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ABSTRACT 
 
Detecting heart arrhythmias from short Electrocardiogram (ECG) recordings remains challenging since record-
ings are short and contaminated by noise. ECG morphology features and Heart Rate Variability (HRV) time 
and frequency domain features are widely used for classifying short ECG recordings. Here we investigate the 
relative roles of ECG morphology features and HRV time and frequency domain features in classifying short 
ECG recordings provided by the 2017 PhysioNet/Computing in Cardiology Challenge. The classification is 
performed separately by four machine learning models: Logistic Regression, Decision Tree, K Nearest Neigh-
bors, and Convolutional Neural Network (CNN). Our best classification score is obtained using the deep learn-
ing 1-dimensional CNN model trained on HRV time domain features combined with ECG morphology features. 
It gives an overall F1 score of 0.70 and 0.73 for the cross validation and hidden test respectively when consid-
ering the average classification performance over all 4 categories: Atrial Fibrillation (AF), normal, other ar-
rhythmias, and noisy signal. We found that HRV time domain features play an important role in detecting AF, 
normal, and other classes, whereas ECG morphology features play a key role in detecting the noisy class. When 
HRV frequency domain features are combined with HRV time domain features, they do not improve and often 
degrade classifications of short ECG recordings compared to classifications using only HRV time domain fea-
tures. Combining ECG morphology features with HRV time domain features leads to a better classification 
performance for short ECG recordings. Feature-based deep learning could serve as a viable and less expensive 
approach for ECG classifications.  
 

Introduction 
 
Atrial Fibrillation (AF) is the most common form of heart arrythmias. It occurs when the normal sinus node is 
unable to control the heart rate because of activity in the upper chambers, or atria, of the heart (Nattel, 2002). 
Victims of AF experience complications like stroke, heart failure, and coronary artery disease (Clifford et al. 
2017). Over the past few decades, AF induced and related deaths have become significantly more common. 
Electrocardiograms (ECGs) are often useful for AF detection, since AF is characterized by a lack of a P wave 
and inconsistent Heart Rate Variability (HRV) in ECGs (Da Silva-Filarder & Marzbanrad, 2017). And yet, it is 
not always easy to detect. Other arrythmias may have irregular heartbeats similar to those of AF on an ECG. 
Furthermore, AF may be episodic. 
             Past studies often focused solely on differentiating AF from normal ECGs. They were also limited by 
the datasets they used (Clifford et al. 2017). Conventionally, AF is detected using atrial activity analysis (by 
observing P waves and F waves) or ventricular response analysis (Yazdani et al. 2017). Other previous studies 
have extracted features from both the ECG spectral measures and the HRV (Billeci et al. 2017). The ECG 
morphology features and HRV time domain and frequency domain features are widely used for detecting heart 
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arrhythmias from short ECG recordings (Clifford et al. 2017; Coppola et al. 2017; Datta et al. 2017; Goodfellow 
et al. 2017; Zabihi et al. 2017). However, the relative role of each type of features in the classification perfor-
mance of short ECG recordings is unclear. The short ECG recordings such as those provided by the 2017 
PhysioNet/Computing in Cardiology Challenge, ranging from 9 seconds to 61 seconds, are not long enough to 
accurately reveal the HRV low frequency components (Shaffer & Ginsberg, 2017). Hence it is unknown 
whether the widely used HRV frequency domain features for classifying such short ECG recordings (Clifford 
et al. 2017; Coppola et al. 2017; Datta et al. 2017; Goodfellow et al. 2017; Zabihi et al. 2017) would be neces-
sary. Meanwhile, ECG morphology features might be effective in distinguishing the Noisy class from other 
ECG classes (Goodfellow et al. 2017; Ghiasi et al. 2017).  
             To classify ECGs, researchers have used both feature-based conventional Machine Learning (ML) 
models (Clifford et al. 2017; Goodfellow et al. 2017; Smoleń, 2017) an data-driven Deep Learning (DL) models 
(Andreotti et al. 2017; Chandra et al. 2017; Hsieh et al. 2020; Warrick & Homsi, 2017; Xiong et al. 2017; 
Zihlmann et al. 2017; Van Zaen et al. 2019; Weimann & Conrad, 2021), with some studies combining both 
methods (Datta et al. 2017; Andreotti et al. 2017; Ghiasi et al. 2017). However, the complicated DL models 
with millions of model parameters are computational expensive to train (Hsieh et al. 2020; Zihlmann et al. 
2017). Additionally, the classification score for the minority classes (e.g. Noisy class) may degrade over training 
time when using complicated DL models such as a combination of Convolutional Neural Networks (CNNs) 
and a stack of the Long Short-Term Memory layers (Warrick & Homsi, 2017). It is detrimental to make classi-
fications with CNNs of above 7 convolutional layers (Van Zaen et al. 2019).  
              The purpose of this study is to investigate the role of different types and combination of features, i.e. 
ECG morphology features, HRV time domain features, and HRV frequency domain features, in classifying 
short ECG recordings in terms of four categories: AF, Normal rhythm, Other arrhythmias, and Noisy signal. 
Four different ML classification models (Logistic Regression, Decision Tree, K Nearest Neighbors (KNN), and 
CNN are applied to the features extracted from the short ECG recordings provided by the 2017 PhysioNet/Com-
puting in Cardiology Challenge (Clifford et al. 2017). Here the CNN model is employed to test the performance 
of the extracted features from ECG and HRV integrated with the DL approach, since fewer previous studies 
were focused on the much simpler feature-based methods integrated with DL models, which would cost much 
less computing time. 
 

Materials and Methods 
 
The flowchart representing the pipeline for classifying the short ECG recordings used in this study is shown in 
Figure 1. Throughout this section each block in this flowchart will be discussed sequentially. 
 

 
Figure 1. Flowchart of the classification of short ECG recordings into four categories.  
 
Data and Preprocessing 
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The dataset used to conduct this study is downloaded from the 2017 PhysioNet/Computing in Cardiology Chal-
lenge (Clifford et al. 2017). It contains 8528 single lead ECG signals in four different classes: 758 AF, 5076 
Normal, 2415 Other rhythm, and 279 Noisy recordings, ranging in length from 9 seconds to 61 seconds at a 
sampling frequency of 300 Hz. We use version 3 (V3), the latest version of the ECG class labels, which has 
substantial corrections compared to the original labels posted for the Physionet Challenge 2017 for the Noisy 
class (Clifford et al. 2017). For the data preprocessing, first the ECG data is detrended, then a butterworth filter 
(0.05 – 50 Hz) is applied to the detrended ECG data to remove the baseline wander (Datta et al. 2017). Finally, 
each ECG data is normalized with the mean removed and the signal’s difference from the mean is divided by 
its standard deviation. 
 
 
R Peak Detection and ECG/HRV Feature Extraction 
 
The typical ECG heartbeat has a pronounced peak of the R wave (the so-called R peak). To extract features, R 
peak detection is performed on each preprocessed ECG data using the Hamilton-Tompkins algorithm (Hamilton 
& Tompkins, 1986) through the biosppy.signal.ecg.ecg function provided by the Biosignal Processing in Python 
(BioSPPy) library (Carreiras et al. 2015). This function also extracts the corresponding heartbeat template as-
sociated with each R peak in the preprocessed ECG data. The first 2 seconds of each preprocessed ECG are 
excluded to avoid the impact of noises on R peak detection. Figure 2 shows sample ECGs and detected R peaks 
from each class: AF, Normal, Other, and Noisy. The corresponding median and all individual templates from 
the above four sample ECGs are also shown in Figure 3.  
             From the R peaks, three types of features are extracted: ECG morphology features, HRV time domain 
features, and HRV frequency domain features. The ECG morphology features include the following 5 features: 
(1) Count of negative peaks, i.e. the number of templates within each ECG where the absolute value of the 
maximum of the template is smaller than the absolute value of the minimum of that template. (2) Normalized 
P wave amplitude, i.e. the maximum value between -0.2s and -0.1s of the median template (P wave peak) 
normalized by the maximum of the median template of each ECG (Figure 3a). (3) The median of all correlations 
between consecutive templates of each ECG. (4) Median R peak amplitude of each ECG. (5) The ratio of the 
maximum absolute value of each ECG over the corresponding median R peak amplitude. The boxplots of ex-
ample ECG morphology features are shown in Figure 4. The above ECG morphology features are mainly used 
to distinguish the Noisy class from AF, Normal, and Other classes (Figure 4), because the Noisy class contains 
more inverted peaks, lower correlations between templates (Ghiasi et al. 2017; Goodfellow et al. 2017), and 
smaller R peak amplitudes. The normalized P wave amplitude feature is mainly used to detect the AF signal, 
since AF is characterized by the absence of a P wave. 
             We calculate the median R peak - R peak (RR) intervals from the detected R peaks of each ECG as the 
first HRV time domain feature. Additionally, 5 HRV time domain (i.e. SDNN, RMSSD, SDSD, pNN50, and 
the triangular index) and 12 frequency domain (i.e. very low frequency (VLF) peak, low frequency (LF) peak, 
high frequency (HF) peak, LF/HF power ratio, VLF relative power, LF relative power, HF relative power, VLF 
absolute power, LF absolute power, HF absolute power, LF normalized unit, and HF normalized unit) features 
(Shaffer & Ginsberg, 2017) are extracted from the calculated RR intervals using pyHRV, an open source python 
toolbox for HRV (Gomes et al. 2019). The above feature terms are defined in Table 1. The boxplots of example 
HRV time domain and frequency domain features are shown in Figure 5 and Figure 6 respectively. 
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Figure 2. Sample ECGs and detected R peaks from each class. (a) AF, (b) Normal, (c) Other, (d) Noisy. 

 
Figure 3. Median (a) and all individual (b) heartbeat templates from the sample ECGs shown in Figure 2. 
 
              Table 1 lists and describes all 23 features extracted in this study. A heatmap is created from all 23 
extracted features to find the correlation between each of the features (Figure 7). Once all the features are 
extracted, six distinct feature datasets are created: (1) HRVF: The 12 HRV frequency domain features. (2) HRVT: 
The 6 HRV time domain features. (3) HRV: All 18 HRV features (both time domain and frequency domain). 
(4) ECG: The 5 ECG morphology features. (5) HRVT + ECG: The 6 HRV time domain features plus 5 ECG 
morphology features. (6) HRV + ECG: All 18 HRV features (both time domain and frequency domain) plus 5 
ECG morphology features. 
 
Table 1. Description of the ECG and HRV based features used in this study.  

Features (related reference) Unit Description 
ECG Morphology Feature 

  

Count of Negative Peaks None Number of templates where the absolute of the maximum is 
less than the absolute of the minimum  
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Normalized P Wave Amplitude (Goodfel-
low et al. 2017) 

None P wave amplitude of the median template normalized by the 
median template maximum 

Median Template Correlation  
(Ghiasi et al. 2017; Goodfellow et al. 2017) 

None Median of correlations between consecutive templates 

Median R Peak Amplitude 
(Goodfellow et al. 2017) 

None Median amplitude of all detected R Peaks  

Max/Rpeak Ratio None Ratio between the absolute maximum of the preprocessed 
ECG and the median R peak amplitude 

HRV Time Domain Feature  
(Shaffer & Ginsberg, 2017) 

  

Median RR Intervals ms Median R peak - R peak (RR) intervals  
SDNN ms Standard deviation of RR intervals 
RMSSD ms Root mean square of successive RR interval differences 
SDSD ms Standard deviation of differences between adjacent RR 
pNN50 % Percentage of successive RR intervals that differ by more 

than 50 ms 
Triangular Index None Integral of the density of the RR interval histogram divided 

by its height 
HRV Frequency Domain Feature (Shaffer 
& Ginsberg, 2017) 

  

VLF Peak Hz Peak frequency of very-low-frequency band 
LF Peak Hz Peak frequency of low-frequency band  
HF Peak Hz Peak frequency of high-frequency band 
LF/HF Power Ratio None Ratio between LF power and HF power 
VLF Relative Power % Relative power of very-low-frequency band 
LF Relative Power % Relative power of low-frequency band  
HF Relative Power % Relative power of high-frequency band  
VLF Absolute Power ms2 Absolute power of very-low-frequency band 

LF Absolute Power ms2 Absolute power of low-frequency band  

HF Absolute Power ms2 Absolute power of high-frequency band  

LFnu None Low-frequency relative power in normalized units 
HFnu None High-frequency relative power in normalized units 
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Figure 4. Boxplots of ECG morphology features for each category of heart arrhythmias. (a) Count of negative 
peaks, (b) Normalized P wave amplitude, (c) Median template correlations, (d) Median R peak amplitude. 
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Figure 5. Boxplots of HRV time domain features for each category of heart arrhythmias. (a) Median RR inter-
vals, (b) SDNN, (c) pNN50, (d) Triangular index. 
 

 
Figure 6. Boxplots of HRV frequency domain features for each category of heart arrhythmias. (a) LF peak, (b) 
VLF relative power, (c) LF relative power, (d) HF relative power. 
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Figure 7. Correlation heatmap between all the extracted features in this study. 
 
ML Models and Classification 
 
In this study, the ECG classification is performed separately by four different ML models: Logistic Regression, 
Decision Tree, KNN, and CNN. Logistic Regression is the baseline model for classifications, usually used to 
predict the probability of an event occurring. Decision Tree is a non-parametric model that classifies using 
decision rules that increase in complexity with the tree’s depth. We use a depth of 9 in this study. The KNN 
model classifies an unknown point according to the categories of the point’s k (where k is any integer) nearest 
neighbors (Fix & Hodges, 1989). The number k of nearest neighbors varies with the dataset. For this paper, the 
number of nearest neighbors used in the KNN model is 13. The CNN model is a DL model that uses a kernel 
to detect patterns across an array. Because of its pattern detection capabilities, CNN is often used for image 
classifications (LeCun & Bengio, 1995). In this study, the 1-dimensional (1D) CNN model has a kernel size of 
8 along with 32 filters. The 1D CNN layer is connected to a 1D global average pooling layer, which is then 
connected to a dense output layer with a softmax activation. The loss function used for the CNN model training 
is categorical cross entropy and the optimizer used is adam. The CNN model is trained for 1000 epochs with a 
batch size of 40. 
              Each of the six feature datasets is used to train the above four ML models to compare the impact of 
different types and combinations of features. The ML models' classification output (i.e. labels) include all 4 
ECG categories (AF, Normal, Other, and Noisy). The formula used to calculate the F1 scores of the classifica-
tion (for each category and for the overall F1 score) is provided by the PhysioNet Challenge 2017 website 
(https://physionet.org/content/challenge-2017/1.0.0/). The overall F1 score is the average of the F1 scores of all 
4 categories. Because of the labeling issue for the Noisy class at the time of the PhysioNet Challenge 2017 
(Clifford et al. 2017), the overall F1 score was only averaged over 3 categories (AF, Normal, Other) in many 
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previous studies participated the PhysioNet Challenge 2017. Here by using the corrected latest version, version 
3 (V3) of the ECG class labels, which was only available after the PhysioNet Challenge 2017, the overall F1 
score is averaged over all 4 categories as defined in the PhysioNet Challenge 2017 website. 
              Each of the six feature datasets is normalized using the Standard Scaler method before being given to 
the four ML models for classifications. Then it is randomly split into 90% training data and 10% hidden test 
data across all 8528 ECGs using the stratified Sklearn train test split function, which keeps the same relative 
distribution of the 4 classes in both the training and the hidden test data (Pedregosa et al. 2011). Cross validation 
is also used in this study. It is the practice of splitting the training dataset further into different combinations of 
training and validation sets to gauge how splitting the training dataset differently affects the model’s perfor-
mance. One common way to implement cross validation is through k-folds, which divides the training set into 
k sections, and selects one of these sections to become the validation set (Hastie et al. 2008). Since the ECG 
recordings used in this study are heavily imbalanced, with most of the recordings containing normal ECGs and 
few AF and noisy ECGs, stratified 10-fold cross validation is chosen so that the relative distribution of the 4 
classes is the same in each fold as in the full dataset. Finally, each model is trained on the entire training data, 
which is considered the final model and then applied to the hidden test data for the classification. The cross 
validation and hidden test F1 scores for each model are calculated for each of the 4 ECG categories and averaged 
over all 4 ECG categories. The F1 scores of the four ML models trained on the six feature datasets are compared 
to each other. 
 

Results 
 
Out of the four ML models used in this study, the DL 1-D CNN model trained on the dataset containing a 
combination of 6 HRV time domain features and 5 ECG morphology features (HRVT + ECG) leads to the best 
results in terms of the overall F1 score (0.70 ± 0.03 for the cross validation and 0.73 for the hidden test), which 
is the average of the F1 scores of all 4 categories (Table 2 and Figure 8). The feature dataset HRVT + ECG also 
scores well in each individual category (Table 2). The Noisy F1 scores are much higher when using the feature 
dataset (HRVT + ECG) than using only the HRV time domain features (HRVT) for each of the four ML models 
(Table 2). Including the 5 ECG morphology features can also increase the AF F1 scores than using only the 6 
HRV time domain features (Table 2), since the absence of a P wave is a key feature of AF. Using the 12 HRV 
frequency domain features (HRVF) scores lowest in the AF and Noisy categories as well as the overall F1 scores 
in all four ML models (Table 2). In fact, adding HRV frequency domain features does not significantly improve 
the F1 scores and often decreases the performance of the models compared to the results using only the HRV 
time domain features (Table 2). 
               Figure 9 shows an example plot of the training and validation losses as a function of epochs for the 
CNN model using the most performant feature dataset (HRVT + ECG). In this example, 10% of the training 
data is randomly selected as the validation data using a stratified split. Both the training and validation losses 
decrease rapidly within the first 50 epochs and decrease slowly afterwards (Figure 9). ML models with a high 
variance tend to overfit the data during the training process when the validation loss starts to increase and 
diverge from the training loss in the learning curve. Here in our case, the validation loss does not increase and 
remains similar to the training loss as the end of the training process, suggesting that our constructed CNN 
model does not overfit the data and has a small variance. Figure 10 shows the Confusion Matrix for the hidden 
test using the best ML model (CNN) with the most performant feature dataset (HRVT + ECG). Table 3 lists the 
corresponding mean and standard deviation of the cross validation F1 scores along with the hidden test F1 
scores for the CNN model trained on the most performant feature dataset (HRVT + ECG). For the cross valida-
tion, the AF, Normal, Other, and Noisy F1 scores are 0.75 ± 0.03, 0.86 ± 0.01, 0.63 ± 0.03, and 0.54 ± 0.11 
respectively. For the hidden test, the AF, Normal, Other, and Noisy F1 scores are 0.77, 0.87, 0.62, and 0.67 
respectively. 
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Table 2. The performance of ML models in terms of F1 score for Cross Validation (CV) and hidden Test set. 
The 
values for CV are expressed as mean and standard deviation along all 10 folds.  
 

 
Figure 8. Cross validation overall F1 score for ML models. 
 

  HRVF HRVT HRV ECG  HRVT +  ECG HRV +  ECG 
LogReg CV Test CV Test CV Test CV Test CV Test CV Test 
AF F1 0.00 ± 0.00 0.00 0.64 ± 0.04 0.67 0.66 ± 0.04 0.66 0.32 ± 0.07 0.39 0.74 ± 0.03 0.76 0.74 ± 0.02 0.76 
Normal F1 0.77 ± 0.00 0.75 0.83 ± 0.01 0.82 0.83 ± 0.01 0.81 0.77 ± 0.00 0.77 0.84 ± 0.01 0.83 0.84 ± 0.01 0.83 
Other F1 0.38 ± 0.02 0.31 0.47 ± 0.04 0.40 0.48 ± 0.04 0.38 0.09 ± 0.02 0.07 0.50 ± 0.03 0.47 0.52 ± 0.03 0.46 
Noisy F1 0.03 ± 0.04 0.00 0.13 ± 0.08 0.12 0.14 ± 0.09 0.17 0.59 ± 0.08 0.68 0.57 ± 0.10 0.62 0.59 ± 0.10 0.70 
Overall F1 0.30 ± 0.01 0.26 0.52 ± 0.03 0.50 0.53 ± 0.03 0.51 0.44 ± 0.02 0.48 0.66 ± 0.03 0.67 0.67 ± 0.02 0.69 
DecTree CV Test CV Test CV Test CV Test CV Test CV Test 
AF F1 0.14 ± 0.07 0.26 0.65 ± 0.05 0.62 0.64 ± 0.06 0.61 0.49 ± 0.06 0.49 0.70 ± 0.05 0.75 0.68 ± 0.05 0.71 
Normal F1 0.77 ± 0.01 0.76 0.86 ± 0.01 0.84 0.84 ± 0.01 0.83 0.77 ± 0.01 0.79 0.85± 0.01 0.85 0.85 ± 0.01 0.85 
Other F1 0.41 ± 0.03 0.36 0.59 ± 0.04 0.55 0.57 ± 0.04 0.51 0.22 ± 0.03 0.18 0.60 ± 0.04 0.58 0.61 ± 0.03 0.52 
Noisy F1 0.05 ± 0.05 0.06 0.22 ± 0.08 0.18 0.22 ± 0.13 0.29 0.48 ± 0.10 0.56 0.47 ± 0.11 0.54 0.45 ± 0.07 0.40 
Overall F1 0 34 ± 0.03 0.36 0.58 ± 0.03 0.55 0.57 ± 0.05 0.56 0.49 ± 0.03 0.50 0.66 ± 0.04 0.68 0.65 ± 0.02 0.62 
KNN CV Test CV Test CV Test CV Test CV Test CV Test 
AF F1 0.09 ± 0.03 0.10 0.69 ± 0.03 0.72 0.64 ± 0.04 0.70 0.49 ± 0.05 0.57 0.75 ± 0.02 0.80 0.74 ± 0.02 0.80 
Normal F1 0.76 ± 0.01 0.73 0.86 ± 0.01 0.85 0.84 ± 0.01 0.83 0.77 ± 0.01 0.79 0.86 ± 0.01 0.86 0.84 ± 0.01 0.85 
Other F1 0.37 ± 0.02 0.32 0.58 ± 0.03 0.54 0.50 ± 0.03 0.48 0.23 ± 0.02 0.24 0.58 ± 0.04 0.59 0.52 ± 0.02 0.51 
Noisy F1 0.04 ± 0.06 0.00 0.29 ± 0.10 0.18 0.12 ± 0.06 0.13 0.54 ± 0.09 0.69 0.54 ± 0.10 0.55 0.53 ± 0.09 0.53 
Overall F1 0.32 ± 0.02 0.29 0.61 ± 0.03 0.57 0.52 ± 0.02 0.53 0.51 ± 0.03 0.57 0.68 ± 0.03 0.70 0.66 ± 0.02 0.67 
CNN CV Test CV Test CV Test CV Test CV Test CV Test 
AF F1 0.01 ± 0.01 0.00 0.70 ± 0.04 0.70 0.64 ± 0.05 0.65 0.53 ± 0.05 0.57 0.75 ± 0.03 0.77 0.70 ± 0.04 0.75 
Normal F1 0.77 ± 0.01 0.75 0.87 ± 0.01 0.86 0.84 ± 0.01 0.84 0.79 ± 0.01 0.81 0.86 ± 0.01 0.87 0.84 ± 0.01 0.84 
Other F1 0.37 ± 0.03 0.28 0.63 ± 0.04 0.57 0.55 ± 0.03 0.51 0.21 ± 0.03 0.20 0.63 ± 0.03 0.62 0.54 + 0.03 0.52 
Noisy F1 0.09 ± 0.06 0.06 0.33 ± 0.11 0.41 0.17 ± 0.11 0.43 0.56 ± 0.08 0.61 0.54 ± 0.11 0.67 0.55 ± 0.11 0.66 
Overall F1 0.31 ± 0.02 0.27 0.63 ± 0.03 0.63 0.55 ± 0.03 0.61 0.52 ± 0.03 0.55 0.70 ± 0.03 0.73 0.66 ± 0.02 0.69 
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Figure 9. An exemplary plot of training and validation losses as a function of epochs for the CNN model using 
the most performant feature dataset: HRV time domain features + ECG morphology features. 

 
Figure 10. Confusion Matrix for the hidden test using the CNN model with the most performant feature dataset: 
HRV time domain features + ECG morphology features. Class labels: 0 - AF, 1 - Normal, 2 - Other, 3 – Noisy. 
 
Table 3. F1 Scores using CNN and the most performant feature dataset: HRV time domain features + ECG 
morphology features. The values for Cross Validation (CV) are expressed as mean and standard deviation along 
all 10 folds. 

CNN CV Test 
AF F1 0.75 ± 0.02 0.77 
Normal F1 0.86 ± 0.01 0.87 
Other F1 0.63 ± 0.03 0.62 
Noisy F1 0.54 ± 0.11 0.67 
Overall F1 0.70 ± 0.03 0.73 

 

Discussion 
 
Our classification results reflect the importance of the ECG morphology features in distinguishing the Noisy 
class from other classes. As shown in the corresponding boxplots (Figure 4), there is significant difference 
between the Noisy class and the AF, Normal, Other classes in the ECG morphology features of median template 

Volume 12 Issue 1 (2023) 

ISSN: 2167-1907 www.JSR.org 11



correlations and R peak amplitudes. The 25th to 75th percentile range for the median template correlation is 
below 0.8 for the Noisy class and above 0.9 for the AF, Normal, and Other classes. The 25th to 75th percentile 
range for the median R peak amplitude is below 2.0 for the Noisy class and above 2.7 for the AF, Normal, Other 
classes.  
             Meanwhile, the HRV time domain features are important in distinguishing the Normal class from all 
other classes. For example, the Normal class has the lowest median SDNN and pNN50 values in all classes 
(Figure 5). From the heatmap of all extracted features (Figure 7), we can see that the SDNN, RMSSD, and 
SDSD features are highly correlated with each other, and they all reflect the smaller variance of the RR intervals 
in the Normal class compared to all other classes. In general, the AF and Noisy classes tend to have larger 
pNN50 values than Normal and Other classes (Figure 5). Hence, the combination of the HRV time domain 
features with the ECG morphology features could improve the detection of the AF class (Table 2).  
             The HRV frequency domain features, such as LF relative power which is anticorrelated with HF relative 
power as seen in the heatmap (Figure 7), are not dramatically different across all 4 ECG classes (Figure 6) and 
therefore not particularly helpful in detecting AF and Noisy classes. Consistently, the HRV frequency domain 
feature dataset HRVF does not contribute much to detecting AF and Noisy classes in all four ML models. For 
example, for the CNN model trained on the HRVF feature dataset, the AF and Noisy F1 scores are significantly 
low for both the cross validation and the hidden test. This is likely due to the limited numbers of heartbeats 
from the short ECG recordings used in this study for extracting HRV frequency domain features. In particular, 
the short ECG recording ranging from 9 seconds to 61 seconds is not long enough to resolve the very low 
frequency (less than 0.04 Hz) and low frequency (0.04 Hz to 0.15 Hz) components of the HRV signal in the 
frequency domain. 
              Table 2 shows that the HRV frequency domain feature dataset HRVF has some contributions in detect-
ing Normal and Other classes in all four ML models, consistent with the boxplots that show that the Normal 
and Other classes have more VLF relative power (Figure 6). However, in all four ML models, the HRV time 
domain feature dataset HRVT alone can lead to higher F1 scores for the Normal, Other, and Noisy classes, and 
substantially higher AF F1 scores, compared to the F1 scores using the HRV frequency domain feature dataset 
HRVF. When the HRV frequency domain feature dataset HRVF is combined with the HRV time domain feature 
dataset HRVT, the F1 scores of each class using the combined dataset HRV do not change much for the Logistic 
Regression and Decision Tree models and even degraded for the KNN and CNN models, compared to those 
using HRVT alone. Thus, it is advisable to use HRV time domain features but not HRV frequency domain 
features if the ECGs recordings are short (less than 1 minute), which costs less time for classifications than 
using both HRV time and frequency domain features. 
              On the other hand, when the ECG morphology feature dataset ECG is combined with the HRV time 
domain feature HRVT, the AF F1 scores are improved and the Noisy F1 scores are much higher in all four ML 
models for the combined feature dataset HRVT + ECG, compared to those using HRVT alone. When all 23 
features are combined together, i.e. using the combined feature dataset HRV + ECG, again the F1 scores of 
each class do not change much for the Logistic Regression and Decision Tree models and even degraded for 
the KNN and CNN models compared to the case using HRVT + ECG without including the HRV frequency 
domain feature. In all four ML models, the ECG morphology feature dataset ECG dominates the contribution 
to Noisy F1 scores, and adding the HRV time domain or all HRV (both time and frequency) features to ECG 
do not increase Noisy F1 scores. 
               For the Logistic Regression model, the best hidden test F1 scores (for each class and for the average 
of the 4 classes) are obtained with either the feature dataset HRVT + ECG or the feature dataset HRV + ECG 
(Table 2), and  both feature datasets give similar results. For the Decision Tree and KNN models, the feature 
dataset HRVT + ECG often leads to the best hidden test F1 scores (Table 2). For the CNN model, the feature 
dataset HRVT + ECG gives the best hidden test F1 scores for all classes and for the average of the 4 classes 
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(Table 2). These results again confirm the important role of the combined feature dataset HRVT + ECG in 
classifying short ECG recordings. 
               In general, the hidden test F1 score is similar to the corresponding mean cross validation F1 score, and 
their difference is close to the associated standard deviation of the cross validation F1 scores (Table 2). In all 
four ML models trained on all six feature datasets, the standard deviation of the cross validation F1 scores is 
small for the Normal class and large for the Noisy class, which reflects the large sample size for the Normal 
class and the small sample size for the Noisy class in the short ECG recordings used in this study. 
              Our study here is limited by the types of extracted features and ML models, and the size and distribu-
tion of the ECG data samples used in this study. In future research, the impact of other informative features 
needs to be explored, and the robustness and generalizability of the results need to be tested with other ML 
models including more complex DL models and ECG recordings acquired in different settings. The pure fea-
ture-based classification methods might be combined with data driven DL models to improve the detection 
performance. The multiple classification approach used here could also be compared with ensemble of classi-
fiers in future studies. 
 

Conclusion 
 
In this paper, the impact of different types of features on classifying short ECG recordings is investigated, and 
it is concluded that our DL (1D CNN) model trained on a combination of HRV time domain features and ECG 
morphology features results in the highest average F1 score over the 4 categories, out of all four ML models 
used in this study. The results of this study indicate that adding HRV frequency domain features to HRV time 
domain features does not contribute much improvement to the F1 scores and often degrades the classification 
performance for short ECG recordings, compared to classifications using only HRV time domain features. 
Combining the ECG morphology features with the HRV time domain features is helpful in improving the AF 
detection because AF is characterized by the absence of a P wave. In addition, the ECG morphology features 
are very useful for detecting the Noisy category specifically, which contains more inverted peaks, lower corre-
lations between templates (Goodfellow et al. 2017; Ghiasi et al. 2017), and smaller R peaks amplitudes than 
AF, Normal, and Other categories. Hence it is important to combine ECG morphology features with the HRV 
time domain features in classifying short ECG recordings. 
               The CNN model used in this study is simple in structure and contains one 1D convolutional layer. DL 
models are popular because they often do not require extracted features to classify (Andreotti et al. 2017; War-
rick & Homsi, 2017; Hsieh et al. 2020). The overall F1 score obtained here using a simple DL (1D CNN) model 
trained on a combination of 6 HRV time domain and 5 ECG morphology features (Table 3) is comparable to 
that obtained using some complicated DL models (with millions of model parameters) trained on the raw 
PhysioNet Challenge 2017 short ECG recordings (Andreotti et al. 2017; Warrick & Homsi, 2017; Hsieh et al. 
2020). Our results suggest that feature-based DL could serve as a viable and less expensive approach for clas-
sifying short ECG recordings, which costs much less computing time for training. 
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