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ABSTRACT 
 
Wildfires have long been a part of the natural environment, however through climate change and increased human 
activity, they have become a significant problem to both humans and wildland. Stopping the expansion of wildfires 
would be critical in mitigating the dangerous outcomes of them. Firefighters stopping the spread of wildfires must 
know which parts of the environment are most vulnerable to the spread of wildfires, and vegetation is one of the key 
determining factors in the wildfire susceptibility of a given area. Previous works have used several different machine 
learning algorithms for the purpose of determining wildfire susceptibility. The algorithm used in this study for wildfire 
susceptibility prediction is a random forest applied to a vegetation dataset of Napa County, California provided by the 
California Department of Fish and Wildlife (CDFW). The random forest works by creating a set of decision trees to 
get an overall probability for each vegetation area. The model has a 91.7% accuracy in predicting wildfire burn prob-
ability in a vegetation area.  
 

Introduction 
 
Wildfires are a part of the natural cycle of Northern California, contributing to increased biodiversity, a healthier 
ecosystem, and several other benefits (Pausas & Keeley, 2019). It is important for some wildfires to happen in order 
to maintain the natural order of the environment. For example, the chaparral vegetation that makes up large parts of 
Napa County and Northern California has a typical fire cycle of 10 to 40 years, in which wildfires clear old plants and 
shrubs to let new life grow in the cleared environment (Muller et al., 1968). However, climate change and other human 
activities in wildfire-prone areas has led to an increase in wildfires in California to reach unsustainable levels (Miller 
& Safford, 2012). Increased wildfires put both humans and wildlands in danger, especially in the wildland urban 
interface (WUI) (Kramer et al., 2019), where humans live in or near wildland areas. In order to prevent damage caused 
by increased wildfires, people countering wildfires need to be able to identify the most vulnerable places to a wildfire. 
Identifying these wildfire susceptible areas can be done by examining the vegetation they contain.  

Determining wildfire susceptibility has been done through different types of machine learning algorithms. 
These include a classification and regression tree (CART) algorithm (Amatulli et al., 2006), artificial neural networks, 
regression trees (Jain et al., 2020), etc. One algorithm that is effective for wildfire susceptibility is the random forest. 
The random forest outputs several probabilistic results from decision trees to create a final decision for the algorithm 
(Bustillo Sánchez et al., 2021). Two examples of random forests being used in relation to wildfires is by Ma et al. 
(2020) to identify the causes of wildfires in China and by Collins et al. (2018) to identify wildfire severity. Further-
more, Malik et. al. in 2021 used a random forest model to predict wildfire susceptibility in Northern California, spe-
cifically in the area surrounding Winters, California (Malik et al., 2021).  

Despite these previous uses of the random forest model for predicting wildfire susceptibility, the algorithm 
has yet to be used in Napa County, California. Napa County offers a wide array of vegetation types to be analyzed 
(Thorne, 2020) and has experienced many devastating fires, especially in the past decade. This high volume of 
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wildfires provides plentiful data for different types of wildfires with regards to size, vegetation burned, and location. 
This combination of variables makes Napa County useful to predict wildfire susceptibility in vegetation types because 
of the excess of data, creating a better understanding of what types of vegetation are most prone to wildfires.  
 

Methods 
 
Data Collection 
 
The data used to examine the vegetation of Napa County is a vegetation geodatabase of Napa County provided by the 
California Department of Fish & Wildlife (CDFW) Vegetation Classification and Mapping Program (Thorne, 2020). 
The original vegetation map of Napa County was created in 1993 and gathered from 3 meter per pixel, monochrome, 
digital orthophoto quadrangles. This data was subsequently updated in 2004 through field work to adjust the bounda-
ries of vegetation categories. The current vegetation map from 2016 is gathered from 1 meter per pixel color satellite 
imagery, which was taken by the National Agriculture Imagery Program (NAIP). The satellite imagery is then delin-
eated by Aerial Services Incorporated (ASI) (Barrette et al., 2000) to output polygons with vegetation and landcover 
attributes in accordance with the CDFW Manual of California Vegetation (Sawyer et al., 2009). The polygons were 
compared to time series imagery from Google Earth and imagery from ArcMap to ensure their accuracy. Furthermore, 
the vegetation types were reviewed with those from two other counties in California to ensure accuracy. 

A comma-separated values (CSV) file is extracted from the geodatabase to provide a workable dataset. This 
dataset containing 31 different attributes is reduced to 8 attributes that are necessary for the algorithm. These are: 
vegetation_category = the overarching vegetation category in a polygon, area_acres = the area of a polygon in acres, 
size_class = a classification for the sizes of trees in a polygon, density_class = a classification for the density of a 
polygon, WUI = a classification for if a polygon is part of the wildland-urban interface (WUI), with 5 classifications 
for different levels of WUI, burn_coverage = if a polygon has been partially, fully, or never burned by a wildfire, 
year_burned = the latest year that a polygon was burned by a wildfire, if ever, and CalVeg_name = the exact type of 
vegetation in a polygon.  

To allow for the model to be more effective, the burn_coverage attribute is converted from a “String” datatype 
to a binary “Integer” datatype. A value previously classified as “null” is converted to 0, and “partial” and “full” values 
are converted to 1 to signify that they had been burned by wildfires. Additionally, the vegetation_category variables 
are also converted to Integers, with: “Wetlands” = 0, “Shrubland” = 1, “Riparian woodland” = 2, “Oak woodlands” = 
3, “Grassland” = 4, and “Coniferous forest” = 5.  
 
TABLE 1. Sample data from the edited “Vegetation - Napa County” dataset (Thorne, 2020). All attributes except for 
CalVeg_name are numerical values and can be used in the model.  
 

 
vegeta-
tion_ 
category 

area_ 
acres 

size_class density_class WUI burn_ 
coverage 

year_ 
burned 

CalVeg_name 

1 1 1.804458 9 1 0 0 0 Lower Montane Mixed Chaparral 

2 1 2.724046 9 1 0 0 0 Chamise 

3 4 1.016912 9 1 0 1 2008 Annual Grasses and Forbs 

4 3 6.185103 4 2 0 0 0 Blue Oak 
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The dataset was run through a correlation matrix, which provides the positive and negative correlation be-
tween variables of a dataset. This can be useful in determining if certain variables should be removed because of too 
high of a correlation with another variable. This resulted in a perfect correlation of 1 between burn_coverage and 
year_burned. As a result, the year_burned attribute was removed from the dataset to produce a better model that would 
avoid giving too much weight to those two variables. Other variables had a high negative correlation; however, it was 
not enough to warrant their removal from the dataset.  
 
Updated Attribute Correlation Matrix 

 
 
FIG. 1. The correlation now contains burn_coverage. Because of the correlation of 1 between burn_coverage and 
year_burned, the year_burned attribute was removed to prevent a damaged model. The attributes of size_class and 
vegetation_category as well as size_class and density_class had high negative correlations, but not enough to damage 
the model.  
 
Random Forest Model 
 
The basis of the random forest model is the decision tree. A decision tree is a model for obtaining an output in which 
one decision leads to several subsequent decisions to get a precise output. The decision tree starts with a small set of 
options to choose from for a decision, with each option presenting more options that are related to the previously 
chosen option. This model allows for a specific output based on what the result of the decision tree path taken is. In 
the case of this study, the output would either be 0 or 1, with 0 indicating no wildfire burn and 1 indicating a wildfire 
burn. What a random forest does is creates several decision trees that all output their responses and then takes the 
mode (majority) response of the decision trees as a final output (Belgiu & Drăguţ, 2016). This aggregation of the 
decision trees allows the random forest model to be more reliable than just a single decision tree.  
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Random Forest Model Diagram 
 

 
FIG. 2. A random forest takes its input as the output of several decision trees, resulting in an output for the random 
forest that is the majority vote of the decision trees.  
 

The random forest model used for this study is based off the model used by Husted (2022) to predict the 
causes of wildfires in the United States. The first step is to split the dataset into a train group and a test group. The test 
size is set to 0.3, meaning that 30% of the data was designated to the test group and 70% to the train group. The data 
split is to provide sufficient unique data for the algorithm to train on and leaving enough unique data to test the 
algorithm on. The train data is used by the random forest algorithm to create a model that can accurately predict the 
wildfire susceptibility of each input value. The random forest algorithm used is the RandomForestClassifier function 
from SkLearn. The estimators, or number of decision trees, is set to 50 to have that many generated decision trees that 
the random forest takes the majority of. The other hyperparameters of the random forest are at their default values.  

Once the training stage of the model has been completed, the remaining 30% of the data designated for testing 
is run through the model to get an output value. In order to verify the accuracy of the random forest model, a confusion 
matrix is then created with the data to examine the ratio of true positives, false positives, false negatives, and true 
negatives. As a final verification of the accuracy of the model, the precision, recall, and negative predictive value 
scores are also calculated. The equations are:  

𝑃𝑃 =
𝑇𝑇𝑝𝑝

𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑝𝑝
 

𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑛𝑛
 

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑇𝑇𝑛𝑛

𝑇𝑇𝑛𝑛 + 𝐹𝐹𝑛𝑛
 

 
Where P = precision, R = recall, NPV = negative predictive value, Tp = true positive, Fp = false positive,  Fn = false 
negative, and Tn = true negative. Precision represents the number of correctly identified values predicted out of the 
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total wildfire susceptibility values predicted as positive.   Recall represents the number of positive values out of the 
correctly identified values. Negative predictive value represents the number of correctly identified values out of the 
values predicted as negative. out of the wildfire susceptibility values predicted as negative, how many were correctly 
identified.  
 

Results 
 
By training the algorithm and testing it, I was able to examine the accuracy of the model for predicting the wildfire 
susceptibility of vegetation areas. In total the accuracy, also known as the model score, was 91.7%. This means that 
the random forest model was correct on its predictions 91.7% of the time. The test data was 30% of the original dataset, 
which equates to 8263 data entries. The first test data entry contained: vegetation_category = 3 (Oak woodlands), 
area_acres = 5.329091, size_class = 4, density_class = 1, and WUI = 0. The predicted burn_coverage variable by the 
random forest model was 0 (no burn), which is the same as the actual burn_coverage value from the dataset.  
 
Test Data Results 
 

 
vegetation_category area_acres size_class density_class WUI burn_coverage (prediction) 

1 3 5.329091 4 1 0 0 

2 5 4.475406 4 1 0 0 

3 4 1.421915 9 1 3 0 

4 1 1.194808 9 4 0 1 

 
TABLE 2. A sample of the test data results from the random forest model. This indicates that the model predicts a 
high number of burn_coverage variables as 0 even with differing input data, reflecting the dataset.  
 

To verify the accuracy of the model, a confusion matrix was used to show the true positives, false positives, 
false negatives, and true negatives of the model. There were in total: 63 true positives, 330 false positives, 360 false 
negatives, and 7510 true negatives. The model predicted by far the most true negatives, or data entries with a burn_cov-
erage value of 0. This is likely because the majority of the dataset contained true negatives, totaling at 94.8% of the 
dataset. The model predicted 90.9% astrue negatives, showing the similarity between the true negative percentage of 
the dataset and model. Furthermore, a confusion matrix with percentages reveals the percentage breakdown of each 
category of the confusion matrix. A limitation of the model was its low accuracy in predicting true positives; however, 
this is likely due to the low number of true positives in the dataset.  
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Percentage-Based Confusion Matrix 

 
 
FIG. 3. A percentage-based confusion matrix of the model. The top left = true negative (95.7% of true negatives), top 
right = false positive (4.23% of true negatives), bottom left = false negative (84.9% of true positives), and bottom right 
= true positive (15.1% of true positives).  
 

The precision score of the model was 16.0% and the recall score was 14.9%. The unusually low precision 
score and recall scores are due to the nature of the dataset. The high value of true negatives in relation to true positives 
in the dataset results in low precision and recall scores, even with a high accuracy score. The negative predictive value 
score was 95.4%, indicating that the model is reliable in predicting negative values. Because of its increased perfor-
mance in accurately predicting negative values, the random forest model is likely more useful as a means of determin-
ing which vegetation areas do not need as much precautions as compared to determining which ones do.  

To test the proficiency of the random forest model and the overall performance of the dataset, two subsequent 
predictions were made. The first was predicting the fire year of a vegetation region. For this model, the target attribute 
was year_burned, and the burn_coverage attribute was removed so as to not skew the data. Unfortunately, the accuracy 
of this model was only 33.4%, proving that there was simply not enough data to accurately predict the year of fire. 
Another challenge with this model is that the year_burned attribute only identifies the most recent year the vegetation 
region was burned, meaning that in previous years, that same region could have burned, but the model would have no 
way of knowing this. The other prediction made was to predict the vegetation category, with vegetation_category 
being the target attribute. This model performed much better compared to the year_burned model, with an accuracy 
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of 64.5%. This model is still not nearly as accurate as the original burn_coverage model, but shows the proficiency of 
the random forest algorithm and the range of information in the dataset.  

As a visual aid for the vegetation region dataset (Thorne, 2020), another dataset showing the origins of wild-
fires in Napa County and surrounding areas (USDA Forest Service, 2022) was used. This dataset shows the origin 
points of all the fires to have occured in the area with color-coding for the fire size in acres, allowing for a better view 
of which type of areas receive lots of fires. Many of the fires with a size larger than 1 acre occured in the mountainous 
regions as opposed to in the valleys. The valleys are generally more populated and contain more agriculture as com-
pared to pure wildlands, potentially resulting in less fires.  
 
Fire Occurrence Map - Napa County 

 
 
FIG. 4. A map of fire occurrence points in Napa County and surrounding areas. The points are color-coded by the 
size of the fire in acres. Many of the wildfires large than 1 acre tend to occur in the mountains rather than the valleys. 
Additionally, many of the fires form in clusters, potentially indicating that certain areas are very fire prone.  
 

The information provided from this map in conjunction with the random forest model could be a great asset 
for determining which areas in Napa County are most at risk of wildfires. Viewing an overlay of the fire occurrence 
map on the vegetation dataset could outline which vegetation types are most likely to start fires compared to which 
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ones are most likely to have fires spread in them, as well as which ones have a high rate of both. Furthermore, the 
random forest model’s high negative predictive value score indicates that overlaying the true negatives of the dataset 
with this fire occurrence map could be valuable in determining which areas of Napa County might be classified as 
low risk in terms of wildfires.  
 

Discussion 
 
The purpose of the study was to develop a method of predicting the wildfire susceptibility of vegetation in Napa 
County. I achieved this by using a random forest algorithm (Husted, 2022) with a vegetation dataset of Napa County 
(Thorne, 2020) to create a model that would accurately determine the wildfire susceptibility of a vegetation area. The 
random forest algorithm was made of a series of decision trees that assigned a binary value to the wildfire susceptibility 
of a vegetation area. The random forest then took the majority decision from the decision trees as the prediction for 
wildfire susceptibility. The model had an accuracy of 91.7%, identifying mostly true negatives, in accordance with 
the dataset. More specifically, the model had a precision of 16.0%, a recall of 14.9%, and a negative predictive value 
of 95.4%. The high negative predictive value indicates that the model performed well at detecting which vegetation 
areas have not been burned by wildfires. The low precision and recall scores indicate the model’s limitations in dif-
ferentiating between vegetation areas that have been burned by wildfires when compared to other vegetation areas 
that have not been burned.  

This study can be useful in the future for both additional research and in fighting wildfires. The model’s high 
negative predictive value indicates that it can be used in determining which vegetation areas are least likely to be 
afflicted by wildfires, thereby allowing fire prevention methods to be used more effectively by not targeting low-risk 
areas. A common wildfire prevention technique employed by firefighters is clear-cutting the forest floor (Francos et 
al., 2018), and having a more reliable method of knowing where to do these clearings could greatly benefit fire pre-
vention methods. Knowing which vegetation types are more wildfire-prone than others will be able to direct firefight-
ers to the right areas in preventing the spread of wildfires because they would know which areas would be most 
devastating if the wildfire spread to. In addition, the random forest model could be improved through future research 
by applying datasets with more data of burned vegetation areas or applying the model to other areas in Northern 
California outside of Napa County. The diverse vegetation of Napa County means that the model might be able to be 
accurately applied to other counties and regions in the area. This model for predicting wildfire susceptibility in vege-
tation areas can be part of the front to tackle California’s wildfire crisis.  
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