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ABSTRACT 

Federated learning is conceived as a privacy preserving framework that trains deep neural networks from 
decentralized data. However, its decentralized nature exposes new attack surfaces. The privacy guaran-
tees of federated learning prevent us from inspecting local data and training pipelines. These restrictions 
rule out many common defenses against poisoning attacks, such as data sanitization and traditional anom-
aly detection methods. The most devastating attacks are usually the ones that corrupt the model without 
altering the performance of the main task. Backdoor attacks are prominent examples of adversarial attacks 
that often go unnoticed in the absence of sophisticated defenses. This paper sheds light on backdoor at-
tacks in federated learning, where we aim to manipulate the global model to misclassify the samples be-
longing to a particular task while also maintaining high accuracy on the main objective. Unlike existing 
works, we adopted a novel approach that directly manipulates the gradients’ momentums to introduce the 
backdoor. Specifically, the double momentum backdoor attack computes two momentums separately 
based on malicious and original inputs and uses them to update the model. Via experimental evaluation, 
we demonstrate that our attack scenario is capable of introducing the backdoor while successfully evading 
detection. 

Introduction 

The maturation of deep learning as a practical approach for Machine Learning (ML) and the explosive expansion of 
big data have enabled many modern breakthroughs in Artificial Intelligence (AI). With a wide range of deep neural 
networks, affordable and accessible computing power becomes a cornerstone for developing ML models. Besides, the 
datasets used in deep learning are usually crowdsourced and may contain profoundly sensitive information [1]. This 
factor, compounded by the fact that the data can be misused or leaked, is the reason why many regulatory bodies have 
taken measures to enact stricter privacy protection laws [2]. The recent proliferation of smart devices with unprece-
dented processing power [3] and the stricter data protection laws have given rise to federated learning [4] – [8]. Fed-
erated learning has emerged as a revolutionary paradigm for massively distributed training of deep learning models 
with thousands and even millions of mobile devices [9]. It distributes the learning process to the edge in a sequence 
of training rounds. In each round, the central server broadcasts the current global model to a random subset of the 
clients. Each participant trains a local update using the global model and sends the newly computed update back to 
the server. The latter aggregates the updates into a new global model and restarts the training process following the 
same steps. In each iteration, the shared global model is improved until reaching convergence. By conducting model 
training at the network edge, federated learning prevents the server from accessing clients’ local data or training pipe-
lines [10]. Despite that federated learning revolves around privacy, ownership, and locality of the data, its decentral-
ized concept results in new vulnerabilities [10] – [12]. Indeed, federated learning is by design vulnerable to model 
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poisoning [13], [14]. Adversaries exploit the fact that they directly control the data and the local training procedure. 
Hence, they can contribute with corrupted updates as part of the decentralized training. Sharing model parameters 
with each participant opens numerous avenues to exploit the risks associated with the federated learning environment. 
When this happens, compromised clients can conspire to simultaneously submit malicious model updates that are 
trained on both benign and malicious data samples to mislead the global model. The security of federated learning 
itself is critical to design trustworthy collaborative training frameworks. The privacy-preserving and decentralization 
promises of federated learning have attracted different applications where data is sensitive and challenging to collect 
in a central entity. However, federated learning cannot guarantee that all participants are honest by relying solely on 
their security configurations. Furthermore, many of the existing defenses [15], [16] against adversarial attacks can be 
off limit for federated learning since they require a careful inspection of training data or a complete control of the 
training process. This paper focuses on backdoor attacks, a prevalent category of adversarial attacks in federated set-
tings. Under backdoor attacks (also known as targeted attacks), the adversary aims to modify how the model behaves 
on specifically selected sub-tasks while preserving good overall performance on the main task, e.g., the attacker can 
trick an image classifier so that it assigns attacker-chosen labels to images belonging to a particular class. Backdoor 
attacks [17]– [21] are less transparent and harder to detect in comparison to untargeted attacks. Targeted attacks on 
federated learning can be tricky to achieve, given the inherently heterogeneous and unbalanced data distribution across 
clients. In this paper, we propose the double momentum backdoor attack that introduces a backdoor using two mo-
mentums calculated respectively based on malicious and original inputs. Computing a separate momentum for the 
backdoor data and the client’s intact dataset ensures the stability and stealthiness of the attack. If the backdoor is 
successfully embedded into the model updates using a combination of benign and malicious momentums, compro-
mised clients in federated settings can directly influence the weights of the global model and train in any optimization 
direction that benefits the attacker. To preserve the attack from detection, we redesign the loss function to consider 
the possibility of diverging from what the aggregator considers within the “norm”, so that the attack can unfold without 
detecting suspicious behavior. To validate the effectiveness of our new attack, we craft poisoned data samples as 
backdoor data and set up different scenarios. The experimental results show that the double momentum backdoor 
attack launched by a single attacker can successfully inject the backdoor into the global model. We summarize our 
main contributions and findings as follows: 

• We introduce the double momentum backdoor attack and demonstrate the performance of this attack on two 
concrete learning tasks: handwritten digits recognition on the EMNIST dataset and image classification on 
the CIFAR-100 dataset. We show that our method is more effective and persistent than traditional backdoor 
attacks. 

• We incorporate the evasion of common defenses against backdoor attack into loss function, so the poisoned 
model updates look and behave similarly to models trained without backdoors. 

• We evaluate this new attack resiliency against the state of-the-art defenses. 
 

Related Work 
 
A growing body of literature has examined backdoor attacks on federated learning. In their cutting-edge paper, Bag-
dasaryan et al. [18] proposed a model replacement approach that introduces backdoor functionality into the shared 
model by constraining and scaling up the attacker’s updates. Bhagoji et al. [22] considers the case where the adver-
sarial objective is to cause the model to misclassify a set of chosen inputs with high confidence. To carry this type of 
attack, they explored the boosting of the malicious client’s update to overcome the effects of benign updates. Besides, 
they proposed an alternating minimization policy to enhance attack stealth, which alternately optimizes for the training 
loss and the adversarial goal. Authors in [17] focused on model update poisoning attacks that allow non-malicious 
clients to have intact data samples from the backdoor tasks. In this scenario, the attacker trains a malicious model 
based on a benign dataset and a malicious dataset that describes the backdoor task. The cited works concentrate on 
semantic backdoors, which cause the backdoored model to produce adversary-chosen outputs on intact digital inputs. 
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For example, a backdoored image classification model predicts the images with specific features to belong to an 
attacker-chosen class, e.g., all images that contain green cars will be misclassified as birds. Other works on backdoor 
attacks [19], [21] consider trigger pattern backdoors. This type of backdoor attack requires the adversary to modify a 
subset of pixels for the trained model to misclassify the altered image. The trigger-pattern can be decomposed into 
separate local patterns across multiple parties as demonstrated in [19]. Our scheme focuses on the more powerful 
semantic backdoors. 
 

Threat Model 
 
Adversary Capabilities 
 
In federated learning, an attacker can get full control over one or several clients, e.g., client devices whose application 
software has been compromised by malware. Besides, the adversary can stimulate multiple fake clients to carry out 
more successful attacks. In this paper, we define the capabilities of an adversary as follows 

• The adversary controls the training data of any compromised device. 
• The adversary controls the local training procedures, including the optimizer and the hyperparameters. 
• The adversary can modify or replace the local model update before submitting it to the server. 
• The attacker can dynamically adjust its local training algorithm or settings from one training round to another. 

On the one hand, the adversary has no control over the aggregation algorithm used to average clients’ updates at the 
server, nor any features related to the benign clients or the server. On the other hand, the central server cannot check 
the clients’ datasets or set rules for local training. This threat model is common in federated learning applications 
because it exposes the vulnerabilities induced by decentralized training frameworks. 
 
Attack Objectives 
 
The adversary aims to insert a hidden backdoor into the global model while retaining the accuracy of the main task. 
The attack will produce a trained model that achieves high accuracy on both the chosen backdoor subtask and the 
main task when reaching convergence. Moreover, the trained model should be able to retain a good performance on 
the backdoor task for several training rounds after its insertion. The adversary will employ model replacement to 
submit the poisoned model to the server. For example, a successful attack on a digit recognition task produces a trained 
model that misclassifies 7s and predicts them to be 1s from multiple target clients (backdoor subtask) while correctly 
classifying other digits. The backdoored model behaves according to the adversary’s objective. However, the perfor-
mance of the poisoned model on correct inputs should not be affected.  

Untargeted adversarial attacks exploit the model class representations boundaries to produce wrong predic-
tions. By contrast, backdoor attacks intentionally stir these boundaries in a direction where specific inputs are wrongly 
classified. We dedicate this work to tackle semantic backdoors because they do not require modified inputs by the 
attacker. Moreover, semantic backdoors can represent a more significant threat to federated learning than trigger-
pattern backdoors, especially in applications where the data is outsourced from live environment interaction such as 
self-driving cars. 
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Figure 1. Overview of the double backdoor attack in federated learning. 
 

Constructing the Backdoor Attack Model 
 
Naive Approach and Baseline 
 
The adversary can train its model on backdoored samples. In the same way as [23], each training batch should contain 
a mix of correctly labeled data and backdoored data to assist the model in learning to notice the difference. The 
adversary can also adjust the training parameters to escalate the overfitting to the backdoored inputs. Federated learn-
ing applies malicious clients’ model updates directly to the global model using the aggregation algorithm, thus inject-
ing the backdoor. However, aggregation can cancel out most of the corrupted models’ contributions, and the backdoor 
will be quickly forgotten. There is no guarantee that the attacker will be selected frequently enough for training to 
sustain the attack effect. Besides, such a naive attack can take many rounds to achieve reasonable performance. In our 
experiments, we use the more advanced backdoor scenario in [17] as a baseline for comparison, where the backdoored 
model is trained on a benign dataset and a malicious dataset coupled with a boost factor. 
 
Double Momentum Approach 
 
Federated learning distributes the training of a deep learning model across 𝑁𝑁 clients by iteratively aggregating local 
model updates into a shared global model. There exist many flavors of distributed learning. We focus on synchronous 
federated learning, which proceeds in rounds of training. It aims to learn a global model with parameters embodied in 
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a real tensor 𝑊𝑊 from data stored across a number of clients. In training round 𝑡𝑡 ≥  1, the server distributes the current 
global model 𝑊𝑊𝑡𝑡 to a subset 𝑆𝑆𝑡𝑡 of 𝐾𝐾 selected clients where 𝐾𝐾 <  𝑁𝑁 is the number of clients per round. The selected 
clients locally train the model 𝑊𝑊𝑡𝑡 based on their data and independently update it. As the result, they produce new 
local models {𝑊𝑊𝑡𝑡

𝑘𝑘 | 𝑘𝑘 ∈ 𝑆𝑆𝑡𝑡} and send the difference ∆𝑊𝑊𝑡𝑡
𝑘𝑘 =  𝑊𝑊𝑡𝑡

𝑘𝑘  −  𝑊𝑊𝑡𝑡  (usually referred to as the model update) back 
to the central server. The server updates the joint global by aggregating ∆𝑊𝑊𝑡𝑡

𝑘𝑘 as follows: 
 

𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 + η
∑ 𝑛𝑛𝑘𝑘Δ𝑊𝑊𝑡𝑡

𝑘𝑘
k∈St
∑ 𝑛𝑛𝑘𝑘𝑘𝑘∈𝑆𝑆𝑡𝑡

 

 
where η is the server learning rate and 𝑛𝑛𝑘𝑘 is number of data instances in client 𝑘𝑘. This process will be iterated until 
the global model reaches convergence. 

Our proposed backdoor scenario changes how the local models are trained to insert a backdoor using a double 
momentum. Fig. 1 illustrates an overview of the attack model. To craft a backdoored model 𝑊𝑊∗, we assume that the 
attacker has a mix of malicious backdoor samples 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  (data instances with attacker-chosen labels) and a set of benign 
training samples generated from the true distribution 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of the dataset. As we will show in this work, a single 
attacker can submit a backdoored model 𝑊𝑊∗ which is not only trained on the backdoor data but also carries out the 
backdoor functionality to the global model. 

When an attacker 𝑘𝑘 ∈ 𝑆𝑆𝑡𝑡 is selected in round 𝑡𝑡, double momentum backdoor attack works on two stages. The 
first stage is to train the global model received from the server 𝑊𝑊𝑡𝑡 using Stochastic Gradient Descent (SGD) with 
Momentum exclusively on intact data belonging to the true distribution 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 to generate the first momentum 𝑈𝑈𝑡𝑡𝑘𝑘 as 
follows: 

𝑈𝑈𝑡𝑡𝑘𝑘 = 𝒎𝒎.𝑈𝑈𝑡𝑡−1𝑘𝑘 − lr.∇Wt𝐿𝐿𝑈𝑈(𝑊𝑊𝑡𝑡 ,𝑋𝑋𝑘𝑘, 𝑦𝑦𝑘𝑘) 
 
where 𝑚𝑚 is a hyperparameter of the momentum, which takes values between zero and one, 𝑙𝑙𝑙𝑙 is the client learning 
rate, and 𝐿𝐿𝑈𝑈 is the loss function for the first momentum. 𝑋𝑋𝑘𝑘 and 𝑦𝑦𝑘𝑘 are respectively intact data instances and labels 
sampled from the original dataset 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

The second stage of backdoor insertion involves training the joint model 𝑊𝑊𝑡𝑡 using Momentum SGD exclu-
sively on backdoor data (𝑋𝑋𝑏𝑏 , 𝑦𝑦𝑏𝑏) to produce the second momentum 𝑉𝑉𝑡𝑡𝑘𝑘 as follows: 
 

𝑉𝑉𝑡𝑡𝑘𝑘 = 𝑚𝑚 .𝑉𝑉𝑡𝑡−1𝑘𝑘 − 𝑙𝑙𝑙𝑙.∇𝑊𝑊𝑡𝑡𝐿𝐿𝑉𝑉(𝑊𝑊𝑡𝑡 ,𝑋𝑋𝑏𝑏 , 𝑦𝑦𝑏𝑏) 
 
where 𝑋𝑋𝑏𝑏 and 𝑦𝑦𝑏𝑏 are respectively the data and labels of the malicious samples from the backdoor data 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚   and 𝐿𝐿𝑉𝑉 is 
the loss function for the second momentum. For the sake of simplicity, we used the same learning rate 𝑙𝑙𝑙𝑙 and momen-
tum parameter 𝑚𝑚. Also, we employ the same backdoor dataset for all compromised clients. However, it should not be 
considered as a general rule. Then, we combine both momentums using a weighted sum and compute the model update 
of the client k as follows: 
 

𝑊𝑊∗ = 𝑊𝑊𝑡𝑡 + α𝑈𝑈𝑡𝑡𝑘𝑘 + (1 − α)𝑉𝑉𝑡𝑡𝑘𝑘 
 
where 0 < α < 1 is a hyperparameter of our backdoor attack which we designate as the double momentum scaling 
factor. The weighted sum relates to the dynamics of double momentum. We create a new velocity variable to store 
each momentum for both intact and backdoored data. The weights allow us to control the fragile balance between 
backdoor insertion and discretion. They also ensure that the attack is not aggressively pushing the local model’s 
weights into the backdoor’s direction, resulting in smooth poisoning of the model. In the remainder of this section, we 
refer to the first momentum 𝑈𝑈𝑡𝑡𝑘𝑘 as the benign momentum and the second momentum 𝑉𝑉𝑡𝑡𝑘𝑘 as the malicious momentum 
the backdoor’s direction, resulting in smooth poisoning of the model. In the remainder of this section, we refer to the 
first momentum 𝑈𝑈𝑡𝑡𝑘𝑘 as the benign momentum and the second momentum 𝑉𝑉𝑡𝑡𝑘𝑘 as the malicious momentum. 
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Finally, the adversary ambitiously attempts to substitute the whole model by the backdoored model 𝑊𝑊∗ by transmit-
ting: 

Δ𝑊𝑊𝑡𝑡
𝑘𝑘 = β(𝑊𝑊∗ −𝑊𝑊𝑡𝑡) 

 

𝛽𝛽 =
∑ 𝑛𝑛𝑖𝑖𝑖𝑖∈𝑆𝑆𝑡𝑡
ηnk

 is a boost factor that ensures the attacker’s backdoor contribution survives the aggregation and impacts 

the global model. If multiple malicious clients appear in the same round, they coordinate with each other to divide this 
update evenly. An attacker may not know the values of the server learning rate η and the number of data samples in 
other clients to define the booting factor β. In this case, he can gradually increase the boosting factor 𝛽𝛽 going through 
each round in a probing fashion and measure the backdoor task’s accuracy. 

Since the learning rate is fixed, the standard gradient descent method will converge slower and sometimes 
even fall into a local optimum. Momentum SGD improves the stability of the learning process and the endurance of 
the attack because historical gradients will lead the parameters to converge faster towards the optimal value. Compu-
ting a separate momentum for the backdoor data and the user’s original data allows us to discretely and smoothly 
insert the backdoor. Boosting the impact of the backdoored model update guarantees that the introduced backdoor 
survives the aggregation, and the global model is severely contaminated. Furthermore, this effect harnessed with the 
heuristic of the exponential moving average of the gradients calculated based on the backdoor samples ensures that 
the attacker’s contribution is smoothly transferred to the global model. In fact, if the current gradient descends in the 
same direction as the last update, it can positively accelerate the current search to optimize the weights for the backdoor 
task performance. Conversely, the benign momentum can act as deceleration to the current search. Heightening the 
backdoor impact serves in any round of federated learning but is more useful when the global model is close to the 
convergence stage. Following the attack, the poisoned global model should exhibit high accuracy on the backdoor 
task without affecting the main task. 
 

Defense Evasion 
 
Our attack is effectively a two-task learning scheme, where the model learns the main task using the first momentum 
𝑈𝑈𝑡𝑡𝑘𝑘 and the backdoor subtask using the second momentum 𝑉𝑉𝑡𝑡𝑘𝑘. The goal is to maintain high accuracy for both tasks 
after introducing the backdoor. In this section, we demonstrate the techniques that enable the adversary to generate 
backdoored models that look legitimate. We enhance the double momentum backdoor attack with sophisticated de-
fense evasion methods. These strategies allow the production of a resilient backdoored model that scores high accuracy 
on both the main and target tasks yet is not dismissed by the server’s anomaly detector or diluted by artificial noise. 
 
A. Evading Anomaly Detection 
 
Anomaly detection is considered a more proactive type of defense that explicitly detects malicious updates and blocks 
their impact on the system. In federated learning environments, attacks such as data poisoning and model poisoning 
can be discovered using anomaly detection techniques.  

Since the central server has no access to the training data at the clients, most popular anomaly detection 
mechanisms [14], [24]–[26] in federated learning try to identify abnormal model updates and discard them. When the 
algorithm trains the global model on the backdoor data, the generated malicious momentum 𝑉𝑉𝑡𝑡𝑘𝑘 will most likely cause 
the backdoored model 𝑊𝑊∗ to significantly diverge from the global model and other benign local models. In this case, 
the backdoored model update can be spotted by an advanced anomaly detector and ignored as a result. Evading anom-
aly detection is critical to the attack’s success.  

By using double momentum backdoor, we can control the impact of the malicious samples on the poisoned 
model. Unlike some exciting works, double momentum backdoor attack does not make a sudden change to the model 
weights but instead creates a gradual shift towards the successful backdoor insertion. While this smooth backdoor 
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injection will help the attack go undetected, we want more assurance concerning the attack’s success in the presence 
of anomaly detection. Thus, we incorporate defense evasion into the training using a particular loss function that 
penalizes the model for deviating too much from the benign model. To be specific, we modify the loss function 𝐿𝐿𝑉𝑉 of 
the malicious momentum by adding a term 𝑝𝑝. �1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶(Δ𝑈𝑈𝑊𝑊𝑡𝑡

𝑘𝑘 ,Δ𝑉𝑉𝑊𝑊𝑡𝑡
𝑘𝑘)�, which represents the cosine similarity 

between the model updates generated for both benign and malicious data samples separately using the standard loss 
function (𝑝𝑝 is a distance factor).  

Unconstrained backdoor attacks can be defended by norm thresholding of the model updates [17]. Since our 
attack is boosted, it is more likely to produce model updates with a large norm. A common defense is for the aggregator 
to reject model updates whose norm exceeding a pre-defined threshold 𝑀𝑀. To overcome this type of defense, we can 
also consider bounding the model update by 𝑀𝑀 after being boosted by a factor of 𝛽𝛽. This can be done by projecting 
the locally trained model into the 𝑙𝑙2 ball of size 𝑀𝑀/𝛽𝛽 around 𝑊𝑊𝑡𝑡. We can assume that the attacker does know the 
threshold 𝑀𝑀 of the norm clipping defense deployed in the server or employ a probing mechanism that estimates the 
threshold 𝑀𝑀. 
 
B. Evading Differential Privacy 
 
Differential privacy [27] injects statistical Gaussian noise into the updates after norm clipping. The goal of differential 
privacy is to guarantee with high confidence that no single data record can be meaningfully distinguished from the 
rest. Traditionally, the quantity of noise added to obtain good differential privacy is relatively significant. Since our 
intent is not privacy by any means but instead diluting the impact of the backdoor attack, we apply a small amount of 
noise that is empirically sufficient to restrict the success of the attacks.  

One possible avenue to evade differential privacy is applying a denoising filter to the model updates by 
scaling the gradients based on their value to the model utility before updating the global model. The utility is defined 
as the closeness between the model updates and their original values before adding differential privacy. Since the 
original values are private, we can approximate this utility with the distance from the noise distribution using region 
variance estimation [28]. This evasion process requires the attacker to have control over the server or aggregation 
algorithm, which is not the case in our threat model. We opt not to weaken the threat model and keep it as close to 
reality as possible by testing how well the differential privacy will affect our proposed attack. 
 

Experimental Evaluation 
 
A. Experimental Settings 
 
1) Datasets: We conduct experiments on TensorFlow Federated [29], a benchmark for federated learning using two 
popular datasets: (1) EMNIST dataset [30] for handwritten digit recognition, which serves as a more complex extended 
version of the popular MNIST dataset. The data is grouped based on the writer of the character for a total of 3383 
clients. (2) CIFAR-100 dataset [31] with coarse labels for 20class image classification (superclasses). The data parti-
tioning across 500 clients is performed using a hierarchical Latent Dirichlet Allocation (LDA) process [32]. We opt 
for these datasets because they are suitable for our attack scenario (semantic backdoors), and we want to show the 
performance of the double momentum backdoor attack across different applications and scales.  
 
2) Models: For FEMNIST’s image classification task, we use a Convolutional Neural Network (CNN) with two 5x5 
convolution layers, each of them followed with 2 × 2 maxpooling, a fully connected dense layer with 2048 units, and 
a final SoftMax output layer. For CIFAR-100 dataset, we consider a more complex VGG-16 architecture.  
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3) Sampling of Adversaries: Since our attack is supposed to inject the backdoor using a single shot, we carry out a 
fixed frequency attack scenario where a single adversary appears in every 1/f round. In the experiments, we consider 
decreasing the frequency of the attack to test if our attack scheme is able to sustain the backdoor inserted in the global 
model.  
 
4) Backdoor tasks: Recall that the attacker’s goal is to ensure that the model behaves differently on some targeted 
tasks in backdoor attacks. We allow benign clients to have nonmalicious data instances from the backdoor tasks. For 
instance, if the attacker desires the model to misclassify the digits 7s as 1s, we allow benign clients to have some intact 
samples correctly labeled as 7s. Besides, we construct the backdoor by collecting examples from multiple clients. 
Since samples from different clients follow different distributions, we obtain a diverse backdoor dataset. 
 

 
Figure 2. Fixed-frequency attack where a single attacker appears in every training round (𝑓𝑓 = 1). 
 

 
 
B. Results 
 
First of all, we conduct experiments on the EMNIST dataset. The latter is a handwritten digit image classification 
dataset where digits are gathered from 3383 users, each with around 100 images of digits and with its unique writing 
style. We train a shared global model in a federated learning fashion using the Federated Averaging (FedAvg) algo-
rithm [9]. Table I summarizes the experimental settings1. We run all experiments for 300 rounds of federated learning. 
In this experiment, we consider the backdoor task of misclassifying the digits 7s from several targeted clients as 1s. 
The backdoor dataset is sampled from 20 different clients. We bound the malicious model updates using a norm bound 
of 0.33 before boosting, and we apply a small amount of Gaussian noise to the updates (differential privacy) with σ = 
0.025 before submitting the model update to the server. At the server side, we activate the anomaly detection mecha-
nism discussed in section V-A 2. Fig. 2 shows the results for the single-attacker scenario where a single adversary-
controlled client is selected once in each round. The task accuracy of the backdoor task is the fraction of testing data 
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samples representing this task (samples that hold the digits 7s) and misclassified as desired by the attacker (misclas-
sified as 1s). Meanwhile, the accuracy of the main task represents the conventional testing performance on other digits. 
 

 
 

Double Momentum Backdoor (DMB) attack succeeds in injecting the backdoor with high accuracy. As 
shown in Table II, the average backdoor task accuracy over 300 rounds of federated learning is 95.8%. It significantly 
outperforms the baseline attack scenario that only achieves 69.2% backdoor accuracy. The accuracy of the main task 
remains unaffected (94.52% compared to 94.6%). We draw the attention of the reader that the main task accuracy in 
Table II is measured at the end of the training process. Moreover, as illustrated in Fig. 2, our attack looks more stable 
than the baseline attack, given that our backdoor task accuracy oscillates less than the baseline. Under double momen-
tum backdoor attack, we find a prominent phenomenon were using double momentum to inject the backdoor ensures 
the attack’s stability and stealthiness. The high attack success rate also suggests that our defense evasion mechanisms 
are working as intended. Since the global model is smoothly moved in the backdoor direction, there is a high likelihood 
that it again converges to a model that includes the backdoor without sounding the alarms of the anomaly detection 
mechanism. We will explain later in this section why the safeguards in place failed to prevent the attack. For the 
second scenario of CIFAR-100 with coarse labels, we follow a similar approach. In this experiment, we consider the 
backdoor task of misclassifying the images belonging to the class “fish” as “aquatic mammals”. CIFAR-100 image 
classification application is far more complicated than the EMNIST dataset, and backdoor insertion can be challeng-
ing. Fig. 2 clearly shows the superiority of the Double Momentum Backdoor (DMB) attack in comparison to the 
baseline. The performance gap is quite large: the average backdoor accuracy for DMB is 61.2% compared to only 
40.7% for the baseline. The main task is almost untouched, with a negligible drop in accuracy. Despite the complicated 
VGG-16 model that we employed, the double momentum backdoor attack was able to prove again its capacity to 
inject backdoors. The combination of momentums ensures the successful backdoor poisoning throughout the training 
process. 

 

 
 
Figure 3. Attack on EMNIST dataset where a single attacker appears in every 5 training rounds (𝑓𝑓 = 1/5) 
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The results validate the fact that our scheme can mimic the normal updates while achieving its attack objective. The 
malicious updates generated by the attacker can easily pass for legitimate model updates and fool the anomaly detector 
and other federated learning safeguards. The baseline attack is easier to spot compared to our scheme. Our proposed 
attack can inject the crafted backdoor into the global model in a smooth and discrete manner and achieves significantly 
higher performance than the baseline. 
 

Conclusion 
 
Federated learning enables clients, some of whom may be potentially malicious, to manipulate the global model 
through their model updates submitted to the server. Adversaries can exploit vulnerabilities in federated learning by 
acting as legitimate clients to inject a backdoor into the shared model. In this paper, we develop a new backdoor attack 
that exploits these vulnerabilities, and we demonstrate its effectiveness on standard federated learning applications. 
Double momentum backdoor attack has proven its capability to contaminate the trained model effectively using only 
a single attacker in each training round. To remain stealthy against defense strategies, we incorporated a sophisticated 
loss function that penalizes the model for diverging from what the aggregator considers within the “norm”. The pro-
posed attack succeeded in defying defense proactive defense techniques by incorporating defense evasion techniques 
and adding more stability and smoothness in the way we introduce the backdoor. 

In federated learning systems that operate at larger scales, it might be impractical to establish an enforceable 
collaborative agreement to monitor potentially malicious participants. Other than inserting backdoors, some compro-
mised clients may purposely try to deteriorate performance, bring the system down, or extract sensitive information 
from other parties. Hence, security strategies will be required to mitigate these risks by putting an end-to-end security 
system in place, such as advanced encryption of model submissions, traceability of actions, verification systems, ex-
ecution integrity, model confidentiality, and protections against suspect actions. 
 

 
 
Figure 4. Comparison of model update weights distributions between normal updates and malicious updates generated 
by Double Momentum Backdoor (DMB) before boosting and differential privacy (on EMNIST Dataset). 
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