score metric to consider was the F-beta score. 
 

Introduction 
 
Injuries in sports are a significant deterrent to an athlete’s success. In running, a single injury can sometimes be career-
ending. In order to prevent injuries or minimize the amount of injuries that a runner has, we have attempted to solve 
the issue by using machine learning models to predict on a running injury dataset. Many factors go into determining 
an injury. These factors include the amount of running, different types of running workouts, the time spent running, 
type of shoe, terrain, stretching, and many more. Running injuries can be hard to predict because anything possible 
can happen that can cause an injury, and sometimes these events are unforeseeable. This paper leverages a dataset of 
runners’ workouts and associated injuries to discover a classifier that can be useful in predicting running injuries. 
 

Background 
 
As this is a sports-related machine learning model paper, specifically on running injuries, more studies have yet to be 
done on this topic. However, the paper from which the dataset was from started some studies using machine learning 
models. They used another machine learning model, the XGBoost Classifier model. Their study was more extensive 
as they used two datasets, both weekly injury datasets and daily injury datasets. The study yielded AUC scores that 
were decent but still needed to be 100%. They concluded that their model performed better on the daily injury dataset. 
They also indicated that future research on this dataset should try to improve the model’s performance. 
 

Dataset 
 
In this project, we used a running injury dataset from Kaggle but originally from the paper Injury Prediction In Com-
petitive Runners With Machine Learning. The paper used two datasets–a weekly injury dataset and a daily injury 
dataset. We decided to use the daily injury dataset because it was smaller and easier to work with. The dataset had 
42766 samples and 73 columns. We reduced the number of columns to 71 because the extra columns did not affect 
the injury prediction. Of those columns, 70 are features, and the last is injury prediction. The injury prediction is 
denoted with 1’s and 0’s; 1 represents an injury, and 0 represents no injury. There are 70 features because every ten 
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features represent one day of the week. We plotted the features in histograms to visualize the data (pictured below). 
With the enormous dataset, we ran into the problem of imbalance. Over 98% of the dataset was for non-injury samples. 
After loading the data into a Google Colab notebook, we split the data into training and testing sets using the 
train_test_split function. Approximately two-thirds of the data was used for the training set, and one-third was used 
for the testing set. 

Figure 1. Features of the dataset. Figure 1A documents the frequency of perceived exertion amounts. Figure 1B doc-
uments the frequency of every total kilometer run. Figure 1C documents the frequency of kilometers spent sprinting. 
Figure 1D visualizes the frequency of running sessions. Figure 1E visualizes the frequency of kilometers run in Z3-4 
heart zones. Figure 1F visualizes the frequency of kilometers run in Z5-T1-T2 heart zones. Figure 1G keeps track of 
how many do or do not do strength training. Figure 1H shows the frequency of hours of alternative training. Figure 1I 
shows the frequency of perceived training success amounts, and Figure 1J shows the frequency of perceived recovery 
amounts. 
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Methodology/Models 
 
This dataset contained injured or not injured predictions, which entails a classification problem. We used the Logistic 
Regression and the Random Forest Classifier models as baseline classification models. First, we fitted the model on 
the training set so that we could eventually compute against the testing set. Then to test the effectiveness of the models, 
we evaluated seven metrics (accuracy score, precision score, confusion matrix, area under the curve, recall score, F1 
score, and F-beta score). We determined that the most crucial metric would be the F-beta score because it would be 
evaluated, considering both the precision and recall scores. For this application, we decided false negatives were more 
costly than false positives and thus set the beta value to 1.2. This metric generated a numerical value that helped 
visualize how accurate the testing set was at predicting injuries and the effectiveness of the classification model. 
However, due to the dataset being so big and imbalanced, we decided to research other models that were more effective 
at handling imbalanced datasets. One possible solution was to use a weighted logistic regression. We set weights for 
the predicted 1’s and 0’s using the weighted Logistic Regression model. Because there were way more 0’s predicted 
(no injury), we gave more weight to the 1’s in hopes of combatting the imbalance of the dataset. 

We then started hyperparameter tuning and toyed around with the ratio of weights to find the most optimal 
weight for this dataset that would generate the most favorable or greatest F-beta score. Another solution we tried was 
to artificially augment our data by using the RandomUnderSampler() and RandomOverSampler() functions to over-
sample and undersample the data. Oversampling added data samples to the minority class in order to help balance the 
imbalanced dataset. Undersampling removed data samples in the majority class to help restore balance. We trained 
our training data on the RandomUnderSampler() and RandomOverSample() functions. Then, we implemented the 
oversampled and undersampled data into our Random Forest Classifier model. Once again, we evaluated the seven 
metrics to determine which model would best predict running injuries. Below are the figures for the models we tested. 
 

 
 
Figure 2. Baseline models Precision-Recall curves. Figure 2A is the Precision-Recall curve for the Baseline Logistic 
Regression model. Figure 2B is the Precision-Recall curve for the Baseline Random Forest Classifier model. 
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Figure 3. Balanced models Precision-Recall curves. Figure 3A is the Precision-Recall curve for the Weighted Logistic 
Regression model. Figure 3B is the Precision-Recall curve for the Undersampled Random Forest Classifier model. 
Figure 3C is the Precision-Recall curve for the Oversampled Random Forest Classifier model. 
 
 

 
 
Figure 4. Hyperparameter tuning for the Weighted Logistic Regression model. The beta value was set to 1.2. 
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Results and Discussion 
 
The results were relatively the same as the original baseline model, although they were slightly better. After doing a 
few hyperparameter tuning by changing the weight of 1’s, we found that the ratio of 0’s to 1’s was best at 1:32 because 
it yielded the highest F-beta score. However, we noticed that the precision and recall scores for each model we used 
were very low. Below is a table of precision, recall, and F-beta scores for the models we tested. 
 
Table 1. Classification Models Scores 

Model Precision Recall F-beta (𝐹𝐹𝛽𝛽) 

Baseline Log Reg 0 0 0 

Weighted Log Reg 0.0297 0.1956 0.0594 

Baseline RFC 0 0 0 

Oversampled RFC 0 0 0 

Undersampled RFC 0.0191 0.6141 0.0446 
 

Based on the table above, the best model was the weighted logistic regression model because it had the 
highest F-beta score. The F-beta score was the most important metric because we wanted to find how to best strike a 
balance between false negatives (predicting someone with an injury as no injury) and false positives (predicting some-
one with no injury has an injury). Our choice of F-beta score for the model metric also led to a ranking of model 
performance that made sense based on the confusion matrices shown below. After these considerations, we found that 
the best model for this data is the Weighted Logistic Regression model. 

 
Figure 5. Baseline models confusion matrices. Figure 5A is the confusion matrix for the baseline Logistic Regres-
sion model. Figure 5B is the confusion matrix for the baseline Random Forest Classifier model. 

 
Figure 6. Balanced models confusion matrices. Figure 6A is the confusion matrix for the Weighted Logistic Regres-
sion model. Figure 6B is the confusion matrix for the Oversampled Random Forest Classifier model. Figure 6C is the 
confusion matrix for the Undersampled Random Forest Classifier model. 
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Conclusions 
 
This project has attempted to find the best classification model for predicting running injuries on a dataset that has 
been used before in a previous research paper. By using many different classification models on the dataset, we have 
furthered the study of predicting running injuries. Although, this dataset was unique because it had many troublesome 
characteristics. For instance, it was an enormous dataset with a significant imbalance. As a result, we could only do 
so much work with this dataset. Our results prove that more work can be done on this running injury dataset to mitigate 
the imbalance in the dataset and predict the injuries more precisely. Our research has set a small milestone in attempt-
ing to predict injuries on this imbalanced dataset. Future researchers can build upon this paper by finding more effi-
cient machine learning models to predict running injuries. In the future, we would like to continue finding better 
models for this dataset as well as work with other sports injury datasets that are more balanced to identify the similar-
ities and differences with this research. 
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