
Comparing and Reviewing Modern Primality Tests

Ishaan Ganti1 and Dr. Ethan Hutt2#

1Mission San Jose High School
2University of North Carolina at Chapel Hill
#Advisor

ABSTRACT

Primality tests refer to algorithms that determine whether a number is prime or composite. These tests are essential to
modern encryption algorithms, including the widely used RSA public key encryption algorithm. However, with so
many different primality tests out there, choosing the correct one for a given application can be challenging. This
paper provides an overview of modern primality tests, detailing the differences between different types of tests and
when one test may be preferable to another. Furthermore, implementations of popular primality tests are written and
compared to one another graphically to better understand their differing performances. Lastly, we look at next steps
for the field of primality tests due to the rise of quantum computing, which could serve as a means of creating even
better primality tests.

Significance of Primes and Primality Tests

Prime numbers, numbers that can only be divided by one and themselves, are arguably among the most unique and
powerful group of numbers in mathematics. Prime numbers are at the heart of the field of number theory, and they are
key to cryptography. This is why much effort has gone into creating efficient algorithms for finding them---primality
tests.

Primality tests are as important as they are not just because prime numbers are important, but also because
big prime numbers are important. The prime numbers used in fields like cryptography are typically at least 40 digits
long. To generate1 primes this big, random odd numbers of a specified size are generated and then tested for primality.
If a brute force method were used to test the primality of these big numbers, this process would be much too time
consuming. These brute force methods generally involve checking an integer's divisibility by every integer greater
than one preceding it. If it is divisible by any of these values, it is composite. Otherwise, it is prime. While this method
can be refined, it still is not nearly fast enough for practical usage. The tests used today make use of results in number
theory and group theory to drastically reduce running time.

Applications of Prime Numbers

The applications of prime numbers are extensive. They are at the heart of number theory, they are used in many
pseudo-random number generators (such as Blum Blum Shub), and they are important in hashing. However, the most
important and direct usage of prime numbers in a field has to be in encryption. Many of the most used encryption
algorithms depend on the generation of very large prime numbers. For example, RSA, a popular encryption algorithm,
depends on two keys: a private key and a public key. The public key is the product of two primes, and generally must

1 Prime generation generally is performed by generating random odd numbers of a specified size and testing each
number for primality until a number passes a give test. So, any mentions of prime generation imply the usage of a
primality test.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 1

be at least 1024 bits for decent encryption. This means that the two primes that are factors of the public key must both
be approximately 512 bits. Generating primes of this size is not a simple task.

Types of Primality Tests

There are two contemporary types of primality tests: deterministic tests and probabilistic tests. Deterministic tests are
tests that state with certainty whether a number is prime. The reason that not all primality tests are deterministic is due
to time complexity involved in determining whether the number is prime. Time complexity for all primality tests will
be provided using Big O notation.

In contrast, probabilistic tests return whether a number is prime or not with a degree of uncertainty, typically
bounded by a known error. These tests tend to rely on randomness. Furthermore, the error of these tests can oftentimes
be reduced through multiple rounds of the same test, or with a combination of multiple probabilistic tests. Unfortu-
nately, some probabilistic tests, such as the Fermat primality test, have composite numbers that will pass the test no
matter how many rounds of the test are done. Numbers like this are referred to as pseudo-primes. For applications
where the generation of a prime every single time is necessary, probabilistic tests should then be used with caution if
at all.

The Issue of Time Complexity

Most deterministic tests are too slow for use in practical applications. Most of them run in exponential time, except
for AKS, an algorithm that will be discussed later. Other tests like it relied on conjectures such as the Riemann hy-
pothesis.

Initial Deterministic Tests

The most used deterministic primality tests were only found after the 1980s. This came with the creation of the APR-
CL test, which was later improved for modern implementations. Near the end of the 20th century came the creation
of ECPP, arguably the most powerful deterministic primality test today.

But what came before all of this? Let's start with the brute force tests that were previously mentioned, in-
volving checking a number's divisibility by every number less than it. As readers may infer, this test is horrendously
slow. For instance, here's the runtime of a python implementation of this algorithm for numbers just larger than 20
bits:

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 2

Figure 1. A plot of basic primality test runtime for increasing bit size requirements

Clearly, due to the exponential runtime of this algorithm, this won't be feasible for larger values of 𝑛𝑛. Major

improvements can be made to this algorithm by only checking odd numbers up until √𝑛𝑛. Here are the initial and
revised algorithms compared to one another over a larger interval:

Figure 2. A graphical comparison of brute force primality tests

Even though this algorithm holds on for a little bit longer, its runtime still increases far too quickly to have any sort
of practical usage.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 3

Results in number theory, such as Wilson's theorem (which states that (𝑝𝑝 − 1)! + 1 ≡ 0 (mod 𝑝𝑝) if and only
if 𝑝𝑝 is prime), have also been used to create deterministic tests. However, almost all these algorithms are far too slow
for practical usage. Except for a few.

Practical Deterministic Tests

Elliptic curve primality proving and APR-CL are the two most used deterministic primality tests. APR-CL runs un-
conditionally in (log𝑛𝑛)𝑂𝑂(log log log 𝑛𝑛).This time complexity is rather interesting as it is technically exponential, but the
(log log log𝑛𝑛) exponent term grows so incredibly slowly that it is far faster than many other algorithms in practice.
 Even still, the usage of APR-CL is limited to some software implementations. Why is this? Well, this is
because ECPP runs a bit faster than APR-CL implementations in practice and it issues a primality certificate upon
deeming a number to be prime. A primality certificate allows for a number to be quickly and independently verified
as a prime, making it especially powerful for keeping track of large primes (e.g. for prime searching). The primes
involved in prime searching, for some context, are typically larger than 20,000 digits long. In comparison, the primes
used in cryptography are generally between 100 and 700 digits long.
 The most significant drawback, however, of using ECPP is that its worst-case time complexity is unknown.
In practice, its time complexity has been shown to be O((log n)5+ϵ) for some ϵ > 0.

AKS: The Groundbreaking Deterministic Test

A third deterministic test is known as AKS. AKS, while revolutionary, does not serve much practical purpose any-
more. Its significance is due to it being the first deterministic algorithm that runs in polynomial time without the use
of any unproven conjecture (or something else along similar lines). It is based on the following relation:

(𝑋𝑋 + 𝑞𝑞)𝑛𝑛 ≡ 𝑋𝑋𝑛𝑛 + 𝑞𝑞 (mod 𝑛𝑛)

which holds if and only if 𝑛𝑛 is prime. It stems from Fermat's little theorem. A more intuitive explanation of this
condition is in Appendix A. The time complexity of the original algorithm was calculated to be 𝑂𝑂�(log(𝑛𝑛)12).

The test is rather obsolete now. This is because some probabilistic tests, such as the Baillie–PSW test, are
known to be deterministic for values under 264. For values larger than this, ECPP and APR-CL are far faster than
AKS. This is evident from the following bit size versus time graph with AKS, APR-CL, and brute force implementa-
tions.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 4

Figure 3. A graphical comparison of AKS and APR-CL with the brute force primality tests for reference

 Even though AKS is outdated now, there have been significant improvements to the algorithm since its cre-
ation. For example, Agarwal, Kayal, and Saxena, the creators of the AKS primality test, showed that if a well-known
conjecture pertaining to the distribution of Sophie Germain primes is true, then the time complexity of AKS can be
reduced to O�(log(n)6). A second version of the paper brought the complexity of the algorithm down to O�(log(n)7.5).
Additionally, in the following months, mathematicians Carl Bernard Pomerance and Hendrik Willem Lenstra Jr. syn-
thesized a version of AKS that ran in 𝑂𝑂�(log(𝑛𝑛)6) through the usage of Gaussian periods.

Probabilistic Primality Tests

Primality tests that have a possibility of outputting an incorrect result are known as probabilistic primality tests. In
general, these are the tests that are used the most in practice. The main reasons for this are ease of implementation and
more importantly, speed. Probabilistic primality tests are much, much faster than deterministic tests. And, most of the
time, the error of these tests can be minimized to a value that makes it nearly negligible.

Additionally, when these tests are used for practical purposes (e.g. encryption), the practical software that
requires the generation of a prime number oftentimes has a sort of fail-safe. In the case of RSA (an enhanced expla-
nation is in Appendix B), for example, if a composite number is generated for half of the public key, the private key
will most likely be generated incorrectly. This makes decryption near impossible --- rendering it near impossible to
recover the original message. However, for extraordinary composite selections of the public key components, the
encryption still may work. This is especially bad because then the public key will be easier to factor, making the
information more at risk to being decrypted by a malicious third party.

The Miller-Rabin Algorithm

The Miller-Rabin probabilistic primality test makes use of two results in number theory. First, Fermat's Little Theo-
rem, which states

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 5

𝑎𝑎𝑝𝑝−1 ≡ 1 (mod 𝑝𝑝)

if 𝑝𝑝 is prime. The second result is that the solutions to the following equation:

𝑥𝑥2 ≡ 1 (mod 𝑝𝑝)

when 𝑝𝑝 is prime are 𝑥𝑥 ≡ 1,−1 (mod 𝑝𝑝).

Now, if we take some odd integer 𝑛𝑛 to be tested for primality and we rewrite it as 2𝑠𝑠 ⋅ 𝑑𝑑 + 1, where 𝑠𝑠 and 𝑑𝑑 are both
positive integers and 𝑑𝑑 is odd we can test the primality of 𝑛𝑛 by checking to see if at least one of the following modular
relations (derived from the above-mentioned results) holds true:

𝑎𝑎𝑑𝑑 ≡ 1 (mod 𝑛𝑛)

And

𝑎𝑎2𝑟𝑟⋅𝑑𝑑 ≡ −1 (mod 𝑛𝑛)

Note that 𝑎𝑎 must be an integer such that 0 < 𝑎𝑎 < 𝑛𝑛.

A Python implementation of the Miller-Rabin test is in Appendix C. An important takeaway from the imple-
mentation is that the test requires a random number between 2 and 𝑛𝑛 − 1, where 𝑛𝑛 is the number being tested for
primality, and 𝑎𝑎 is the number to be used as a modular base.
 The Miller-Rabin test is unique in that it is really a compositeness test rather than a primality test. This is
because the Miller-Rabin test only proves if a number is composite. Numbers that pass the Miller-Rabin test are
probably prime, but there is a chance that they are composite. Note that this means that the only type of error in this
test is when a composite number is labelled as prime.
 When the Miller-Rabin test is used in practice to test if a number is prime, it is generally run more than once.
This is because running the test several times with different modular bases each time (with the bases chosen randomly
from the previously mentioned range, [2,𝑛𝑛 − 1]) reduces the chance that the test outputs a false positive, meaning it
claims that the inputted number is prime when it is actually composite.
 The algorithm runs efficiently in polynomial time, with typical implementations running in 𝑂𝑂(𝑘𝑘 log3 𝑛𝑛)
(where 𝑘𝑘 is the number of times the test is run). However, some implementations that make use of FFT-based multi-
plication can reduce the runtime even more to 𝑂𝑂(𝑘𝑘 log2 𝑛𝑛 log log𝑛𝑛).
 Due to the Miller-Rabin test's ease of implementation and its speed, it is used very often (e.g. implementations
of the RSA encryption algorithm). Here's its runtime compared to the previously mentioned deterministic algorithms:

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 6

Figure 4. The runtime of the Miller-Rabin primality test compared to that of deterministic primality tests graphically.

A view of these runtimes on a logarithmic scale better illustrates how it compares to deterministic algorithms:

Figure 5. A comparison of the Miller-Rabin algorithm to the deterministic algorithms using logarithmic scaling on
the vertical axis.

The Miller-Rabin algorithm is especially prominent in encryption software that requires prime number generation,
such as code implementing the RSA algorithm.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 7

Pseudoprimes

Generally, the probability of error for the Miller-Rabin Test is 4−𝑘𝑘, where 𝑘𝑘 is again the number of times the test is
run with a different modular base. However, there is more to this error probability than meets the eye, and it will be
discussed in slightly greater depth in Appendix D. There has been work done on how to select these modular bases to
reduce error even further. But, even with all of these measures there are composite numbers that manage to slip through
the cracks and pass the test. These numbers are known as pseudoprimes--composite numbers that have some property
that prime numbers have.

One of the most well-known sequences of pseudoprimes is known as the Carmichael numbers, which satisfy

𝑄𝑄𝑞𝑞−1 ≡ 1 (mod 𝑞𝑞)

for all 𝑄𝑄 coprime to 𝑞𝑞. In other words, the Carmichael numbers are a sequence of composite numbers that manage to
fully satisfy Fermat's Little Theorem. Due to this property, the Carmichael numbers have the potential to pass primality
tests that make use of Fermat's Little Theorem (such as the Miller-Rabin test). And, in 1994, W.R. Alford, Andrew
Granville, and Carl Pomerance proved that there are an infinite number of Carmichael numbers.

Baillie-PSW

The Baillie-PSW test is another widely used probabilistic test. It is really a combination of two other tests: one round
of a Miller-Rabin test with 2 as the modular base, and a Lucas probable prime test with specifically calculated param-
eters. Lucas probable prime tests will not be discussed in depth in this paper. A rundown of Lucas's ideas regarding
primality can be found Carl Pomerance's paper "Primality Testing: Variations on a Theme of Lucas."

The strength of this test comes from the fact that, as previously stated, it combines two existing probabilistic
primality tests. This is important as different probabilistic primality tests may have very minimal amounts of overlap
in the pseudoprimes that are capable of passing a given test. This can allow for more accurate results.

For example, take two hypothetical probabilistic tests 𝑃𝑃 and 𝑄𝑄. Let the set of pseudoprimes capable of passing
test 𝑃𝑃 be denoted by 𝑃𝑃𝑠𝑠 and the set of pseudoprimes capable of passing test 𝑄𝑄 by 𝑄𝑄𝑠𝑠. Then, if the intersection of these
sets is the empty set, meaning 𝑃𝑃𝑠𝑠 ∩ 𝑄𝑄𝑠𝑠 = ∅, a new test implementing both test 𝑃𝑃 and test 𝑄𝑄 would have no pseudo-
primes. Therefore, this new test would be deterministic.

The Baillie-PSW test does a great job of showing off the power of combining two probabilistic tests. It has
no pseudoprimes less than 264, meaning that it is deterministic on the interval 1 < 𝑛𝑛 < 264, where 𝑛𝑛 is the odd integer
to be tested for primality. Furthermore, there are no known pseudoprimes for the Baillie-PSW test.

Searching For New Probabilistic Tests

Even though Miller-Rabin and Baillie-PSW are incredibly powerful primality tests, the search for stronger and faster
probabilistic tests continues. One lesser known (but promising) probabilistic primality test is the Frobenius primality
test. This test has been proven to be deterministic for numbers less than 264, and there are currently no known pseu-
doprimes for the test at all. This means that the test probably has a very low chance of returning a false result, making
it quite powerful. Its time complexity is roughly double that of a Miller-Rabin test.

This test is unique from many other probabilistic primality tests as it doesn't rely on standard number theory
results like Fermat's little theorem. The Frobenius test exemplifies a relatively recent trend that is shifting into new
fields for primality results, including (but not limited to) field theory, group theory, and graph theory.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 8

Quantum Computing-A New Primality Test Breeding Ground

In recent years, quantum computing--which makes use of subatomic qubits rather than standard bits--has grown dra-
matically. Quantum computing's strength stems from a few key concepts, including uncertainty and entanglement.

The computing strength of quantum computers in comparison to our existing supercomputers is enormous.
Tasks that a classical computer might take thousands of years to do a quantum computer could do in under ten minutes.
Due to this extreme improvement in computational ability, lots of time and effort is being poured into research sur-
rounding computer algorithms--especially cryptography protocols. The first such protocol is BB84, a simple quantum
algorithm for securely distributing a key (which is then used to encrypt a message).

Shor’s Algorithm

One of the most revolutionary quantum computing algorithms is Shor's algorithm. The algorithm, through a combi-
nation of results in number theory and concepts such as the quantum Fourier transform, is one that can theoretically
factor a number in polynomial time.2 Of course, this is devastating to most public key encryption methods today as
practically all of them function under the assumption that factoring a number cannot be done in polynomial time.
 One of the key reasons for which Shor's algorithm is as fast as it is is due to its usage of the quantum Fourier
transform, which can be performed extremely quickly on a quantum computer. The standard classical Fourier trans-
form works by taking a vector3 in one "domain" and mapping it to another. For example, a common usage for the
Fourier transform is taking a function in the spatial domain and converting it to the frequency domain.
 The algorithm mathematically acts on a quantum state

|𝑥𝑥⟩ = �𝑥𝑥𝑞𝑞|𝑞𝑞⟩
𝑁𝑁−1

𝑞𝑞=0

And expresses it in another domain, which can be denoted as

|𝑦𝑦⟩ = �𝑦𝑦𝑞𝑞|𝑞𝑞⟩
𝑁𝑁−1

𝑞𝑞=0

According to the following formula:

𝑦𝑦𝑘𝑘 =
1
√𝑁𝑁

� 𝑥𝑥𝑛𝑛ω𝑁𝑁
𝑛𝑛𝑘𝑘

𝑁𝑁−1

𝑛𝑛=0

where 𝑘𝑘 = 0, 1, 2, … ,𝑁𝑁 − 1.

At a fundamental level, the power of the quantum Fourier transform, which Shor's algorithm harnesses ex-

tremely well, is derived from its ability to represent a vector in a way that spotlights certain qualities of the vector

2 Readers might infer that Shor's algorithm, then, can be used as a primality test by itself. However, this is not the
case. The algorithm will not function properly for inputs that are not composite numbers. Furthermore, the input
must be odd, and it cannot be a perfect power.
3 Note that functions can be expressed as infinitely long vectors by enumerating the functions values over a specific
domain.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 9

without altering the function at all (meaning that the two representations are equivalent). Researchers and mathema-
ticians are attempting to see how this strength can be used for creating better primality tests, which in turn would
benefit cryptographic algorithms.

Advancements in Quantum Cryptography

Even though Shor's algorithm generated fear due to its ability to break many public key cryptographic systems, it also
created much excitement in the realm of primality generation.

Quick advancements in primality tests were made very soon after Shor published his algorithm. One such
advancement had to do with the Pocklington–Lehmer primality test. This test, while being able to produce a primality
certificate, requires a partial factorization of 𝑁𝑁 − 1, where 𝑁𝑁 is the number being tested for primality. Prior to Shor's
algorithm, the partial factorization of 𝑁𝑁 − 1 was a sort of bottleneck for the algorithm, preventing it from being ap-
plicable to fields like cryptography.

With the creation of Shor's algorithm, however, 𝑁𝑁 − 1 can be quickly factored. A quantum probabilistic
variant of the Pocklington-Lehmer primality test (making use of Shor's algorithm, once again) has also been created,
running in 𝑂𝑂((log𝑁𝑁)3 log log𝑁𝑁 log log log𝑁𝑁) time.

Another such algorithm that has been created more recently makes use of quantum order finding, and it was
published in 2017. This algorithm needs to compute 𝑂𝑂((log𝑛𝑛)2𝑛𝑛3) operations to test the primality of a number with
𝑛𝑛 bits. This can be further reduced using fast multiplication.

Next Steps and Future Implications

The field of primality tests is one that is only going to grow. Technological advancements will keep the field thriving,
and as many have already witnessed, the field will likely shift its focus from classical computers to quantum comput-
ers. Once the necessary hardware to create function quantum computers is developed, most existing cryptography
algorithms will be in danger. This will affect the average person when it comes to sending any sort of private infor-
mation over the internet (e.g. electronic commerce), and it will also threaten the security of information transmission
at the governmental level. To address this, mathematicians and scientists will be forced to strengthen and create new
encryption algorithms, and this will begin with improved primality tests.

Next steps in this field will likely focus on finding more efficient quantum primality tests along with search-
ing for results about primality in fields besides number theory and group theory. One such field may be graph theory.
With many possible tracks for new discoveries along with a looming necessity for stronger tests, work in primality
tests is going to expand rapidly.

Acknowledgements

I would like to thank Dr. Ethan Hutt for his guidance during the entirety of my writing of this paper. His knowledge
of how to keep track of resources, effectively extract information from papers, and general are what allowed me to
produce this body of work.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 10

References

Agrawal, M., Kayal, N., & Saxena, N. (2004). Primes is in p. Annals of Mathematics, 160(2), 781–793.

https://doi.org/10.4007/annals.2004.160.781

Atkin, A. O., & Morain, F. (1993). Elliptic curves and primality proving. Mathematics of Computation, 61(203), 29–

68. https://doi.org/10.1090/s0025-5718-1993-1199989-x

Baillie, R., & Wagstaff, S. S. (1980). Lucas pseudoprimes. Mathematics of Computation, 35(152), 1391–1417.

https://doi.org/10.1090/s0025-5718-1980-0583518-6

Bernhardt, C. (2020). Quantum computing for everyone. The MIT Press.

Chau, H. F., & Lo, H.-K. (1997). Primality test via quantum factorization. International Journal of Modern Physics

C, 08(02), 131–138. https://doi.org/10.1142/s0129183197000138

Damgard, I., Landrock, P., & Pomerance, C. (1993). Average case error estimates for the strong probable prime test.

Mathematics of Computation, 61(203), 177. https://doi.org/10.2307/2152945

Damgård, I. B., & Frandsen, G. S. (2003). An extended quadratic frobenius primality test with average and worst

case error estimates. Fundamentals of Computation Theory, 118–131. https://doi.org/10.1007/978-3-540-45077-
1_12

Grantham, J. (1998). A probable prime test with high confidence. Journal of Number Theory, 72(1), 32–47.

https://doi.org/10.1006/jnth.1998.2247

Ishmukhametov, S. T., Rubtsova, R., & Savelyev, N. (2018). The error probability of the Miller–Rabin Primality

test. Lobachevskii Journal of Mathematics, 39(7), 1010–1015. https://doi.org/10.1134/s1995080218070132

Lenstra, Jr., H., & Pomerance, C. (2019). Primality testing with gaussian periods. Journal of the European

Mathematical Society, 21(4), 1229–1269. https://doi.org/10.4171/jems/861

Rabin, M. O. (1980). Probabilistic algorithm for testing primality. Journal of Number Theory, 12(1), 128–138.

https://doi.org/10.1016/0022-314x(80)90084-0

Rajput, J., & Bajpai, A. (2019). Study on deterministic and probabilistic computation of primality test. SSRN

Electronic Journal. https://doi.org/10.2139/ssrn.3358737

Schoof, R. (2008). Four primality testing algorithms. ArXiv. https://doi.org/10.48550/ARXIV.0801.3840

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings 35th

Annual Symposium on Foundations of Computer Science. https://doi.org/10.1109/sfcs.1994.365700

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 11

https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1090/s0025-5718-1993-1199989-x
https://doi.org/10.1090/s0025-5718-1980-0583518-6
https://doi.org/10.1142/s0129183197000138
https://doi.org/10.2307/2152945
https://doi.org/10.1007/978-3-540-45077-1_12
https://doi.org/10.1007/978-3-540-45077-1_12
https://doi.org/10.1006/jnth.1998.2247
https://doi.org/10.1134/s1995080218070132
https://doi.org/10.4171/jems/861
https://doi.org/10.1016/0022-314x(80)90084-0
https://doi.org/10.2139/ssrn.3358737
https://doi.org/10.48550/ARXIV.0801.3840
https://doi.org/10.1109/sfcs.1994.365700

