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ABSTRACT 
 
Culex mosquitoes pose a significant threat to humans and other species due to their ability to carry deadly viruses 
such as the West Nile and Zika. Washington D.C., in particular, has a humid subtropical climate that is ideal as a 
habitat for mosquito breeding. Thus, tracking mosquitoes’ habitats and breeding patterns in Washington D.C. is crucial 
for addressing local public health concerns. Although fieldwork techniques have improved over the years, monitoring 
and analyzing mosquitoes is difficult, dangerous, and time-consuming. In this work, we propose a solution by creating 
a Culex mosquito abundance predictor using machine learning techniques to determine under which conditions Culex 
mosquitoes thrive and reproduce. We used four environmental variables to conduct this experiment: precipitation, 
specific humidity, enhanced vegetation index (EVI), and surface skin temperature. We obtained sample data of these 
variables in the Washington D.C. areas from the NASA Giovanni Earth Science Data system, as well as mosquito 
abundance data collected by the D.C. government. Using these data, we created and compared four machine learning 
regression models: Random Forest, Decision Tree, Support Vector Machine, and Multi-Layer Perceptron. We 
searched for the optimal configurations for each model to get the best fitting possible. Random Forest Regressor 
produced the most accurate prediction of mosquito abundance in an area with the four environment variables, achiev-
ing a mean average error of 3.3. EVI was the most significant factor in determining mosquito abundance. Models and 
findings from this research can be utilized by public health programs for mosquito-related disease observations and 
predictions. 
 

1. Introduction  
 
Culex mosquitoes are some of the most common species of mosquitoes worldwide and can carry many types of dis-
eases, including the West Nile and Zika Viruses (Omodior et al. 2018). At present, there are no licensed vaccines or 
medicines for such diseases. Culex sp. are native to Africa, Europe, and Asia, and are found worldwide (Soh and Aik 
2021). Therefore, a large number of societies are prone to these deadly diseases. Past studies have been limited in their 
noticeable effects on human populations; however, very little has been done due to the lack of understanding of how 
these viruses affect the human body (Center of Disease Control 2020). Furthermore, there are currently no established 
systems that predict mosquito-borne disease outbreaks. 
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Washington D.C. is known to have a humid subtropical climate which tends to be ideal for mosquito breeding 
habitats. With an annual rainfall average of 42 inches per year, Washington D.C.’s rainfall is 12 inches higher than 
the nationwide yearly average of 30.2 inches. Thus, Washington D.C. is prone to abundant mosquito populations 
because they thrive in relatively wet places (National Centers for Environmental Information 2022). Washington D.C. 
has a unique environment, with the Potomac River, a freshwater stream running through Washington D.C., serving 
this area and the areas around it as habitable mosquito microenvironments. Washington D.C.’s natural topography 
varies, as the areas to the east of the Potomac River range from 100-140m above sea level, while the west of the 
Potomac River ranges from 40-80m (Topographic-Maps 2022, Figure 1). The first human case of West Nile Virus in 
the United States was reported in the District of Columbia (DC Health 2022). In 2018, there were 13 reported human 
cases, and there were 11 cases in 2019, in a mere 68.34 mi2 area (Center of Disease Control 2020). This is evidence 
that Washington D.C. has a significant public health threat from mosquitos and the West Nile virus, as well as other 
mosquito-transmitted diseases, which can become a severe problem in small geographic areas. 
 

 
 
Figure 1. A representation of Washington D.C.’s natural topography. The geographic center of Washington D.C. is 
near the intersection of 4th and L Streets NW. The highest natural elevation in D.C. is 409 feet (125 m) above sea 
level at Fort Reno Park in upper northwest Washington. The lowest point is at sea level at the Potomac River.  
Scale Unknown, (CC-BY-SA 3.0), Washington D.C., 2022. 
 

Historically, machine learning models have proven to be valuable tools for predicting trends and operational 
patterns. Machine learning is significantly helpful in predicting breeding patterns of various animals, including mos-
quitoes. In this work, we chose four primary machine learning models: Random Forest, Decision Tree, Support Vector 
Machine, and Multilayer Perceptron. Given its several capabilities, random forest regression models were recently 
used in predicting West Nile Virus positivity rates and abundance in the city of Chicago (Schneider et al. 2021). 
Random Forest algorithms can construct a collection of decision trees to perform classification assignments, allowing 
users to make highly accurate discrete predictions and solutions for their data sets. Moreover, the decision trees con-
structed by the Random Forest models can be used to create regression tasks that further help users predict continuous 
outputs for nonlinear inputs (Schonlau and Zou 2020). Because Random Forest is heavily used specifically in geology 
and earth science, we predict that it would also do the best in our tests. Decision Tree regression, on the other hand, 
features only one decision tree analysis feature by partitioning data and fitting a simple model for each partition and 
exists as a more straightforward method of Random Forest (Lou 2011). The Support Vector regression model is based 
on a linear regression that fits its data by a hyperplane in a higher dimension, allowing it to recognize subtle patterns 
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(Basak and Pal 2007). In addition, Multilayer Perceptron regression is a neural network algorithm that consists of 
various nodes and can learn non-linear models, which could prove to be helpful (Murtagh 1991). 

A previous study by Drakou et al. (2020) displayed that the amount of Culex pipiens, Aedes detritus, and 
Aedes caspius mosquitoes grew due to precipitation increase. Francisco et al. (2021) found connections between the 
dengue virus, another disease transmitted by mosquitoes, and environmental and landscape factors, including precip-
itation, land surface temperature, the normalized difference of vegetation index, and impervious surfaces, including 
roads. Other studies, such as Madewell et al. (2019), have also discovered connections of mosquito habitat with ur-
banization. In this study, we found that studying landcover GLOBE data was useful with the various environmental 
factors available from the NASA Giovanni Earth datasets; and our quest was to use machine learning techniques to 
predict Culex mosquito breeding patterns in Washington D.C. with GLOBE and open-sourced data.  
 

2. Methods 
 
We chose Washington D.C. as our primary area of interest (AOI) due to its high accessibility of open-sourced mos-
quito data and environmental data, as well as its historical abundance of mosquitoes. We obtained data from the NASA 
Giovanni Earth science remote sensing data system, the GLOBE database, and the Washington D.C. government data. 
The data we collected spans from April 2016 to October 2018. Data sets included the daily data of Average Surface 
Temperature, Specific Humidity, Precipitation, and EVI (Giovanni 2022). The Washington D.C. government provided 
open-sourced quantitative mosquito data in our respective AOI (Open Data DC 2021). 

Initially, when trying to extract data from GLOBE, we ran into the issue of getting inconsistent data, specif-
ically because of the opportunistic nature of this database. Although we originally had a hard time finding several data 
points in one area, we eventually found a way around this problem by discovering the data from a different perspective. 
Instead of investigating the GLOBE Observer Mosquito Habitat Mapper data, we started looking at GLOBE’s land 
cover data. This helped us immensely in our quest to answer our initial research question by giving us perspective on 
how the land cover pictures around Washington D.C. correlate to the environmental factors we used in our experiment. 
The availability of GLOBE citizen science data in Washington D.C. indicates the location as an area of interest for 
health programs and government efforts. We used the GLOBE data to analyze specific land cover observations in 
Washington D.C., which allowed us to determine which habitats correlate with specific environmental factors and, 
therefore, the mosquito breeding patterns. GLOBE data was collected using land cover measurements that were up-
dated daily, including green-down, green-up, tree height, and land cover classifications. The qualitative GLOBE open-
source data determined that the land cover points were generally concentrated in Ward 3 of Washington D.C., with 
many GLOBE citizen science users. Using GLOBE and Washington D.C. open data, Ward 3 displayed relatively low 
container removals (Figure 2). Therefore, we speculate that Ward 3 will result in somewhat greater mosquito breeding 
as there are lower container removals which are an ideal breeding habitat for Culex mosquitoes. 

 
Figure 2. A representation of our data collected from both the government and citizen science.  
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Left: Washington D.C. land cover data updated daily made with GLOBE Observer. The legend includes land cover 
classifications, green-down, green-up, and tree height. Global Learning and Observations to Benefit the Environment 
(GLOBE) Program, July 21, 2022, https://globe.gov 
 
Right: Washington D.C. open access data from ArcGIS Online showing container removal updated monthly.  
Scale Unknown, Open Data DC in the Office of the Chief Technology Officer, Washington D.C., 2022 
 
2.1 Data Features 
 
We calculated the correlation between mosquito breeding patterns and the environmental variables that have been 
shown to influence mosquito breeding patterns in the past (i.e., precipitation, EVI, specific humidity, surface skin 
temperature). We chose these four environmental factors as we hypothesized that they would significantly affect mos-
quito breeding patterns. We decided to calculate this relationship because it allowed our machine learning models to 
predict Culex mosquito breeding patterns given certain environmental conditions in our AOI location. The visual 
derivatives of the mosquito abundance in our AOI location showed high variability over our selected time and were 
utilized in our models to identify the specific relationships further. The means and ranges of all the data used are 
shown in Table 1. 
 
Table 1. The mean and ranges of inputs from NASA Giovanni Data and Washington D.C. Open Data. 

Factor Mean Range 

Average Mosquitoes 8.3600 37.720 

Precipitation (mm/day) 2.5939 34.623 

Specific Humidity (kg/kg) 0.0113 0.0150 

Average Skin Surface Temperature (℃) 22.352 25.639 

EVI (Spectral Index) 0.3279 0.1882 

 
2.2 Analyzing Trends and Lag 
 
We aligned our ecological variables with the daily mosquito data taken from the government of Washington D.C. We 
displayed the graphical relationships between each environmental variable and mosquito abundance in Figure 3. The 
p-value was calculated by using the Ordinary Least Square Regression model. For us to consider a factor statistically 
significant, it needed to have a p-value < 0.05. We had previously hypothesized that there would be a lag in the data 
due to the lengthy incubation period of mosquito eggs, which would lead ecological variables to only show an effect 
in the population several days after (Environmental Protection Agency 2022). 
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Figure 3. Relation between the mosquito abundance vs. each environmental variable. 
 
In the above figure, the top left scatter plot shows the relationship between the precipitation and the average mosquito 
populations. The precipitation has a p-value of 0.0023. The top right scatter plot shows the relationship between the 
specific humidity measured in (kg/kg) and the average mosquito populations. The specific humidity has a p-value of 
0.0487. The bottom left scatter plot shows the relationship between the average surface skin temperature measured in 
℃ and the average mosquito populations. The average surface skin temperature has a p-value of 0.0393. The bottom 
right scatter plot shows the relationship between the enhanced vegetation index (EVI) measured in Spectral Index 
(Band Ratio) and the average mosquito populations. The EVI has a p-value of 5e-6. 

However, when we compared the difference between with a one-week lag and with no lag, we found that all 
of the data were statistically significant (with smaller p-values) with no lag. Temperature was the only one that was 
more statistically significant with a one-week lag. Peaks in the data also matched better with no lag (Figure 4). Certain 
factors such as humidity and precipitation would not have been statistically significant with the one-week lag. We 
compared the differences between the p-values for each ecological variable with vs. without the data lag in Table 2. 
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Figure 4. The line graphs show the relationship between time and precipitation, temperature, humidity, and enhanced 
vegetation index (EVI) with no lag time. EVI values have been multiplied by 30, and humidity values have been 
divided by 5 for scaling purposes. 
 
Table 2. The differences between the p-values of precipitation, temperature, humidity, and enhanced vegetation index 
(EVI) when with vs. without the data lag. A statistical significance threshold is 0.05. 

Variables 1 Week Lag No Lag 

Precipitation 0.349566 0.002316 

Temperature 0.021255 0.039277 

Humidity 0.581798 0.048652 

EVI 0.000020 0.000005 

 
As shown in Table 2, the p-value is less than 0.05 for every environmental variable, verifying that they all significantly 
affect mosquito populations. This rejects the null hypothesis stating that none of the environmental variables has a 
statistically significant relationship with the mosquito populations. 
 
2.3 Data Preprocessing 
 
Data used in this study came from different sources and various satellites, thus it was necessary to do plenty of data 
cleaning. The Washington D.C. government-collected mosquito data was measured twice a week for most of 2016 
and once a week for the rest of the time. The data contained the number of both females and males of various types of 
mosquitoes. Because we focused on predicting mosquito population growth, we only kept data for female Culex mos-
quitoes. Due to the varying amounts of mosquito traps per day, we took the average number of mosquitoes per trap 
per day for the dates on which mosquito traps were set. We had 108 days from May to October in the years 2016-
2018. For each of these days, we collected data for EVI, average surface skin temperature, specific humidity, and 
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precipitation. We found a couple of holes in some of the environmental factor data. For these, we used SciPy’s inter-
polation method interp1d to fill in the gaps, which we found to be the most accurate. 
 
2.4 Training the Models 
 
We trained a variety of models to find the best possible solution. All models were from the SciKit-Learn python 
package, and we tested model hyperparameters using the Grid Search Cross Validation tool in SciKit-Learn. We tested 
four models in particular: the Random Forest Regressor model, the Decision Tree model, the Multilayer Perceptron 
model, and the Support Vector Regression model. The hyperparameters tested and chosen for Random Forest Regres-
sor and Decision Tree Regressor are listed in Tables 3 and 4, respectively. We decided to use a 70/30 training-testing 
split, using SciKit-Learn’s function “train_test_split” to split them up randomly. 
 
Table 3. Hyperparameters for the Random Forest regressor including the values tested and the values chosen by 
GridSearchCV. 

Hyperparameter Values Tested Value Chosen 

‘bootstrap’ True, False True 

‘max_depth’ 10, 20, 30, 40, 50, 60, 70, 80, 90, 
100, 110, None 

60 

‘max_features’ 'auto', 'sqrt' ‘sqrt’ 

‘n_estimators’ 100, 300, 500, 700, 900, 1100, 1300, 
1500, 1700, 1900 

300 

‘min_samples_leaf’ 1, 2, 4 1 

‘min_samples_split’ 2, 5, 10 2 

 
 
Table 4. Hyperparameters for the Decision Tree regressor including the values tested and the values chosen by 
GridSearchCV. 

Hyperparameters Tested Values Chosen Value 

‘splitter’ ‘best’, ‘random’ ‘random’ 

‘max_depth’ 1, 3, 5, 7, 9 9 

‘min_samples_leaf’ 1, 2, 3, 4, 5, 6, 7 4 

‘min_weight_fraction_leaf’ 0.1, 0.2, 0.3, 0.4, 0.5 0.1 

‘max_features’ ‘auto’, ‘log2’, ‘sqrt’, None ‘auto’ 

‘max_leaf_nodes’ 10, 20, 30, 40, 50, 60, None 60 
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3. Results 
 
When testing on the four models, we measured the two metrics: the mean absolute error (MAE) and the root mean 
square error (RMSE). These two measurements are both critical in different ways. MAE measures the average mag-
nitude of the error (i.e., the difference between the predicted value and the true value) without caring about the direc-
tion. RMSE, on the other hand, measures the square root of the average of the squared differences. MAE is more often 
used, primarily for comparing model statistics; it has been found that RMSE is better used to represent the model 
performance when the error is in Gaussian distribution. We found it necessary to measure both metrics to understand 
which model has the best performance (Chai and Draxler 2014). When comparing all four models, we discovered that 
the Random Forest regressor performed better in both MAE and RMSE than other models. Support Vector Machine 
performed the worst in RMSE, and Multi-Layer Perceptron performed the worst in MAE. Table 5 details the scores 
for each model in MAE and RMSE. However, all models did perform similarly. 
 
Table 5. The performance metrics for the Random Forest, Decision Tree, Support Vector Machine, and Multi-Layer 
Perceptron models. 

Model Mean Absolute Error (MAE) Root Mean Square Error (RMSE) 

Random Forest Regressor 3.27046 5.14630 

Decision Tree Regressor 3.40613 5.30988 

Support Vector Regressor 3.51837 6.08155 

Multi-Layer Perceptron Regressor 3.92544 5.40554 

 
 

 
 
Figure 5. The relationship between the predicted number of mosquitoes by the model and the actual number of mos-
quitoes for the Random Forest Regressor. Left: A plot of the model’s prediction vs the actual number of mosquitoes. 
Right: Another representation with the prediction by the model being plotted in blue and the actual value plotted in 
orange. 
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Figure 6. The relationship between the predicted number of mosquitoes by the model and the actual number of mos-
quitoes for the Decision Tree Regressor. Left: A plot of the model’s prediction vs the actual number of mosquitoes. 
Right: Another representation with the prediction by the model being plotted in blue and the actual value plotted in 
orange. 

 
Figure 7. The relationship between the predicted number of mosquitoes by the model and the actual number of mos-
quitoes for the Support Vector Regressor. Left: A plot of the model’s prediction vs the actual number of mosquitoes. 
Right: Another representation with the prediction by the model being plotted in blue and the actual value plotted in 
orange. 

 
Figure 8. The relationship between the predicted number of mosquitoes by the model and the actual number of mos-
quitoes for the Multi-Layer Perceptron Regressor. Left: A plot of the model’s prediction vs the actual number of 
mosquitoes. Right: Another representation with the prediction by the model being plotted in blue and the actual value 
plotted in orange. 
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We plotted the comparison between the predictions and the actual mosquito values for the four models in 
Figures 5, 6, 7, and 8, respectively. We noticed that all models struggled to correctly predict the values for the days 
July 24th, 2018, which had an average of 29.45 mosquitoes, and June 28th, 2016, which had an average of 25.27 
mosquitoes. Most models predicted that July 24th, 2018, would have about an average of 10 mosquitoes, and June 
28th, 2016, would have an average of 15 mosquitoes. These two points had the highest values among all data points, 
and are about ten mosquitoes more than the next largest. Furthermore, when these two points were removed, the 
Random Forest Regressor accuracy metrics significantly improved, as shown in Table 6. The MAE was able to im-
prove by 0.65, while the RMSE was able to improve by 1.71. 

 
Table 6. The scores for Random Forest Regressor with and without the outliers. 

Condition Mean Absolute Error Root Mean Square Error 

With Outliers 3.27046 5.14630 

Without Outliers 2.62273 3.43861 

 
When we looked at the environmental factors, as shown in Figure 9, we found that these two data points had higher 
values in most of the environmental factors, especially for June 28th, 2016, which had the highest value for two of the 
environmental factors. This may explain why while the model didn’t give a close enough prediction for this point, it 
still predicted it to be a much higher value than the other points. However, July 24th, 2018 only had the highest specific 
humidity level and was in the medium range for the other factors, which is most likely why it was not predicted to 
have a very high value. Nevertheless, this case represents how the amount of change in environmental factors is not 
always comparable to the change in the average number of mosquitoes, especially when the average number of mos-
quitoes is extremely high. Therefore, it is necessary to have a significantly larger amount of data, especially more data 
to represent the high mosquito abundance cases, to train the models in order for them to handle such cases well. 
 

4. Discussion 
 
Our research presents an analytical and consistent viewpoint on the relationships between mosquito abundance and 
environmental factors. Our machine learning models produced highly accurate predictions by correlating our selected 
factors with increases or decreases in mosquito abundance. Based on our results, we found that EVI has the most 
significant effect on mosquito abundance populations in our respective AOI. This idea can be applied virtually any-
where across the globe. However, we acknowledge that there are infinitely many anthropogenic and non-anthropo-
genic factors, including the variables we used, that could affect mosquito abundance in any specific area. Several 
examples of literature have claimed that temperature and EVI significantly affect mosquito population growth, which 
partially supports the results from our machine learning models.  

Our research could have been improved in several ways. All of our mosquito data was taken from Washington 
D.C.’s public database, dating from 2016 to 2018. Due to climate change, environmental factors have changed dras-
tically over the years, and our machine learning predictors are more suitable for analyzing 2016 trends. Also, due to 
the opportunistic nature of recording mosquito abundance in an AOI, we did not have complete mosquito abundance 
data when we ran our machine learning models, leaving us with only 108 data points — which is relatively low 
compared to most training and testing sets for machine learning models. Our models would have created more accurate 
predictions about isolated areas around Washington D.C. with even more consistent mosquito data and additional 
environmental variables. 
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Figure 9. The distributions of environmental factors for our test set versus our outliers. Top Left: The distribution for 
specific humidity. July 24th, 2018 had one of the highest humidity values. Top Right: The distribution for average 
surface skin temperature, both July 24th, 2018 and June 28th, 2016 had high temperatures. Bottom Left: The distribu-
tion for precipitation. June 28th, 2016 had the highest precipitation. Bottom Right: The distribution for EVI. June 
28th, 2016 had the highest EVI. 
 

5. Conclusion 
 
As we anticipated, the Random Forest regressor provided the best prediction result for mosquito abundance, with EVI 
as the most influential factor. However, we did find that all models had more or less similar results. All four machine 
learning models have proven to be useful predictors in analyzing mosquito abundance patterns. Our developed model 
provides a thorough, easily examinable way to understand the correlations between environmental factors and mos-
quito populations. These machine learning models can be used in the future for predicting mosquito breeding patterns 
across various areas of interest, including but not limited to Washington D.C., to help public health organizations in 
predicting mosquito habitats and mosquito-borne diseases.  

We hope future research projects will expand their areas of interest to locations outside Washington D.C. and 
the United States, as training models with data in diverse areas can yield better predictors. Moreover, we hope more 
ecological variables are available to be used in future research projects, which may lead to more accurate results. 
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