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ABSTRACT 
 
Discovered in the 19th century, liquid crystals have only grown more prominent in the last thirty to forty years as a 
result of electric fields being able to influence their nematic directors. Since these nematic directors can polarize light, 
liquid crystals have found extensive uses in the field of optoelectronics, including being in many of the devices (such 
as computers, phones, and tablets) that we have today. With the continued desire to improve these optoelectronic 
devices comes the desire to improve the liquid crystal systems that help to compose them. The growth of machine 
learning technologies has been near the forefront of these efforts to improve the efficiency and effectiveness of the 
development of these systems. In an effort to recognize this prominence, this article presents a review of machine 
learning’s presence and use in the study of liquid crystals, as well as a comparison of machine learning techniques and 
more traditional experimental methods.  
 

Introduction 
 
Overview of Liquid Crystals 
 
Liquid crystals (LCs) are a type of soft matter whose physical and structural properties bridge the flow properties of 
a liquid and the symmetrical properties of a crystal. Because of the bridging between solid and liquid properties, liquid 
crystals have a variety of phases, with some phases having more properties of a liquid and some phases having more 
properties of a solid. There are two common types of liquid crystals: thermotropic, whose phases change with tem-
perature, and lyotropic, whose phases change with concentration of the mesogen, the main compound of the liquid 
crystal, in the solution. The main phases of thermotropic LCs are depicted in Figure 1. The nematic phase, the phase 
that is more like a liquid, has molecules that can be aligned nonuniformly and whose alignments can be influenced by 
external electric or magnetic fields (like a liquid), and these can act as polarizers for light (like a solid crystal). Its 
molecules only possess orientational ordering and no positional ordering. This makes nematic liquid crystals ex-
tremely prevalent in devices such as optical displays and sensors due to these properties, making them very useful 
materials (de Gennes and Prost, 1995). The local orientation of liquid crystal molecules can be represented via direc-
tors on the mesoscopic level, and many studies of LC implement this concept when analyzing LCs. The smectic phase 
is the phase that is more like a solid than a liquid, retaining some positional ordering as well as having orientational 
ordering. To explain the positional ordering more in depth, smectic LCs are constrained to a set of parallel planes, and 
every director points the same direction relative to these planes, which is where the differentiation in smectic phases 
comes in. In the smectic A phase, the smectic directors point perpendicular to the plane, whereas in smectic C phase 
it is some other direction relative to the plane. This enables films to be made out of smectic phases, which are examined 
extensively due to being a platform to study 2-dimensional fluid dynamics (Oswald and Pieranski, 2005), in studies 
such as the OASIS studies (Klopp et al., 2019). When heated too much, the LCs will become conventional liquids, 
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called the isotropic phase as it is characterized by isotropic motion, losing all its molecular ordering. Some LCs also 
exhibit phases with anisotropic ordering.  
 

 
Figure 1. A figure depicting the different phases of thermotropic liquid crystals and their occurrence with increasing 
temperature, from a solid crystal to an isotropic liquid. As the material gets more heated, it goes from solid crystal to 
smectic C phase to smectic A phase to nematic and then to isotropic, gradually losing molecular ordering during each 
phase. In the transition between the solid and smectic phase, the material loses some positional ordering, making the 
positional ordering only in one direction. In the transition from smectic to nematic, the material loses all positional 
ordering, only possessing translational ordering. In the transition from nematic to isotropic, the material loses all 
molecular ordering. Figure used with permission from Dierking and Al-Zangana, 2017.  
 

Like most other types of soft matter, the physics of liquid crystal systems still need to be studied further. The 
main theoretical models used to describe liquid crystals were developed for other physical phenomena that are ex-
tended to liquid crystals. The Onsager model is a theoretical model that has been used to describe liquid crystal systems 
in equilibrium through dipole-dipole interactions (Onsager, 1931), but it has been generalized to deal with nonequi-
librium active matter systems (Yang et al., 2016), finding much use in theoretical liquid crystal study. Another im-
portant theoretical model was the Ising model, a statistical mechanical model that details interactions between different 
molecular spins whose planar form has been applied to computational and theoretical approximations of some liquid 
crystal systems, especially pertaining to phase transitions and quantitative ordering (Yurke et al., 1997). The XY 
model is another statistical model developed for liquid crystal systems that has been developed for understanding 
more complex systems and phase transitions, but, unlike the Ising model, matter following the Ising model cannot 
have an ordered phase at low temperature, giving use for the Ising model in that case as well (Rojas and Rutenberg, 
1999).  

However, as the technologies using liquid crystals become more developed, liquid crystals with more specific 
physical and structural properties are to be desired, such as the procedure to find the nematic order parameter (de 
Gennes and Prost, 1995). Many traditional experimental techniques to try and optimize and analyze these properties 
of liquid crystals for these novel technologies are very time consuming, and the time spent performing these techniques 
to find liquid crystals with specific optimized properties will only increase as time passes. Thus, machine learning has 
been introduced as an alternative to these time-consuming experimental techniques.  
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Overview of Machine Learning 
 
Machine learning has grown rapidly over the past 30 years, and has been implemented in many scientific fields to 
help aid in classification, recognition, and analysis of many phenomena, especially with imaging. Liquid crystals have 
been particularly popular to study with imaging techniques, as the material is birefringent, so most of its physical 
properties can be derived using an optical microscope. Additionally, the advent of databases such as LiqCryst, an 
online compilation of vast amounts of properties of liquid crystals, has made machine learning with liquid crystals 
easier due to the increased availability of big datasets (Vill, 1995). 
 
Overview of Common Types of Machine Learning Algorithms 
 
A hierarchy of machine learning methods is presented in Table 1. Machine learning can be split into two different 
categories: supervised learning and unsupervised learning. In supervised learning, both the input and output data is 
labeled for model training. However, in unsupervised learning, only the input data is labeled.  
 
Table 1. Categorizing machine learning algorithms based on type of learning, tasks used for, and computational com-
plexity. 

Machine Learning 
Method 

Type of Learning Tasks used for Computational Complex-
ity 

Multi Linear Regression Supervised Regression Very low 

K-nearest neighbors Unsupervised Classification Low 

Support Vector Machine Supervised Classification, Regression Medium 

Decision Tree Supervised Classification, Regression Medium 

Random Forest Supervised Classification, Regression Medium High 

Genetic Algorithm Reinforcement Decision Making Medium 

Feedforward Neural Net-
work 

Supervised Classification, Regression High 

Recurrent Neural Network Supervised Time-series classification, 
regression, decision-mak-

ing 

High 

Convolutional Neural 
Network 

Supervised Classification, Regression, 
Detection 

High 

.  
The simplest machine learning algorithm is Multi Linear Regression (MLR), where the output is linearly 

related to all of its inputs. Some studies in this review use k-nearest neighbors’ classification, where the function is 
evaluated with the help of already known local functions (it’s k nearest neighbors) to separate data into groups based 
on similarity measure (Peterson, 2009). Another type of machine learning model used is the Support Vector Machine 
(SVM). This model relies on the construction of a hyperplane, which is how it can be used to differentiate between 
two classes (Noble, 2006). This construction of a hyperplane can also be used for regression models via finding a 
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hyperplane that closely approximates all the data (Trafalis and Ince, 2000). Another algorithm that can be used for 
both classification and regression is a decision tree, which splits sets of data based on rules until every data point in a 
subset has the same output (Song and Lu, 2015). An algorithm that extends on the concept of decision trees is a 
Random Forest (RF), which combines randomized decision trees and averages the prediction (Biau and Scornet, 
2016). Another type of machine learning model used in this area of research is Genetic Algorithms (GAs), where 
initial populations of networks are chosen and the ones that are the best are chosen to reproduce their attributes, 
including some mutations to keep introducing random noise to the model doesn’t converge to a solely local optimum 
(Sutton and Boyden, 1994).   

Many of the machine learning models used in the studies that will be discussed are types of neural networks 
(NNs). Neural Networks consist of input layers, hidden layers, and output layers, all with neurons that have a weight 
and a bias. At each layer, the input array for that layer will be multiplied by the weights array of the hidden layer and 
then summed with the bias array for that layer, which is how the input layer can change its shape to match that of the 
output layer (Abiodun et al., 2018). The weights and biases are optimized via gradient descent, a technique that uses 
backpropagation and a learning rate to adjust the weights and biases so they can minimize a loss. The first, and sim-
plest, of the machine learning networks that will be discussed is the feedforward neural network (FNN). It takes a 1-
dimensional array as input, and returns a one-dimensional array as output after a series of hidden layers with an arbi-
trary amount of neurons called perceptrons (Abiodun et al., 2018). The second type of neural network used in these 
studies is a Convolutional Neural Network (CNN). These types of networks take 2-dimensional, 3-dimensional, or 4-
dimensional inputs (depending on if 1-dimensional convolution, 2-dimensional convolution, or 3-dimensional convo-
lution is used). The convolution then occurs, taking a section of the image (a kernel) and performing a convolution 
operation on that matrix, turning it into an array that is multiplied by the weights and biases of a normal neural network 
layer. This is repeated for every possible kernel in an array (Gu et al., 2017). The third type of neural network that is 
used very often is Recurrent Neural Networks (RNNs). These networks perform on sequential data, and turn the se-
quential data into a single array of numbers (Elman, 1990). Other types of networks that only show up in one source 
will be explained when that source is elaborated on.  
 
Overview of Scope of Review Article 
 
This review article will be discussing three different areas of liquid crystals study which machine learning has had a 
massive impact on: analyzing physical properties of liquid crystals, analyzing the structural and dynamical properties 
of liquid crystals, and designing liquid crystal systems with the desired properties. This article will also be comparing 
the results of studies that use machine learning to similar studies that don’t use machine learning wherever it is appli-
cable to put these studies into more perspective, and comparing different machine learning methods used in similar 
studies to compare the effectiveness of each method, when applicable.  
 

Using Machine Learning to Find Quantitative/Binary Correlations in LCs 
 
One of the many uses of machine learning is to test if a correlation exists between certain input variables and an output 
variable, as a basic machine learning model will learn if there is a correlation and won’t if there isn’t. Thus, machine 
learning has found uses in correlating physical properties of LCs and, in some cases, providing further insight into the 
physics of LCs.  

 
Classifying Between LCs and Non-LCs 
 
An application of machine learning to find correlations is first seen in identifying a compound as a LC or not, primarily 
through determining if the compounds would exhibit LC behavior. A feedforward neural network that was optimized 
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via a genetic algorithm was able to classify between liquid crystals and not liquid crystals with similarly structured 
organic compounds based on length of the rigid core, length of flexible core, molecular diameter, and total weight 
with 99% accuracy for the training dataset and 83.33% accuracy for the testing dataset (Lisa and Curteanu, 2007). A 
machine learning algorithm was able to classify between liquid crystals and not liquid crystals given numerous mo-
lecular descriptors, numbers that could be derived from a mathematical operation from the raw LC structure, from the 
LiqCryst database with training set accuracy just under 100% and testing set accuracy in the high 80s percent. Multiple 
types of machine learning frameworks were tested, including the Support Vector Machine (SVM), k-nearest neighbors 
(KNN), the Random Forest, Adaboost (a framework that takes the accurate parts of generally poorly trained classifiers 
to theoretically form the ideal classifier through some weight adjustment), and three Decision Trees with varying 
depths, but the Random Forest and SVM models performed the best. Descriptor sets from the DRAGON and RDKit 
software, including adding extra inputs of molecular fingerprinting, were used to see which set would perform better 
on the dataset, (Chen et al., 2018).  
 
Finding Quantitative Physical Properties of LCs 
 
Another application of machine learning to find correlations is using known physical properties, derived physical 
properties or images to find other quantitative physical properties of LCs. Specific properties of interest in many of 
these studies include sample temperature, phase transition temperature, and order parameter for nematic LCs, and 
pitch length for cholesteric LCs, as these are properties that cannot be observed easily or quickly using traditional 
experimental methods. Multiple input features of ML models have been used to tackle this problem, and here three 
are discussed: Quantitative Structure Property Relationships (QSPRs), Ordinal Methods derived from the image, and 
directly using the image for the machine learning model.  

 
Using QSPRs for ML of Physical Properties of LCs 
 
A more common input feature to use for these simple ML models to predict LC properties are QSPRs, certain quan-
titative properties calculated using the structure of the LC using theoretical methods, such as Density Functional The-
ory (DFT) or the AM1 quantum chemical method. Using two-ring and three-ring LC compounds, a feedforward neural 
network was able to predict the clearing temperature of the set of LCs with a pairwise correlation coefficient of 0.983 
for the testing set (Johnson and Jurs, 1999). A MLR model was able to determine nematic transition temperature of 
LCs with two aromatic rings linked to an ester group with varying terminal chains using nine descriptors calculated 
using the PM3 theory with an R-squared value of 0.9217 for all 42 LC data points (Villanueva-Garcia et al., 2005). A 
Multi-linear regression model was able to calculate the nematic transition temperatures of LCs with two aromatic 
rings linked to an ester group with varying terminal chains using six descriptors calculated using DFT, which proved 
to be comparable to other MLR models using descriptors calculated by different methods (Al-Fahmi, 2014). Based on 
eight different descriptors of molecules that all shared a COO- chain linking two terminal hydrocarbon chain, a Radial-
based function neural network, a feedforward neural network with only one hidden layer and a radial-based function 
(whose value at any point is solely dependent from the distance from the input to some other point) for an activation 
function in the  hidden layer (Karayiannis and Mi, 1997), was able to predict the phase transition temperature for these 
types of molecules with an R-squared value of 0.953, performing better on validation data than the Support Vector 
Machine model trained on the exact same data (Gong et al., 2008). Using six descriptors of LCs with the exact same 
specifications as Al-Fahmi’s study, both MLR and feedforward neural networks were tested to predict the nematic-
isotropic transition temperature, with the neural network performing better on both training and validation sets than 
the MLR model (Fatemi and Ghorbanzand’e, 2009). The superior performance of nonlinear models compared to linear 
models was further supported in a study one year later (Xu et al, 2010). Machine learning models were able to use 5 
descriptors of LCs containing pyridine to find the nematic-isotropic transition temperature with high accuracy. Alt-
hough MLR models performed well (with an R-squared value of 0.976), the nonlinear regression models, the SVM 
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and the projected-persuit regression models, had higher R-squared values for both training and validation sets. (Ren 
et al., 2017). On a broader dataset of LCs, consisting of 243 five-ring aromatic compounds with varying terminal 
chains, linkage groups, and substituents on central and outer rings, a Multi-Automated Regression Splines model was 
able to achieve an R-squared value of 0.900 using 2-dimensional and 3-dimensional descriptors, performing better 
than the Support Vector Machine (Antanasijevic et al., 2016). From 15 input features describing the structure of an 
array of LC beads, a random forest regression model was able to find the phase transition temperature with a coeffi-
cient of determination of 0.943, and from those 15-input feature plus the phase transition temperature, was able to 
predict the order parameter with a coefficient of determination of 0.894 (Inokuchi et al., 2019).  

 
The Use of Ordinal Methods as Input Features 

 
One particular method that has grown in popularity for the use as input features for machine learning models is the 
use of ordinal methods, which consist of estimating a probability distribution of the occurrence of ordinal patterns in 
an image. A fast and scalable k-nearest neighbors’ algorithm has proved to be viable in measuring properties of liquid 
crystals, such as the temperature and the order parameter, based on the statistical complexity and the permutation 
entropy which is derived directly from the optical image using ordinal methods, 99% when trained on Monte Carlo 
simulation training data and 93% on experimental data of nematic textures of E7 liquid crystals. (Sigaki et al., 2019). 
The algorithm was also able to accurately predict the pitch of a cholesteric LC given the same inputs. When only using 
either the statistical complexity or the permutation entropy as input features for a machine learning algorithm to de-
termine the order parameter of a LC, the accuracy of the model decreased by 6% (Sigaki et al., 2019). The same type 
of algorithm was able to classify between first and second order nematic phase transitions very accurately, building 
off the ordinal methods that were used to approximate both the permutation entropy and statistical complexity in 
(Sigaki et al., 2019) by introducing ordinal networks, which also analyze transitions among ordinal patterns in an 
image, analyzing the change of ordinal patterns of liquid crystal textures. (Pessa et al., 2022).  
 
Using Images as Input Features 
 
Another popular method for machine learning of physical properties of LCs is using the optical image as the input to 
the model (with some preprocessing). This method can predict it directly from the image, reducing computational 
time, and it shows the power of machine learning through the models not knowing any of the physics of the systems. 
From extracting the RGB values of blocks of an image, a feedforward neural network was able to predict the temper-
ature of a thermotropic LC with extremely high accuracy. In fact, it performed better than the previous method of 
classifying temperature as a function of LC hue (Grewal et al., 2006), showing the promise of machine learning in 
these studies. More recently, the use of Convolutional Neural Networks in these types of studies has allowed for easier 
and more accurate prediction of these physical properties. A study used Convolutional Neural networks to find the 
order parameter of nematic LCs and the pitch length of cholesteric LCs directly from the optical image. For the net-
work finding the order parameter of nematic LCs, the coefficient of determination on the testing set was 0.997 with 
four Convolutional layers, outperforming an earlier study that used a k-nearest neighbors’ algorithm that used permu-
tation entropy and statistical complexity. For predicting the pitch length of cholesteric liquid crystal, the network 
became 100% accurate at 3 and 4 convolution blocks, showing the promise for an extremely direct method to predict 
cholesteric pitch length in experimental configurations when the helical axis of the LC is perpendicular to the viewing 
direction of the optical microscope (Sigaki et al., 2020). 
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Machine Learning for Structure and Dynamics of LCs 
 
More complex machine learning networks and/or data preprocessing techniques have shown usefulness in studies of 
structural and dynamical properties of liquid crystals. Problems of great interest in this field include studying LC 
phases and phase transitions, prediction of structural dynamics, predicting external stimuli from LC response, studying 
defects, and studying active nematics.  

 
Studying LC Phases and Phase Transitions 
 
A more specific application of ML to LC structure involves predicting LC phases and phase transitions. One such use 
has been in distinguishing between nematic and smectic-like structures in liquid crystal polymers, with the use of a 
random forest model that took order parameters (such as the local McMillan order parameter and the local Onsager 
order parameter) as input features. Using Sequential Forward Selection, which selects a number of input features from 
a set of input features that will yield the highest accuracy for the model (Mani and Kalpana, 2016), the most useful 
order parameters for the analysis of prediction between phases was selected. This provided a better alternative to 
manually selecting the order parameter(s) that are best suited for classifying that LC system (Doi et al., 2019).  Using 
the machine learning framework by Doi et al. to find the order parameters needed, a machine learning network was 
able to ease the analysis of multistep phase transitions in anisotropic liquid crystal system, as the order parameter was 
needed for a complete analysis of the system (Takashi et al., 2021). Using multiple different combinations of a set of 
13 input features describing molecular composition and environmental conditions of different liquid crystalline mol-
ecules (including temperature), machine learning models were able to predict the existence of a mesophase for that 
material in those conditions. They found that the ANN performed better than the MLR model for all different sets of 
descriptors used (Le and Tran, 2019). Another study used a different dimensionality reduction algorithm with a ran-
dom forest regression to help correlate structural parameters with the occurrence of a ferroelectric nematic phase, 
which assisted greatly in the design and research of these ferroelectric nematics for eventual use for LC systems with 
very high dielectric constants (Li et al., 2021). Using infrared spectral data of the liquid crystal 12BBAA (4-bromo-
benzylidene-4′-dodecyloxyaniline), a k-means clustering algorithm was able to determine the phase of that liquid 
crystal based on temperature. However, with a window clustering algorithm, that splits the spectral data into wave-
number ranges (the “windows”) and performs k-means clustering analysis on each window to determine the phase in 
each spectral subset, the study was able to further analyze the melting of the alkyloxy chains within the compound, 
extracting even more useful information from the complex infrared spectra (Oscieka-Drewniak et al., 2021).  

 
Predicting Structural Dynamics of LCs 
 
Another use of machine learning in studying structure and dynamics has been the prediction of certain structures and 
dynamics that will arise in certain situations. Through the use of genetic algorithms, a study was able to compute LC 
director configurations by computing which configuration had the least free energy for a variety of LC systems, such 
as hybrid cells, 90-degree twist cells, and twisted nematic cells, making the process less time-consuming then the 
manual methods used beforehand, especially due to how many LC systems the model can be applied to (Yang and 
Collins, 2020).  

Through the use of a diffusion map, a dimensionality reducing algorithm to find the input features that yield 
high accuracy for the model (Coifman and Lafon, 2006), similar to Sequential Forward Selection, a study used ma-
chine learning to correlate the pitch and radius of helicoidal trajectories of chiral twist-bend nematic phase LCs with 
the pitch and conical angle of the twist-bend nematic phase (Chiappini et al., 2019).  
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Machine Learning Dynamics of LC Response to External Stimuli 
 
Machine learning has also been used to determine certain external stimulants based on a liquid crystal’s optical re-
sponse to them, either mechanical or chemical. This has a very direct application in improving the potential for liquid 
crystals as both chemical (Shah and Abbott, 2001) and mechanical (Ireland and Jones, 2000) sensors. A study used a 
SVM algorithm to classify what environment a LC was in with 99% accuracy, significantly higher than the 60% 
accuracy of the sensor achieved via traditional means (Cao et al., 2018). To do this, it used Alexnet (Krizhevsky et 
al., 2012) to extract features from the optical image of the LC under the microscope, using those extracted features as 
input features for the SVM classifier. Building off this study, another study used an SVM to predict using features 
extracted from the newer pretrained VGG16 network (Simonyan and Zisserman, 2014) for image analysis as opposed 
to Alexnet. The classifier performed as accurately, but less features were required to make it perform up to the level 
of the SVM produced by Cao et al., increasing computational efficiency of this extremely accurate method (Smith et 
al., 2020).  
 In the field of analyzing mechanical stimuli to liquid crystals, a study was able to accurately predict the shear 
and stress on LCs for sensing the shear stress vector for shear sensitive liquid crystal coating images (Zhao et al., 
2022). Although not really improving on the accuracy using traditional methods, the learning method is both more 
computationally efficient (enabling almost real time prediction) than the original Gaussian curve fitting method and 
is able to be used in more experimental settings than traditional methods.  
 
Studying LC Defects 
 
One particular phenomenon that is the focus of many studies is defects in liquid crystals, with two main defects of 
interest being topological defects in nematic LCs and isotropic droplets and pancake layers in smectic LCs. Topolog-
ical defects are a phenomenon with nematic LCs when the nematic directors lose their order because they want to 
minimize the stress, rotated by a certain angle around the defect, the angle depending on the topology of the system. 
The defects are named based on the winding number, which is the number of radians the director rotates around the 
defects, by 2 pi, with the most common in LCs being +½ and -½ defects (Wenzel et al., 2020). Because of the misa-
lignment of the nematic directors, defects will result in poorer performance of liquid crystals for the optoelectronic 
applications they are most commonly used for, but the motion of defects can also be an indicator of whether a biolog-
ical material is extensive or contractive (Kawaguchi et al., 2017). Thus, analyzing the instances and motions of topo-
logical defects within liquid crystal systems is of great interest in the field. On the flipside, the alignment of nematic 
directors is easy to tell from under a microscope (as the different orientation of the directors would polarize incoming 
light differently), so the use of machine learning has found much potential in the analysis of optical images to classify 
and detect topological defects in liquid crystals. The use of Convolutional Neural networks and a diverse dataset 
produced a multi-object detection network for topological defects in smectic phase films that had a maximum mAP 
score of 0.841. Because of how much data is required to train a multi-object detection network based on the YoloV2 
algorithm, the algorithm was trained on simulation data to make it less time consuming as opposed to experimental 
data. Simulations based on the XY model (specifically the Landau-Ginzberg interpretation) yielded the most accuracy 
when applying the model to experimental data, which became as accurate as humans while taking much less time, 
showing improved performance on the machine learning model (Minor et al., 2019). Additionally, FNNs and RNNs 
have been used to classify the types of defects within LC cells with high accuracy using simulation data of the LC, 
which gave the model the x-coordinate, the y-coordinate, and the angular orientation of N rod-like molecules ordered 
by their label. The FNNs required presorting of the data based on position to perform well due to the off-lattice nature 
of the defect classification, but the RNNs performed well with just the raw data due to their ability to recognize 
sequential patterns within the data, which invites the further use of RNNs into studies of topological defects of liquid 
crystal materials.  (Walters et al., 2019). From the RGB data of topological defects within a LC produced by a polarized 
microscope that used phase contrast and polarize functions to color different orientation angles differently, a machine 
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learning algorithm was able to determine the order parameter of the system and the orientation angle for each pixel of 
an image, providing a orientation and order map for the study to help in the analysis of the change of molecular 
ordering in the presence of topological defects (Sakanoue et al., 2021). 
 Classifying topological defects is also a problem of great interest. From a 10 by 10 kernel of principal direc-
tors surrounding a topological defect, with the defect located in the center, an Artificial Neural Network was able to 
classify whether a defect was a +½ or -½ defect (Wenzel et al., 2020).  

Defects can also show up in smectic films in the form of pancake smectic layers or isotropic droplets in the 
films, and ML has been used for detection of these defects to delve further into the physics of smectic films. A SVM 
was used to detect droplets in smectic films, outperforming TrackPy (a non-ML computer vision algorithm for blob 
detection) and serving to be very useful for quick detection of bubbles in smectic films, even if they are obscured 
somewhat (Hedlund et al., 2021). 
 
Active Nematic Dynamics 
 
Another interesting phenomenon that ML has been applied to is for predicting the dynamics of active nematics, which 
are nematic phases that are out of thermodynamic equilibrium. In these systems, the defects exhibit dynamics and the 
whole system is under chaotic flow, and many methods have been developed to stabilize defect trajectories (Doost-
mohammadi et al., 2018). Although it is known that the dynamics of active nematics depend on the symmetries of the 
system (Marenduzzo et al., 2007), the physics of active nematic flows not thoroughly explored due to the chaotic 
dynamics of those types of systems (Tan et al., 2019), making it perfect for machine learning.  Since much of the 
emphasis of the study of active nematics is on defect dynamics, studies initially used non-machine learning particle 
tracking algorithms to analyze defect dynamics (Wenzel et al., 2020). With the increased usage of the Recurrent Neural 
Network and the Convolutional Neural Network in scientific studies, machine learning has been employed to forecast 
the dynamics of active nematic systems. A variant of an autoencoder algorithm that encodes each image in a sequence 
into feature vectors, then applies a RNN layer to that time series to then encode it into the image of the nematic director 
dynamics that is going to happen. This was able to do so only using the spatiotemporal data of the image  without any 
other theoretical assumptions, and it proved to be accurate both before and after the Lyapunov time, the time when a 
nonlinear dynamic system becomes chaotic. Additionally, this performed well on both experimental and simulational 
data, showing the applicability of the model that doesn’t have information about the physics behind the system to 
predict dynamics. (Colen et al., 2020). In fact, it performed better on experimental data than the Lattice-Boltzmann 
simulations, which have knowledge of the underlying physics. A network with Convolutional LSTM layers was also 
able to predict the behavior of nematic liquid crystal systems in both experimental and simulation settings (Zhou et 
al., 2020). Due to the experimental data in this study not containing all of the active nematics in the system, the studies 
cannot be compared on experimental data to see which architecture performed better in forecasting active nematic 
dynamics.  
 

The Future of ML in LC Research 
 
With the use of machine learning in LC research only becoming more widespread as the years progress, there is no 
doubt that there is still much in store for new ML techniques applied to LC research and new applications of ML to 
LC research.  

For one, reinforcement learning, a subset of machine learning where an agent learns by maximizing its reward 
given the state of the environment it is used (Sutton and Barto, 1998) that has often been used for algorithms to play 
video games (Mnih et al., 2013), has found uses in the field of soft matter, such as in the production of circular-shaped 
colloidal crystals (Zhang et al., 2020), showing that reinforcement learning can be used for liquid crystal study as well, 
such as through accurate structural modeling. Additionally, reinforcement learning has shown the ability to exploit 
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interactions to produce desirable dynamics in systems (Liu et al., 2021), which shows its promise in the field of active 
nematics.  

Another type of algorithm that could be used in the future of LC Research is a Generative Adversarial Net-
work (or GAN), which consists of two networks: a generator and a discriminator. The discriminator is trained to 
discern AI-generated data from real data, and the generator is trained on fooling the discriminator (Goodfellow et al., 
2014). It has already been applied to modeling particle showers in electromagnetic calorimeters in high energy physics 
(Paganini et al., 2018), as well as in constructing 3D electrode microstructures (Gayon-Lombardo et al., 2020), show-
ing promise for its application in modeling both active and passive liquid crystal structures.  

With the GAN and reinforcement learning algorithms gaining more popularity in the scientific community, 
this invites a new use for machine learning in LC research: to design LCs for certain purposes. Li et al. (2021) used a 
machine learning framework to help find parameters that would lead to the occurrence of a ferroelectric nematic phase, 
but the design of liquid crystals was not done using ML. However, with the increased popularity of GANs and rein-
forcement learning in the scientific community, including works using machine learning and GANs to model and 
produce desirable properties of a system of materials, it is a logical next step for ML to be used directly in the design 
of LCs and LC systems with desirable properties.  

At the moment that this paper was written, ML techniques are only applied for one component of the exper-
imental pipeline. With machine learning’s already proven potential as an alternative to time-consuming experimental 
and by-hand techniques for measuring properties, it is only a matter of time before ML is incorporated into more 
autonomous experiments. Machine learning was able to extract valuable kinetic parameters from multiple polymeri-
zation reactions combined with semi-autonomous experimentation, enabling for mostly autonomous experimentation 
of polymerization catalysts. This increased autonomy in the experiment reduced both the time for catalytic discovery 
to occur and the chemical waste produced by a matter of hours (Rizkin et al., 2020), which shows not only the potential 
for autonomous experimentation in the study of LCs but also underscores the merits of doing so.  
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