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ABSTRACT 
 
Due to climate change, the global food supply crisis has become an urgent international problem. Given the 
circumstances, a controlled environment that artificially adjusts the climate for agriculture has attracted consid-
erable attention as a solution to the problem. Various kinds of research have been proposed to develop the 
technology of controlled environments. However, the accuracy and scalability problem of these methods is a 
burden for the expansion to real-world scenarios. In particular, it is necessary to research and implement the 
computer vision-based algorithm, which is the key technique that enables the controlled environment system to 
be fully automatic. To solve the aforementioned problem, I propose a novel controlled environment agriculture 
system. The proposed system is composed of a plant life cycle regression module and a device control module. 
The system predicts the actual size of the plants and outputs the life cycle indicator of the plant, which is the 
growth rate of the plants. Based on the life cycle indicator, the device control module adjusts the essential 
factors, such as the amount of water and the strength of UV (Ultra Violet) light, for photosynthesis. As the 
proposed system is aware of the life cycle of plants, it can provide fully automatic controlled environments. I 
also propose and demonstrate the application machine to show how the proposed method can be applied to the 
real world. Through the experiments, it is shown that the proposed PLCR outperforms the existing state-of-the-
art methods on the COCO dataset. 
 

Introduction 
 
As the environment on Earth becomes less suitable for agriculture due to pollution or climate change, the food 
supply crisis is a critical issue that humans should deal with (Robinson et al. 2001). Unpredictable global prob-
lems such as the Ukraine war complicates the problem of the whole food supply chain, exacerbating the food 
supply crisis as well. To find the answer to this problem, researchers have been searching for technology that 
can efficiently increase the food supply without the environmental constraints of farming.  For example, certain 
crops are only produced in precise humidity, soil pH, and precipitation. This is a substantial constraint for some 
of the countries in crisis.  

Agricultural technologies have been widely explored to solve such problems. Traditionally, research-
ers have been developing a controlled environment, which is the system that controls the factors that engage in 
the growth of a plant, such as water, temperature, or humidity (Castelló et al. 2018). The researchers have 
focused on implementing the system interface to easily control the aforementioned factors as intended. Their 
method reduced the demanded labor power to maintain the quality of products, but the decision or the action of 
humans is still required. 

Recently, to overcome this limitation, a few studies have developed automatic controlled-environment 
systems that do not need human interference (Menon et al. 2021). 
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Their methods are based on deep learning technologies that have shown remarkable performance in many vision 
domains. However, they have scalability issues in that it is practically impossible to expand the system to real-
world scenarios. To solve the scalability issue, it is necessary to develop the system with human-level precision 
to make the system reliable. 
 

 
Figure 1. Flow chart of the proposed controlled environment agriculture system. (The proposed PLCR takes 
the plant image obtained via the top-view installed camera and outputs the life cycle indicator of the plant. 
Based on the predicted life cycle indicator, the embedded water pump and light source are operated by the 
device control module.) 
 

In this paper, I propose a novel controlled environment agriculture system. The proposed system is 
composed of a device control module, and a plant life cycle regression module, as shown in Figure 1. The 
device control module contains the water circulation pump, which keeps the consistent water level in the water 
tank based on the climate recipe. Furthermore, the model controls a UV light source, providing artificial plant 
sunlight. In conclusion, the device control module controls and adjusts the factors that engage in the growth of 
a plant. The proposed system outputs the life cycle indicator of the plant by comparing the measurement with 
the size of full-grown plants. To accomplish this, I design the regression model that predicts the bounding box 
of the plants using convolutional neural networks. I also propose a size conversion method to measure the actual 
size of plants and their growth rate. Overall, the proposed method enables the full automation of controlled 
environment agriculture systems.  
 

Related Work  
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Controlled Environment 
 
A controlled environment engages with precisely regulated environmental factors for plants to grow, such as 
humidity, sunlight, or water. A controlled Environment can be used to harvest foods that are conventionally not 
growable in a particular region. For example, tropical fruits usually grown in tropical regions can be grown in 
any area as long as a controlled environment is set up. As global warming and climate change caused harvest 
crises, leading to danger to the food supply chain, the controlled environment emerged as the key to this prob-
lem. MIT (Massachusetts Institute of Technology) media laboratory proposed a PFC (Personal Food Computer) 
(Castelló et al. 2018), which is a device for the management of a controlled environment system. The PFC can 
control the essential factors for the plants’ photosynthesis, such as temperature or water level. This method has 
shown that it can grow foods in a controlled environment adjusted by a computer. However, these controls have 
the disadvantage that human intervention is necessary.  

Inspired by previous research, I started researching the controlled environment of real life. I propose 
a novel controlled environment agriculture system in this paper. I aimed to propose a system that is aware of 
the life cycle of plants based on machine learning technology so that it can provide fully automatic controlled 
environments.  
 
Object Detection 
 
Object detection predicts the category and location of the objects in images or videos. The categorization pro-
cess is conducted the same as image classification. Object localization is often performed via predicting the 
bounding box that surrounds the object.  

Object detection can be categorized into one-stage and two-stage methods. One-stage methods usually 
operate faster than the two-stage methods as they combine the region proposal and region rejection steps. SSD 
(Liu et al. 2016) or YOLO (Redmon, et al. 2016) are representative one-stage methods. For two-stage methods, 
Faster R-CNN (Ren, et al. 2015) is often used since it tends to produce more accurate results than the one-stage 
methods. In this paper, I consider the plant size estimator as an object localization process. The proposed system 
predicts the bounding box of the plant in the inputted image without a categorization score. The detailed process 
is further explained in chapter 3. 
 

Methods 
 
Figure 1 represents the overall architecture of the proposed system. The proposed system is composed of a 
PLCR (Plant Life Cycle Regression) module and a device control module. The PLCR module inputs a top-view 
image of the plant and outputs the life cycle indicator of the plant, which is represented as a growth rate. As 
shown in Figure 2, the PLCR module measures the actual size of the plants and outputs the life cycle indicator 
of the plant by comparing the measurement with the size of full-grown plants.  
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Figure 2. Example of the output of the proposed PLCR (Plant Life Cycle Regression) module. 

 
Based on the output of the PLCR, the device control module adjusts the pre-installed devices to control 

the essential factors, which are the amount of water and the strength of UV light for the plants’ photosynthesis. 
Plants require adaptive essential factors at a particular growth rate to make production more effective. For 
example, some plants require more water and sunlight in the early growth stage; others need more water and 
sunlight when they mature. The device control module can automatically adjust the essential factors for the 
plants with the estimated life cycle indicator from the PLCR. 
 
PLCR 
 

 
Figure 3. The architecture of the proposed PLCR (Plant Life Cycle Regression) module 

 
Figure 3 shows the architecture of the proposed PLCR module. It is composed of object localization and size 
convert modules. The object localization module is developed based on convolutional neural networks. The 
given top-view plant image is fed to the feature extractor and converted into a feature map. The feature map is 
then flattened and fed to the two linear layers to predict the coordinates of the bounding box of the plant in the 
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image. I define the predicted bounding box as set Ĉ = { xlt, ylt, xrb, yrb }, containing each coordinate value of the 
bounding box. Here, xlt , ylt , xrb, and yrb denote the x coordinate of the left top point, the y coordinate of the left 
top point, the x coordinate of the right bottom point, and the y coordinate of the right bottom point, respectively.  

To measure the actual size of the plant, the pixel size of the estimated bounding box needs to be con-
verted into an actual size unit. To accomplish this, I proposed a size-converting process by applying proportional 
relationships between the bounding box of the reference object and the plant. The detailed calculation process 
is defined as Equation 1.  

Equation 1: Actual size converter: 
 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝   :  𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝   = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟  : 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑝𝑝   :  ℎ𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝   = ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟  : ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
 

Where, 𝑤𝑤𝑝𝑝 and ℎ𝑝𝑝 denote the width and height of the bounding box in pixels, while 𝑤𝑤𝑟𝑟 and ℎ𝑟𝑟 denote 
the actual width and height of an object in millimeters units. For example, ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑝𝑝  is the height of the target objects 
in pixels and  is the actual width of the reference object in millimeter units.  
 

 
Figure 4. Example of size unit convert process using proportional relationships between the reference ob-
ject(green) and the predicted bounding box(yellow) 

 
I use a coin for a reference object as it has a rigid body and is geometrically symmetric, which 

makes the localization easier. As shown in figure 4, the pixel height and width of the predicted bounding 
box of a target object can be easily converted into actual size by using the proposed size conversion 
method.  

Finally, PCLR outputs the growth rate of plant R based on the calculated actual size from the size 
conversion module. The growth rate R is calculated by dividing the area of the plant by the predefined 
area of the full-growth plant as Equation 2. 
Equation 2: Growth rate equation 

 
Plantarea = |xlt  -  xrb|  ×  |xlt  -  xrb| 

R = (Plantarea / Targetarea )  ×  100 
 

Where, Plantarea and Targetarea denote the area of the quadrangle of the input plant and full-grown plant, 
respectively. After the calculation of the Plantarea, the growth rate of the plant R(%) is calculated. R represents 
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how much the plant is grown. For example, if result R is 50%, the plant is only halfway grown compared to the 
well-grown plant. On the other hand, when the PLCR measures the R as 100%, we can harvest the plant. 

The loss function quantitatively measures how accurate the trained model’s prediction is. To train the 
proposed object localization network, I use MSE (Mean Squared Error) loss function, which is often used to 
train localization networks (Huang et al. 2018), (Ren et al. 2015). The MSE loss function is calculated as Eq. 
(3). 

Equation 3: MSE loss function: 
 

LMSE =  
1
𝑛𝑛
∑ (Ĉ𝑖𝑖 − 𝐶𝐶𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  

 
Here, Ĉ and C denote the predicted bounding box and its ground truth, and n is the number of the 

sample. The ideal model loss would be 0, meaning that the predicted bounding box is perfectly accurate.  
For the training process of PLCR, we used the optimizer Adam. The initial learning rate was 0.0001, 

and I decayed the learning rate for every 80 epochs by 1/10. The total epoch was 200, so the decay was done at 
80 and 160. Also, the batch size was 32. The data augmentation methods I used for the training were horizontal 
flip, color jitter, and random perspective as shown in figure 5. 

 
 

 
 

 
 

 
 

(a) Original Image (b) Horizontal Flip (c) Color Jitter (d) Random Perspective 
 
Figure 5. Example of data augmentation technique 
 
Device Control Module 
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Figure 6. Diagram of the process of the device control module 

 
Figure 6 is a diagram that describes the whole process of how the proposed PLCR adjusts the device control 
modules. The PLCR, which is implemented on the edge device, controls the overall mechanical process of the 
device control module. The proposed PLCR takes the image of plants as input and outputs the life cycle indi-
cator of the plant. Based on the predicted life cycle indicator, the embedded water pump and light source are 
operated and scheduled for the photosynthesis of plants. For the computation process device, I choose Rasp-
berry Pi, a single-board computer with low power consumption.  
 

Experimental Results 
 
Dataset 

 
Figure 7.  A snippet of COCO (Lin et al. 2014) dataset. 

 
I used the dataset COCO (Lin et al. 2014) to train the proposed system. The dataset COCO, collected by Mi-
crosoft, is large-scale object detection, segmentation, and captioning dataset, and it contains more than 200,000 
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images with 80 categories that can be used for training. Figure 7 shows the example of datasets that are con-
tained in the COCO. Specifically, I use the provided object detection annotation in this paper to train the object 
localization network.  
 
Quantitative Evaluation 
 
For the quantitative evaluation metric for the proposed object localization network, I used the IoU (Intersection 
over Union), which is often used for the object detection problem (Ren et al. 2015), (Liu et al. 2016).  
 

 
Figure 8. An example of IoU (Intersection over Union) evaluation metric. (Red box: ground truth, Green 
box: predicted bounding box) 

 
IOU is the score value that is measured between 0 to 1. The overlap part of the answer and the predicted 

would be divided by the union area of both parts. Higher overlap with less union indicates that the predicted 
part is close to the answer. Therefore, 0 is the poorest score it can have, and 1 is the best score it can have. IoU 
value is calculated by Equation 4. 

Equation 4: Example of an equation that can be cited later in the article text: 
 

IoU  = Plantarea  ∩ GroundTrutharea  /  Plantarea  ∪ GroundTrutharea 
 

Where, Plantarea is the prediction area of the PLCR, and GroundTrutharea is the answer area in training. 
The area of the green box in Fig 8 is the Plantarea, and the red box is the GroundTrutharea.  
 
Table 1. IoU evaluation comparison with state-of-the-art method 

 IoU 

SSD (Liu et al. 2016) 0.6972 

Faster R-CNN (Ren et al. 2015) 0.7459 

Ours 0.7871 

 
Table 1 compares the IoU evaluation results with the state-of-the-art methods. For the comparison 

methods, I choose SSD (Liu et al. 2016) and Faster R-CNN (Ren et al. 2015), which generally show comparable 
performance in object detection problems.  

The proposed method achieves an IoU of 0.7871, while the SSD and Faster R-CNN achieve an IoU of 
0.6972 and 0.7459, respectively. Compared with SSD, the proposed method’s score is 0.0899 higher, and com-
pared with Faster R-CNN, the proposed method’s score is 0.0412 higher. The proposed method extracts richer 
features compared to SSD and Faster R-CNN, leading to higher IoU results.  
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Table 2. Actual size error comparison 

 Average error (width) Average error (height) 

SSD 16.7 cm 14.5 cm 

Faster R-CNN 8.8 cm 10.1 cm 

Ours 7.4 cm 8.2 cm 

 
To examine the effectiveness of the proposed size estimation in a real-world scenario, I also conducted 

an additional experiment that can verify that the proposed method is more effective for measurement. I have 
divided the experiment into two categories: the error of width and length. I averaged the error of length and 
width of 30 photos of crops such as apples, cucumbers, bananas, and other plants.   

The error of the proposed size estimation was 7.4 and 8.2 cm for the width and height. SSD has 16.7 
cm in width and 14.5 cm in height. Faster R-CNN achieves 8.8 cm in width and 10.1 cm in height. The result 
shows that the proposed size estimation has a lower error compared to SSD and Faster R-CNN. Compared to 
SSD, the proposed method has a 9.3 cm lower width error and a 6.3 cm lower height error. Similarly, compared 
to Faster R-CNN, the proposed method achieves a 1.4 cm lower width error and 1.9 lower height error. This 
result shows that the proposed model is not only superior for the prediction of the bounding box but also for the 
real-life size estimation.  
 
Ablation Study 
 
In this chapter, I conduct an ablation study to investigate the effectiveness of each proposed idea. I measured 
the performance of the full model, which contained all the ideas, including the data augmentation process. As 
table.4 shows, the performance measured was 0.7871. Next, I measured the performance without the data aug-
mentation process, and the result was 0.7608. As a result, performance without data augmentation was 3.34% 
lower than the full model, which means that the absence of data augmentation was more critical for the degen-
eration of the model performance.  
 
Table 3. Ablation Study Result 

Method IoU 

w/o data augmentation 0.7608 

full model 0.7871 

 

Conclusion 
 
In this paper, to overcome the scalability issues of the current controlled environment agriculture system, I 
propose a novel controlled agriculture system, which is composed of a device control module and a PLCR(Plant 
Life Cycle Regression) module.  
The device control module’s role is to adjust the factors that engage in the growth of a plant, such as sunlights 
or water. PLCR’s role is to measure the size of the plant and estimate the growth rate based on the measurement. 
I used dataset COCO for the training and testing of PLCR. For the evaluation, I used the IoU and a comparison 
between the existing models SSD and Faster R-CNN. I also progressed the ablation study to show how data 
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augmentation contributes to the final performance of the trained model. The result showed that the proposed 
model is up to 12.8% superior to the existing state-of-the-art methods.  

In this paper, to overcome the scalability issues of the current controlled environment agriculture sys-
tem, I propose a novel controlled agriculture system, which is composed of a device control module and a 
PLCR(Plant Life Cycle Regression) module. The device control module’s role is to adjust the factors that en-
gage in the growth of a plant, such as sunlight or water. PLCR’s role is to measure the size of the plant and 
estimate the growth rate based on the measurement. I used the COCO dataset for the training and testing of 
PLCR. For the evaluation, I used the IoU and a comparison between the existing models SSD and Faster R-
CNN. I also progressed the ablation study to show how data augmentation contributes to the final performance 
of the trained model. The result showed that the proposed model is up to 12.8% superior to the existing state-
of-the-art methods. In the future, based on the proposed method, I plan to develop an additional feature of the 
plant disease recognition system to expand the system to be more systematic in caring for the growth of plants 
by the system itself. 
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