

Finding an Optimized Flight Path for an UAV to
Seed a Fire Affected Area

Abhishek Kaushikkar1 and Joshua Whitman#

1Leland High School, USA
#Advisor

ABSTRACT

Fires have devastated and cleared many areas of vegetation, and much of the terrain impacted is inaccessible
by foot. As a result it is difficult and inefficient to re-seed these areas from the ground. One way of getting
around this problem is by using an Unmanned Aerial Vehicle(UAV). Aerial vehicles are not hindered by topo-
graphical and organic features. However UAVs cannot remain in flight for extended periods of time. To max-
imize the UAVs potential, steps must be taken to limit its flight time. Our paper aims to find an algorithm that
computes the most energy efficient path for the UAV to follow in order to re-seed the fire cleared areas in a
forest and we calculate based on a few constraints. These constraints being that the UAV can only seed a circular
area with a fixed radius, the UAV can translate in straight lines, the area is an N×N square, and the terrain
varies in altitude, and the UAV translates at a constant velocity. We first calculate an array of nodes that the
UAV can seed over, to get maximum coverage of the un-vegetated areas in the field. We then test three different
algorithms to find the path that consumes the least amount of energy, based on our energy consumption model.
We then compare the algorithms based on the energy consumption of their calculated paths, and their compu-
tation time.

Introduction

Fires have devastated and cleared many areas of vegetation, and much of the terrein impacted is inaccessible
by foot. As a result it is difficult and inefficient to re-seed these areas from the ground. However aerial vehicles
can do this task without facing as much of an obstacle from topographical features. UAVs are perfect for this.

a. Unmanned aerial vehicles or UAVs, are able to linearly translate in any direction, and have the ability
to perform actions such as hovering in place, and flying straight up. This makes them desirable for our
purposes. UAVs do face an important constraint, they have an onboard power system, and they require
a lot of energy. Without the ability to recharge in flight, they become limited and thus they cannot
remain in flight for extended periods of time. To maximize the UAVs potential, steps must be taken
to limit its flight time.

b. In this paper we explore the following question. When given a mapped region, what solution computes
the most energy efficient path for a UAV to seed a semi cleared area. We introduce a few constraints:
1. The UAV can only seed a circular area with a fixed radius.
2. The UAV can translate in straight lines.
3. The area is an N×N square, and the terrain varies in altitude.
4. The UAV translates at a constant velocity.
5. The difference between the UAV’s altitude and the altitude of the terrain is constant.

c. Background/literature Review: The algorithm utilized will have to be a Coverage path planning algo-
rithm or CPP, based on a Traveling Salesman Problem or TSP. Quite a lot of research has been done
on coverage path planning algorithms already. For example: A Survey on Coverage Path Planning for

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 1

Robotics, discusses the use of heuristic algorithms that guarantee complete coverage of the free space.
The paper discusses online algorithms that break down targetspace into subspaces called cells to iter-
atively construct a topographical map of the environment.[1] Another paper; Path Planning for UAVs,
uses UAVs to traverse from point A to point B without crossing any obstacle points, in the shortest
distance. The algorithm proposed creates a graph of suboptimal paths and then weights are assigned
to each edge based on the edge length and probability of detection from obstacle points. Using these
weights the algorithm finds the optimal path from the start point to the end point.[2] There are also
many existing TSP algorithms, the first utilizing a dynamic programming algorithm. The paper Survey
of Methods of Solving TSP along with its Implementation using Dynamic Programming Approach
Goes over the application of many different exact and heuristic algorithms, and their implementation
towards the Traveling Salesman problem.[3] The Traveling Salesman problem is a np hard problem
meaning that there may not be a way to compute an exact solution every single time. The Dynamic
Programming approach is an exact solver algorithm. The other class of algorithms are heuristic algo-
rithms, which only promise a feasible solution, but this solution is not guaranteed to be the most opti-
mal. The two heuristic algorithms discussed in this paper are the simulated annealing algorithms and
the Nearest Neighbors algorithm. Literature also exists on route based UAV energy consumption.
Comprehensive Energy Consumption Model for Unmanned Aerial Vehicles, Based on Empirical Stud-
ies of Battery Performance Discusses energy consumption in multi rotor drones in the takeoff, trans-
lational, and climbing phases of flight. [4]

Methodology

I. Field Generation: An accurate 2D field with both vegetated and unvegetated areas is needed to perform anal-
ysis on the UAV’s pathfinding. In this case, the dimensions, (N,M) are constant and the field takes the shape of
a square so N=M. For our purposes the field was set to 100 pixels by 100 pixels. Next, the number of unvege-
tated patches and their maximum radius needs to be found. The number of patches is set to 12 and the maximum
radius is randomly found using a normal distribution which is produced by the normal density function:

p(x) = 𝑒𝑒
−(𝑥𝑥 − 𝜇𝜇)2)

2𝜎𝜎2

𝜎𝜎√2𝜋𝜋

where 𝜇𝜇 is the mean, and 𝜎𝜎 is the standard deviation. Because N and M are 100 𝜇𝜇 = 5 and 𝜎𝜎 = 𝜇𝜇
2
 . The next

step is to the coordinates of each patch which x is simply a uniform random integer in the interval [0,N] and y
is a uniform random integer in the interval [0,M]. The size of the patch is
patch_size = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠2 × 100

From there on, each individual pixel x in the patch is a random normal integer where 𝜇𝜇 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑥𝑥 and
𝜎𝜎 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ 𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠. Each individual pixel y in the patch is a random normal integer where 𝜇𝜇 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑦𝑦 and
𝜎𝜎 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ 𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠. Each generated pixel has to be a new pixel, as well its x and y being in the interval [0,100]

Example of a generated field where yellow is unvegetated, and purple is vegetated:

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 2

The second part of field generation is creating a terrain map. Many methods were considered, however
the method the yield the most promising result was the hill algorithm which picks a uniform random point on a
flat surface and raises a number of hemispherical hills with a random uniform radius and random uniform height
that is equivalent to the radius[7]
 As the number of hills increases, the terrein begins to become more realistic and random. The number
of hills chosen in this paper is 200.

Example terrain map with 200 hills where blue indicates lower altitude and yellow indicates higher
altitude:

II. Choosing nodes: The next step is to choose the placement of nodes that maximizes the UAV’s
coverage of the un-vegetated areas. The first assumption is that the area that the UAV can seed in one seeding

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 3

spray is a circle with a constant radius 𝑟𝑟. There are two geometries in which the nodes may be placed to max-
imize coverage. the first is where each node is equidistant from one another as well as being parallel to one
another such as shown in the figure below:

The distance between each node 𝑟𝑟 in this geometry is equal to 𝑟𝑟√2
The starting node is placed at the coordinate
(0+𝑑𝑑

2
, 0+𝑑𝑑

2
)

A point is selected as a node on the flight path if the circle around the point, with the radius being the
radius of the seeding spray is a circle, contains enough unvegetated pixels to be greater than or equal to the area
of the circle divided by 3.86. To reduce runtime, if a point is in an unvegetated area, it is automatically selected
to be a node.

𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑠𝑠 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗) ∶ 𝑥𝑥𝑖𝑖 = 𝑥𝑥0 + 𝑟𝑟√2𝑟𝑟,𝑦𝑦𝑖𝑖 = 𝑦𝑦0 + 𝑟𝑟√2𝑗𝑗, 0 ≤ 𝑟𝑟 ≤ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 , 0 ≤ 𝑗𝑗 ≤ 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚}

Coverage when 𝑟𝑟 = 12:

Coverage when 𝑟𝑟 = 20:

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 4

Coverage when 𝑟𝑟 = 5:

As shown in the figures above, as the 𝑟𝑟 decreases, the accuracy of coverage and the percent of the

covered area increases.
III. Computing energy matrix of all nodes. An energy matrix is based on the concept of a distance

matrix which is a nonnegative, square, symmetric matrix with elements corresponding to estimates of some
pairwise distance between the sequences in a set. [5]

We calculate the distances between each node, and then create a matrix where the value at Matrix[x,y]
equals the distance between points x and y. In an energy matrix, we calculate the energy consumed in a flight
between each node instead of distance. More on the Energy calculation in section V.

IV. Traveling Salesman algorithms. The first algorithm we implement is the dynamic programming
algorithm which provides an exact solution to the traveling salesman problem. For this problem, each node is a
point that needs to be visited by the algorithm. In the dynamic algorithm for TSP, the number of possible subsets
can be at most 𝑁𝑁 × 2𝑁𝑁. Each subset can be solved in 𝑂𝑂(𝑁𝑁) times. Therefore, the time complexity of this algo-
rithm would be 𝑂𝑂(𝑁𝑁2 × 2𝑁𝑁). We implement this algorithm using the library python-tsp.

The second algorithm we are implementing is the simulated annealing heuristic algorithm. This algo-
rithm is a heuristic algorithm, which is a kind of algorithm that sacrifices optimality, accuracy, precision, or
completeness for speed. This approach is far more effective on sets with a large number of values. The simulated
annealing algorithm works by

1. Create the initial list of cities by shuffling the input list (ie: make the order of visit random)

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 5

2. At every iteration, two cities are swapped in the list. The cost value is the distance traveled by the
salesman for the whole tour.

3. If the new distance, computed after the change, is shorter than the current distance, it is kept.
4. If the new distance is longer than the current one, it is kept with a certain probability.
5. We update the temperature at every iteration by slowly cooling down.[6]
The final algorithm implemented was a variation of the Nearest Neighbors algorithm. Like the Simu-

lated Annealing algorithm, the nearest neighbor algorithm is a heuristic algorithm. This means that it is much
faster and space efficient than an exact solution, however it is less accurate. The algorithm implemented is
recursive.

These are the steps of the algorithm:
1. Initialize all vertices as unvisited.
2. Select an arbitrary vertex, set it as the current vertex u. Mark u as visited.
3. Find out the shortest edge connecting the current vertex u and an unvisited vertex v.
4. Set v as the current vertex u. Mark v as visited.
5. If all the vertices in the domain are visited, then terminate. Else, go to step 3.

The time complexity of the nearest neighbors algorithm is 𝑂𝑂(𝑁𝑁2)
V. Energy cost. The final step is to calculate the Energy cost of the solution for the UAV.[4] Total

energy is represented by:

𝐸𝐸(𝑝𝑝) = �
𝑡𝑡

0
𝑃𝑃𝑟𝑟𝑝𝑝

Power consumption when the UAV is hovering is represented by:

𝑃𝑃 = �(𝑚𝑚𝑚𝑚)3

2𝜋𝜋𝑟𝑟2𝜌𝜌

where 𝑃𝑃 is power, 𝑚𝑚𝑚𝑚 is the Force of gravity acting on the UAV. Since the UAV is hovering in place,
𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑠𝑠𝑝𝑝𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑚𝑚𝑚𝑚

When the UAV is translating horizontally and climbing:

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑠𝑠𝑝𝑝𝑈𝑈𝑈𝑈𝑈𝑈 =
𝑚𝑚𝑚𝑚 + 𝜌𝜌𝑟𝑟𝜌𝜌|𝑣𝑣|2

𝑝𝑝𝑛𝑛𝑠𝑠(𝜙𝜙)

When the UAV is translating horizontally and descending:

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑠𝑠𝑝𝑝𝑈𝑈𝑈𝑈𝑈𝑈 =
𝑚𝑚𝑚𝑚 − 𝜌𝜌𝑟𝑟𝜌𝜌|𝑣𝑣|2

𝑝𝑝𝑛𝑛𝑠𝑠(𝜙𝜙)

where 𝜙𝜙 is the roll angle of the UAV, d is the drag coefficient of the UAV, and v is the climbing velocity of the
UAV. The climbing velocity is based on the proportion of climbing to horizontal displacement that the UAV
needs to do between point a and point b.

𝑣𝑣𝑣𝑣 = 𝑣𝑣𝑐𝑐 𝑝𝑝𝑛𝑛𝑠𝑠(𝜃𝜃)
where 𝑣𝑣𝑐𝑐 is the net velocity of the drone, and

𝜃𝜃 = 𝑝𝑝𝑝𝑝𝑛𝑛−1(
𝑣𝑣𝑛𝑛𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑣𝑣 𝑟𝑟𝑟𝑟𝑠𝑠𝑝𝑝𝑣𝑣𝑝𝑝𝑝𝑝𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑝𝑝
ℎ𝑛𝑛𝑟𝑟𝑟𝑟𝑜𝑜𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑣𝑣 𝑟𝑟𝑟𝑟𝑠𝑠𝑝𝑝𝑣𝑣𝑝𝑝𝑝𝑝𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑝𝑝

)

𝜙𝜙 is related to 𝑣𝑣ℎ or the horizontal velocity of the UAV, in a way that

𝜙𝜙 = 𝑝𝑝𝑝𝑝𝑛𝑛−1(
𝜌𝜌𝑟𝑟𝜌𝜌|𝑣𝑣ℎ|2

𝑚𝑚𝑚𝑚
)

Therefore, the energy consumed by the UAV between point a and point b is represented by:

𝐸𝐸(𝑝𝑝) = �
𝑡𝑡

0
�

(𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑠𝑠𝑝𝑝𝑈𝑈𝑈𝑈𝑈𝑈)3

2𝜋𝜋𝑟𝑟2𝜌𝜌
𝑟𝑟𝑝𝑝

We can find 𝑝𝑝 by dividing the total displacement of the UAV between point a and point bby the con-
stant 𝑣𝑣𝑛𝑛𝑣𝑣𝑛𝑛𝑝𝑝𝑟𝑟𝑝𝑝𝑦𝑦 of the UAV. In order to find an accurate representation of the energy consumed in a flight over

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 6

the terrain between two points, we divided the path line between the two points into equal parts. We then cal-
culated the sum of the energy consumed in all those parts. The total parts can be found by:

𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑠𝑠 =
 𝐷𝐷𝑟𝑟𝑠𝑠𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛(𝑝𝑝, 𝑏𝑏)

𝑝𝑝𝑟𝑟𝑥𝑥𝑛𝑛𝑣𝑣𝑠𝑠

The points on the line is a set where each point is a set number of pixels away from the previous point
on the line where point a is the first point and point b is the last point. In our case the number of pixels is four.
The times of flight for each section can be represented by the following set:

𝑝𝑝𝑟𝑟𝑚𝑚𝑛𝑛𝑠𝑠 = {𝑝𝑝; 𝑝𝑝 =
𝐷𝐷(𝑝𝑝, 𝑏𝑏)
𝑣𝑣𝑐𝑐

 ⇒ 𝑝𝑝 = 𝑝𝑝𝑛𝑛𝑟𝑟𝑛𝑛𝑝𝑝𝑠𝑠𝑘𝑘 ∧ 𝑏𝑏 = 𝑝𝑝𝑛𝑛𝑟𝑟𝑛𝑛𝑝𝑝𝑠𝑠𝑘𝑘+1; 𝑘𝑘 = 𝑍𝑍 ⇒ 0 ≤ 𝑘𝑘 ≤ |𝑝𝑝𝑛𝑛𝑟𝑟𝑛𝑛𝑝𝑝𝑠𝑠|}

The total energy between two points can be represented as

𝐸𝐸 = �
|𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑡𝑡|

𝑘𝑘 = 0

𝐸𝐸(𝑝𝑝𝑟𝑟𝑚𝑚𝑛𝑛𝑠𝑠𝑘𝑘)

To evaluate the performance of each algorithm, we will compare the mean energy consumption, and
execution time of each solution.

Results

Spray Radius and Coverage

The graph below shows the coverage on the unvegetated area based on the spray radius:

We decided to select 14 as the spray radius for the comparisons of the algorithms as using spray circles

with that radius provides coverage similar to smaller circles, while also using less nodes for coverage which is
more efficient for the flight of the UAV and for the computations for the path planning algorithms. In addition,
this spray radius leads to a range of 12-25 nodes, depending on how cleared the field area is. Although a spray
radius of 10 and 12 provides better coverage on average, using those radius’s yields a number of nodes that is
too large for the dynamic programming algorithm to work with, so a spray radius of 14 was chosen.

Paths

Each path generated by each algorithm was mapped as such. Here is a diagram that shows the different paths
each algorithm came up with, when solving on the same field, where the radius of the circle that the UAV can
seed is 14:

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 7

We tested the algorithms on a sample size of 20 different fields. The first variable we measured was

energy consumption. As seen in the graph below, the Algorithm with the lowest mean was the nearest neighbors
algorithm. In all the plots below, algorithm 1 is the simulated annealing algorithm, 2 is the nearest neighbors
algorithm, 3 is the dynamic programming algorithm, and 4 is the naive zigzag approach.

The next variable we measured was the computation time for each algorithm. Although the mean com-

putation time for the naive solution was the lowest, the second lowest was the computation time for the nearest
neighbors algorithm.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 8

Discussion

We measured the performance of three different algorithms, and compared them to a baseline of a naive zigzag
approach. Based on our results we found that the algorithm that on average consumes the least amount of Energy
was the Nearest Neighbors algorithm, with a mean energy consumption of 11290.966807097018 Joules. The
dynamic programming algorithm followed just behind with a mean energy consumption of
11310.634513962214 Joules. The simulated annealing algorithm, was almost as efficient as the dynamic pro-
gramming algorithm as its mean energy consumption was 11414.933119749288 Joules. All tested algorithms
soundly outperformed the naive solution baseline, which had a mean energy consumption of
18595.728785461848 Joules. Thus for calculating the most energy efficient flight path, the data suggests that
the nearest neighbors algorithm is the best bet, however the dynamic programming and simulated annealing
algorithms have very similar performance metrics. With a standard deviation of 1873.7512644927924 Joules,
the dynamic programming algorithm provides the least amount of variance in the energy usage for each field it
solves. Unsurprisingly the naive solution had the most variance, with a standard deviation of
4170.652837954479 Joules.
 In terms of computational time, the fastest algorithm was the naive solution with a mean computation
time of 0.18254609107971193 seconds. The nearest neighbors algorithm was almost as quick with a mean
computation time of 0.18404159545898438 seconds. When solving problems with larger amounts of nodes,
the algorithm had very little variance in its computation time, with a standard deviation of
0.07182173520909853 seconds. The dynamic programming algorithm was the slowest with a mean computa-
tion time of 17.236084747314454 seconds. With a time, complexity of O(N2+2N) the computation time of the
dynamic programming algorithm increased exponentially as the number of nodes increased. This fact materi-
alizes in the standard deviation of the computational times of the dynamic programming algorithm as the stand-
ard deviation was 32.010156211375474 seconds. The naive solution was the fastest solution, and its standard
deviation was 0.015721335713987473 seconds, the lowest variance out of any of the tested algorithms. Finally,
the simulated annealing algorithm was the third fasted, with a mean computation time of 0.5064112901687622
seconds, and it had the second highest variance in computation time, with a standard deviation of
0.17994165118796238 seconds.
 Thus, the results suggest that if the UAV can spray a circular area with a radius of 14, the best algorithm
to calculate its flight path would be the nearest neighbors algorithm. This is because the algorithm has the lowest

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 9

computational time, and on average it requires the lowest average energy consumption. This fact is important
as the UAV has a fixed, limited amount of onboard energy. If one were to implement a solution to the UAV
seeding problem, it would make the most sense to utilize the nearest neighbors algorithm. However the simu-
lated annealing algorithm is not that far off in the measured metrics so one cannot go wrong with either the
simulated annealing algorithm or the nearest neighbors algorithm. Both Heuristic algorithms are great for solv-
ing this problem, and are better than the exact algorithm, the dynamic programming algorithm, which is simply
too time costly to implement on a realistic scale, especially when the UAV needs to visit more than 20 nodes.

Conclusion

In conclusion, when the UAV can only seed a circular area with a fixed radius, translate in straight lines and
travels at a constant velocity, the most effective solution to seeding a forested N*N area with wildfire cleared
areas. is to incorporate the nearest neighbors heuristic algorithm. This applies when there are between 12 and
25 total nodes. The simulated annealing algorithm can also be incorporated but its mean energy consumption
and computation time was slightly lower than the nearest neighbors algorithm.

There are many improvements that can be made to our experimentation in the future. The first is to do
more experimentation on the effects of different spray radius values on the total seeding coverage and the flight
path. Currently we have data of the effects of different spray radius’s coverage on one field only, an improve-
ment would be to collect more comprehensive data on the spray radius’ effect on multiple different fields.
Another improvement is to consider different techniques for selecting nodes along the UAVs path. Currently
we are only using a grid geometry for potential nodes, however in the future, we could test the effects of stag-
gering each row of nodes. In our experiments, the UAV was translating in straight lines only, the possibility of
non linear paths could have an impact on the results of the tests. Finally we could experiment with the size of
the field to see how that impacts the node selection and route calculation for the UAV as all our tests were done
on a square 100m*100m field.

Acknowledgment

Thank you for the guidance of Joshua Whitman, from The University of Illinois, Urbana Champaign in the
development of this research paper.

References

[1] Enric Galceran, Marc Carreras, "A survey on coverage path planning for robotics, Robotics and

Autonomous Systems," Volume 61, Issue 12,2013,Pages 1258-1276,ISSN 0921-8890
[2] S. A. Bortoff, "Path planning for UAVs," Proceedings of the 2000 American Control Conference. ACC

(IEEE Cat. No.00CH36334), 2000, pp. 364-368 vol.1, doi: 10.1109/ACC.2000.878915.
[3] Chauhan, Chetan, Ravindra Gupta, and Kshitij Pathak. "Survey of methods of solving tsp along with its

implementation using dynamic programming approach." International journal of computer applications
52, no. 4 (2012).

[4] H. V. Abeywickrama, B. A. Jayawickrama, Y. He and E. Dutkiewicz, "Comprehensive Energy
Consumption Model for Unmanned Aerial Vehicles, Based on Empirical Studies of Battery
Performance," in IEEE Access, vol. 6, pp. 58383-58394, 2018, doi: 10.1109/ACCESS.2018.2875040.

[5] “Distance Matrix.” Distance Matrix - an overview | ScienceDirect Topics. Accessed September 17, 2022.
https://www.sciencedirect.com/topics/mathematics/distance-
matrix#:~:text=The%20distance%20matrix%20between%20the,N%7D.

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 10

[6] Prateek, Peter, Ss, Emmanuel Goossaert, Hakim, Alim, and Zahra Nekudari. “Simulated Annealing
Applied to the Traveling Salesman Problem: Code Capsule.” Code Capsule | A blog by Emmanuel
Goossaert, July 15, 2014. https://codecapsule.com/2010/04/06/simulated-annealing-traveling-
salesman/#:~:text=Simulated%20annealing%20is%20an%20optimization,designed%20specifically%20f
or%20this%20problem.

[7] .Terrain generation tutorial: Hill algorithm. (n.d.). Retrieved October 1, 2022, from
http://www.stuffwithstuff.com/robot-frog/3d/hills/hill.html

Volume 12 Issue 1 (2023)

ISSN: 2167-1907 www.JSR.org 11

