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ABSTRACT 
 
Our world is becoming more interconnected through technology, with some notable examples being social 
media and online payment services. With this higher connection comes the increased risk of information, rang-
ing from harmless text messages to credit card information, being stolen. These risks make cryptography, the 
field regarding the securing of messages, vital in order to minimize the chance of these data breaches. Essen-
tially, this field is about creating, improving, and implementing various algorithms to encrypt and decrypt mes-
sages so only the sender and receiver can see the messages. This paper reviews one such algorithm, the RSA 
algorithm, and the mathematical concepts behind it. 
 

Introduction 
 
Imagine a scenario where two classmates want to send messages in a way so that only they can understand 
them. They devise a system in which each letter in their message is shifted over by one (a becomes b, b becomes 
c … z becomes a). For example, if one classmate wants to say “hello,” he would send the message “ifmmp” to 
his friend. The process of translating “hello” to “ifmmp” is called encryption, and the translation of “iffmp” 
back to the original message “hello” is called decryption. However, this particular process to encrypt messages 
is very basic and can be very easily deciphered by any outside viewers. Therefore, there is a field called cryp-
tography that is dedicated to the study and implementation of advanced processes to secure messages. 

The idea of concealing messages is certainly not a new one. The Spartans used the earliest recorded 
form of cryptography, in which a piece of parchment containing the message is wrapped around a baton so that 
the message is scrambled when unwrapped, and the correct message can only be determined when a baton with 
the exact same dimensions is used. Various other civilizations also had their own methods to make sure their 
messages stayed a secret, but the major breakthroughs in cryptography were made during the World Wars in 
order to keep the enemy from understanding important messages. Specifically, rotor cipher machines were 
invented during this time period; these machines involved a series of rotors being hardwired to substitute letters 
(similar to the classmate example) so that only another machine with the same hardwiring can decrypt the 
messages. The last phase in the evolution of cryptography was its transition to a more digital format as com-
puters became more mainstream. The process itself is similar, involving various rounds of substitutions and 
permutations, but now it is done with advanced algorithms to make the scrambled messages even harder to 
decrypt. Today, cryptography is used everywhere, from messaging platforms to e-commerce and more [5]. 

One such algorithm used in cryptography is the RSA algorithm. Essentially, this algorithm involves a 
public key, one that everyone can see, for encryption and a corresponding private key for decryption. In this 
paper, we will discuss the mathematical concepts, which are heavily based on number theory, behind this algo-
rithm. 

The paper will be organized as follows. Section 2 explains the greatest common divisor, then section 
3 goes over modular arithmetic and properties pertinent to this algorithm. Sections 4 and 5 elaborate upon the 
Euclidian Theorem and Bézout’s Lemma, respectively, and section 6 goes over Euler’s Totient Function and 
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Euler’s Theorem. All these concepts are then used in the theorem in section 7, which is finally applied to real 
life in section 8, the conclusion. 
 
 

Greatest Common Divisor (GCD) 
 
Definition 1 Given two integers a and b, their greatest common divisor, denoted by gcd(a, b), is the largest 
positive integer that divides a and b.  

For example, gcd(8,20) = 4 because 8/4 = 2, 20/4 = 5, and no larger integer can evenly divide both 8 
and 20. Note that gcd(a, 0) = a because any number can divide 0.  
 

Modular Arithmetic 
 
A key branch of number theory is modular arithmetic, which deals with remainders. In this section, we will 
only cover the aspects of modular arithmetic that are important for the RSA algorithm. 
Definition 2 Given two integers a and b, we say that a mod b returns the remainder when a is divided by b. 

For example, 20 mod 8 would be 4 because 20/8 is 2 remainder 4. Note that b cannot be 0 because any 
number divided by 0 is undefined. Also, we can write a mod b = c as 𝑎𝑎 = b⌊a/b⌋ + c, where ⌊ ⌋ denotes the floor 
function, which returns the largest integer smaller than the input.  

Definition 3 Given three integers x, y, and n, we can say x ≡ y (mod n) if x/n and y/n have the same 
remainder. This is often phrased as “x and y have the same residue modulo n.”  

For example, 20 ≡ 12 (mod 8) because 20/8 and 12/8 both have a remainder of 4. In other words, 20 
and 12 have the same residue modulo 8.  
 
Multiplication Rules 
 
Multiplication and division in modular arithmetic work exactly how they do in regular equations. For example, 
20k ≡ 12k (mod 8) for any k because the remainders are both multiplied by k. This property can be extended to 
the following:  

Property 1 If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n). 
Note that this idea can also be used for exponentiation, which is just repeated multiplication:  
Property 2 If a ≡ b (mod n) , then ac ≡ bc (mod n). 

 

Euclidean Algorithm 
 
Theorem 1 Let c = a mod b, where b ≠ 0. Then, 
gcd(a,b) = gcd(b,c). 

Proof: If a < b, then after one iteration of the algorithm we get gcd(b, a) because a mod b  would be 
a, making c = a as well. Therefore, for the sake of simplicity, let’s assume a > b. 

By definition, a = bx  + c and thus c = a – bx for some integer x. A number that divides b and c would 
divide bx + c, which means a common divisor of b and c is also a common divisor of a and b. Similarly a 
number that divides a and b would divide a – bx, which means a common divisor of a and b is also a common 
divisor of b and c. These two conditions mean a and b share the same common divisors with b and c, so their 
greatest common divisors would naturally be the same [2]. 

 

Bézout's Lemma 
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Theorem 2 There always are integers  and  such that ua + vb = gcd(a, b).  

Algorithm 1 
Bezout(a, b) 
Input. a, b 
Output. Lowest positive value of u, corresponding v  
 

 d = gcd(a, b) 
If b = 0: 

  Return 1, 0 
Else: 

w, x = Bezout(b, a mod b) 
u, v = x, w – x⌊a/b⌋ 
ū = u mod b

d
 

k =
 ū – u
b/d

 

v� = v – k a
d
 

Return  ū, v� 
 

Explanation: If b = 0, then d = a, so u = 1 and v = 0 because 1a + 0b = a. 
For all other cases, we can start by using the Euclidian algorithm to realize that wb + x(a mod  b) = 

gcd(b, a mod b) = gcd(a, b) = ua + vb for some integers w and x. We know a mod b can be written as a – b⌊a/b⌋, 
so after reorganizing variables, we get xa + (w – x⌊a/b⌋)b = gcd(a, b). This means u = x and v = w – x⌊a/b⌋. 

However, it turns out that there are an infinite number of (u,v) pairs that satisfy the equation. For any 
given u and v, all the pairs in the form (u + k�b

d
�, v – k�a

d
�), are also solutions for any integer k because the k�ab

d
� 

terms cancel out. For this algorithm, we need to find the lowest positive value possible for u + k�b
d
�, which we 

can call ū. Solving the expression for k leads to k = ū – u
b/d

. Additionally, ū is just the remainder when u is divided 

by b
d
, so we know that ū = u mod b

d
.  Because we know ū and k, we can now find v�, which is defined as the 

corresponding v-value for ū [4]. 
 

Euler’s Totient Function 
 
Definition 4  φ(n) is the number of positive integers less than or equal to the integer n that are also relatively 
prime to n. 

Theorem 3 (Euler’s Theorem) If gcd(a, n) = 1 for some integers a and n, then  
aφ(n) ≡ 1 (mod n). 

Proof: Let E = {r1, r2 … rφ(n)} be the φ(n) numbers less than n that are relatively prime to n.  
If rx is relatively prime to n, then arx is relatively prime to n as well because a is relatively prime to n. From 
this, we can conclude that the residues of the elements in F = {ar1, ar2 … arφ(n)}  modulo n are found only in set 
E.  

To prove that set F is a permutation of set E modulo n, we must show that every element in set F is 
unique. Let’s initially assume some two elements arx and ary in set F have the same residue modulo n. Because 
a and n are relatively prime, we can use Bézout’s identity to write the following equation: 
ua + vn = 1. 

This can be rewritten as ua = 1 – vn , and because the right side of the equation is one more than a 
multiple of n, we can say that ua ≡ 1 (mod n). Because arx ≡ ary (mod n), multiplying both by u would mean 
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that rx ≡ ry (mod n). However, rx and ry are elements in set E, which has unique elements by definition. Therefore 
our initial assumption must always be incorrect, and thus set F has unique elements and is a permutation of set 
E modulo n. 

Multiplying all the elements in each set would result in the following equation:  
r1r2 … rφ(n)aφ(n) ≡ r1r2 … rφ(n) (mod n).  
After canceling all values of , we get aφ(n) ≡ 1 (mod n). [1, 3]. 

 

Computing kth Roots Modulo m 
 
All the concepts discussed earlier in the paper combine to form the foundation of this theorem, which is the 
backbone of the RSA algorithm. 

Theorem 4 Let m, b, and k be integers so gcd(b, m) = gcd(k, φ(m)) = 1. Also let u and v be integers so 
that uk + v(φ(m)) = 1. Then, x in the equation xk ≡ b (mod m) is equal to bu mod m. 

Proof: We can rewrite b as b

bφ(𝑚𝑚)v because bφ(m) ≡ 1 (mod m) by Euler’s Theorem and b
1v  = b. With 

exponent rules, this can further be transformed into b1 – v(φ(m)), which happens to be buk due to the given condition 
uk + v(φ(m)) = 1. So now we have the equation xk ≡ buk (mod m), which means x ≡ bu (mod m) [4]. 
 
Special Case 
 
Let m = pq, where p and q are different prime numbers. To calculate φ(m), we can use complementary counting. 
There are pq total numbers less than or equal to m. There are m/p = q factors of p less than or equal to m and 
m/q = p  factors of q less than or equal to m, so we subtract p and q from m. However, this process counts m 
twice because it’s a multiple of p and q, so we must add one to get the following final expression: 

φ(pq) = pq – p – q + 1 = (p – 1)(q – 1). 
 

Conclusion 
 
Let’s return to the scenario of the two classmates, but now they will implement the RSA algorithm. The sender 
wants to send a message x, and at the moment, only the sender knows what x is. Two different prime numbers, 
p and q, are picked such that p and q don’t divide x. Additionally, because there would otherwise be an infinite 
number of possibilities for x, x is defined so 0 ≤ x < m, where m = pq. The receiver also knows what p and q 
are. After this, k is chosen so k and (p – 1)(q – 1) are relatively prime. With these values, xk mod m, which we 
can call b, is computed. Note that gcd(b, m) = 1 because b is a multiple of x but neither p nor q divide x. The 
sender sends b as a message, so the sender, the receiver, and also any potential viewers can see b, k, and m. The 
message x can therefore be derived with bu mod m, as shown in the previous section (to reiterate, u and v are 
defined such that uk + v(φ(m)) = 1, so u can be found with Bézout's Lemma). However, in a real-life application, 
m would be so big and so hard to factor that the only way x can be found is with p and q, which the receiver has 
but any outside viewers do not, allowing the RSA algorithm to function successfully.  
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