
Learning to Branch-and-Bound to Route an
Autonomous Mobility on Demand System

Claire Xu1, Robin Brown2#, Somrita Banerjee2# and Marco Pavone2#
1Foothill High School, USA
2Stanford University, USA
#Advisor

ABSTRACT

Autonomous Mobility on Demand (AMoD) is a system consisting of a fleet of centrally-controlled, autonomous ve-
hicles that take customers from their requested origins to their requested destinations. In order to minimize the distance
traveled by the fleet, a routing scheme must be developed to service all customer requests. This paper investigates the
usage of the branch-and-bound algorithm (BB) to find such a scheme, as well as the usage of a neural network (NN)
to speed up BB. Given a fixed road network, sets of randomly generated requests were passed into BB to obtain the
ordering of each set that minimized the number of computations, and a NN was trained on this data. New randomly
generated request sets were then passed into the trained NN, and runtimes given the NN-predicted orderings were
compared to average runtimes over all permutations. For a NN with 1024 nodes in the first and 512 in the second
hidden layer and a learning rate of 0.1, using the NN resulted in an average 40% decrease from average runtimes;
furthermore, NN-orderings never resulted in increased runtime. Other combinations of NN parameters resulted in
around 25% decrease in runtime. Also, BB performed the same number of computations for all permutations with the
same first request, simplifying the problem to only finding the next request. These results show that training the NN
results in a more efficient, faster routing algorithm that is therefore easier to scale up, enabling at-scale adoption of
AMoD.

Introduction

Background

In recent years, traffic and pollution have become increasingly problematic with the rise of private vehicles and unco-
ordinated transportation. A potential solution, especially in large urban areas, is Autonomous Mobility on Demand
(AMoD), a system consisting of a fleet of electric, autonomous vehicles that are centrally controlled to service cus-
tomers, similar to a taxi or Uber-like system [1]. A visualization and brief description is provided in Figure 1.

AMoD has many social and environmental benefits, including a) reducing carbon emissions, b) providing cheap
and reliable transportation, c) optimizing travel time/power consumption for everyone in the area, and d) eliminating
unpredictable human driving. However, one critical issue is how the system decides what routes its vehicles should
take to bring customers from their requested origins to their requested destinations—given that each road has a certain
capacity constraint. Because cars cannot be split, the solution to this optimization problem must be in integers, as
opposed to real numbers, i.e. mixed integer programming. One way to solve this is to use the branch-and-bound
algorithm (BB) [2].

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 1

Figure 1. Autonomous Mobility on Demand. The blue nodes are places where vehicles can stop and customers can
enter or leave the system. The nodes are connected by edges, representing the roads. Here, a customer enters at node
1, the origin, and requests a vehicle to get to node 2, the destination. The request is denoted (1, 2).

BB is a method used in discrete and combinatorial optimization. A tree structure is created, where each
branch represents a subset of the entire solution set. The algorithm systematically enumerates the possible solutions
and searches through them to find the one that is most optimal. Before computing on a certain branch, the upper and
lower bounds are approximated and compared to the current optimum; if it is certain that this branch cannot produce
a more optimal solution, the algorithm cuts it out of future consideration. If bounds cannot be computed or do not
offer useful insight, BB will end up performing an exhaustive search. As such, finding a good initial ordering of
searching can significantly reduce both the number of potential branches evaluated and overall computation time.
 There are currently no universal methods to order the branches. Instead of finding the ordering specific to each
context, a neural network can be trained to predict the ordering that would maximize BB’s efficiency. This problem
can be roughly split into two parts: “diving” and “searching” [3]. “Diving” refers to determining whether a given
branch yields a feasible solution, while “searching” refers to determining the branch that will minimize the number of
computations the algorithm has to perform. For the purposes of this paper, we will focus on the “search” side, and we
will train the neural network to search specifically on BB data in an AMoD context.
 In this paper, we show that BB alone can be used to route requests. We then show that a NN can successfully
train on data generated from BB. Finally, we use the trained NN to significantly reduce BB computation time, i.e. we
assume a fixed road network and show that the NN can output, from the randomly generated requests, which one
should be searched through before the others. These results can be implemented in future AMoD systems as a lower-
cost, power and time-efficient method that can easily be scaled up to service larger areas with larger populations.

Related Work

Several methods have previously been studied for modeling AMoD, such as a queuing-theoretical model [4]-[5], a
simulation model [6]-[7], and a discrete-time model [8]-[9]. The queuing-theoretical model, as proposed in [4], as
well as the discrete-time model, as proposed in [9], both account for time; that is, vehicles do not travel instantaneously,
and customers continuously enter and leave the system. In addition, the models consider rebalancing—or how vehicles
move from servicing one customer to the next—as well as routing. This is useful for controlling the system in the
long-term, for example when coupled with real-time customer demand prediction [10]. However, since we are con-
cerned with routing vehicles at one given moment in time, we use a network flow model, similar to [11]-[14]. We
adopt the thresholded approximation of congestion used in [12], which assumes that no more vehicles can travel on
any road once the limit is reached.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 2

 Less work has been done regarding the fact that any solution to the AMoD routing problem must be in integers.
Many of the aforementioned papers either do not incorporate road capacity constraints into their models, or do not
address the integer constraint. This paper investigates a routing scheme that solves this issue by using the branch-and-
bound algorithm. We also investigate using machine learning to improve the algorithm’s efficiency; this is known as
“learning to branch-and-bound” and is a powerful tool in mixed integer programming [15]. In particular, [3] and [16]
show that machine learning can be used to pick variables to simplify the algorithm (“searching”). In this paper, we
identify and adapt this tool “learning to branch-and-bound” as a means to accelerate AMoD algorithms, furthering the
state-of-the-art and addressing a key limitation (computation speed) of the current literature.

Methods

AMoD Problem Formulation

Mathematical Representation

We use a network-flow model, similar to the mathematical representation given in [12]. Define a road network R,
consisting of a set of nodes 𝑅𝑅𝑛𝑛, where each node is a potential origin or destination, and a set of edges, 𝑅𝑅𝑒𝑒, which
represent the roads that a vehicle can travel over. Here, the physical length of the edges does not matter. We represent
edges as

[𝑖𝑖, 𝑗𝑗]
for some
𝑖𝑖, 𝑗𝑗 ∈ 𝑅𝑅𝑛𝑛.
Every edge also has its own capacity, or a maximum limit on the flow, which we call
𝐶𝐶𝑚𝑚[𝑖𝑖, 𝑗𝑗].
The flow over an edge represents the number of vehicles traveling along that road. Denote the flow as
𝑓𝑓𝑚𝑚[𝑖𝑖, 𝑗𝑗].
 Finally, we define the cost function, J, which we seek to minimize. Since we want to minimize the total distance
traveled by all the vehicles, we let J be the sum of flows over all edges. Vehicles enter the graph at the nodes corre-
sponding to the request origins and exit the graph at nodes corresponding to the request destinations. Thus, the problem
can be stated as follows:

min 𝐽𝐽(𝑓𝑓𝑚𝑚[𝑖𝑖, 𝑗𝑗]) = min ∑ 𝑓𝑓𝑚𝑚[𝑖𝑖, 𝑗𝑗]𝑖𝑖,𝑗𝑗∈𝑅𝑅𝑛𝑛 (1)
s.t.

∑ 𝑓𝑓𝑚𝑚[𝑖𝑖, 𝑗𝑗] +𝑖𝑖:(𝑖𝑖,𝑗𝑗)∈𝑅𝑅𝑒𝑒 1:(j is origin) = ∑ 𝑓𝑓𝑚𝑚[𝑗𝑗, 𝑘𝑘] +𝑘𝑘:(𝑗𝑗,𝑘𝑘)∈𝑅𝑅𝑒𝑒 1:(j is destination) (2)
s.t.

0 ≤ 𝑓𝑓𝑚𝑚[𝑖𝑖, 𝑗𝑗] ≤ 𝐶𝐶𝑚𝑚[𝑖𝑖, 𝑗𝑗], 𝑓𝑓𝑚𝑚[𝑖𝑖, 𝑗𝑗] ∈ ℤ (3)
Equation (2) contains the boolean indicator 1: and ensures that the mass of vehicles is conserved, as vehicles cannot
instantaneously leave one node and appear at a separate one. Equation (3) ensures nonnegative, integer flows within
capacity limits

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 3

AMoD Elements

The road network R is constant for all experimentation. A visual representation is given in Figure 2. Capacities are
chosen arbitrarily, then experimentally decreased until around 1% of routing problems are infeasible. This is to ensure
that routing is non-trivial, otherwise further measures would not be necessary (BB, machine learning, etc).

Figure 2. The road network, R. Each node is a possible origin or destination, with 18 in total (0-index). Capacities on
each edge are labeled. Requests would be encoded as (origin node, destination node), for example (4, 17).

Requests are in the form

(𝑜𝑜,𝑑𝑑)
where 𝑜𝑜,𝑑𝑑 ∈ 𝑅𝑅𝑛𝑛, 𝑜𝑜 is the origin node, and 𝑑𝑑 is the destination node. For example, a customer who wants to enter
𝑅𝑅 at node 4 and leave at node 17 would request (4, 17). An origin node cannot be the same as its corresponding
destination node. Requests (𝑎𝑎, 𝑏𝑏) and (𝑏𝑏, 𝑎𝑎) are considered the same because in our static-time graph, the flows for
(𝑎𝑎, 𝑏𝑏) and (𝑏𝑏, 𝑎𝑎) use the same edges, resulting in identical problems. For a graph with 𝑘𝑘 nodes, there are a total of
(k choose 2) total possible requests. In our case, there are (18 choose 2) total requests. Call the set of all requests 𝑄𝑄.

One thing to note here is that the model assumes that all customers will be serviced at the same time, and that
a vehicle travels along its designated route instantaneously such that it is occupying all edges in its route at the same
moment in time. Thus, given a subset of 𝑄𝑄, a routing scheme is said to be feasible if a path from the origin node to
the destination node can be found for all (𝑜𝑜,𝑑𝑑) pairs in the subset, such that for each edge, the number of paths that
traverse it does not exceed its capacity.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 4

Routing AMoD Using BB

Given a subset, 𝑆𝑆, of 𝑄𝑄, we can solve the problem for 𝑆𝑆 using the branch-and-bound method. In order to achieve
this, we adapt the algorithm to the routing context. Specifically, the branches, or possible solution subsets, are gener-
ated by the possible routes for a given request in 𝑆𝑆. The objective value of each branch is the sum of the flows achieved
by that possible combination of routes, which is the value we seek to minimize. Figure 3 lays out the general procedure
on 𝑆𝑆 = {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷, … }:

Figure 3. Using BB to route an AMoD problem. The flow chart shows how the concept of BB is adapted to an AMoD
context and the steps of the algorithm.

Relaxation on requests

The problem described in the “Mathematical Representation” section can easily be solved in CVXPY, when the solu-
tion set isn’t restricted to integers (the “relaxed” problem) [17]. As shown in Figure 3, in the first step, the optimal
solution is computed on all the requests, which may yield non-integer flows and more than one path for each request.

Rounding non-zero flows

Take a request and call it 𝐴𝐴 = (𝑜𝑜𝑎𝑎,𝑑𝑑𝑎𝑎). Starting from 𝑜𝑜𝑎𝑎, call the current node 𝑝𝑝. The next node, 𝑞𝑞, in the path is
chosen such that the flow 𝑓𝑓𝑚𝑚[𝑖𝑖 = 𝑝𝑝, 𝑞𝑞] is maximized. Now set 𝑝𝑝 to be the node just chosen, and the process is re-
peated until 𝑞𝑞 is the destination node. Once the path has been determined, the flows over all edges in the path are

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 5

changed to 1. In the case of building the BB tree, for any path from 𝑜𝑜𝑎𝑎 to 𝑑𝑑𝑎𝑎 where every edge within the path has
a nonzero flow, we change the flows of all edges in that path to 1. In the case of building the BB tree, each one of
these “rounded” paths forms a “branch,” or a subset of all possible solutions.

Calculating Upper Bound (UB)

The upper bound of a branch is the value of the cost function 𝐽𝐽 for any known routing scheme. If none are known,
set this value to be infinity. If one is found, the optimal solution on that branch either has the same or lower 𝐽𝐽 value
since the known routing scheme either happens to be the optimal solution or is less optimal. At the same time, the
lowest UB over the entire tree will be continuously updated—if the most recent UB calculated is less than the current
global minimum UB, then update the global value.
 The method we used to find a known routing scheme is shown in Figure 4. For some set of requests, the relaxed
problem is solved. The path of the first request is then determined by rounding the flows to 1. Adjust capacities based
on the edges traversed by the path, then repeat with the rest of the requests: solve the relaxed problem on the current
capacities and remaining requests, round the path of the next request in the list, and adjust capacities based on the
rounded path.

Figure 4. Method for finding one possible solution. For each request, in order, the relaxed routing problem is solved,
the request path is rounded, and the capacities are adjusted to reflect the chosen path. This process is then repeated for
the remaining requests.

If, at some point, it’s impossible to solve the relaxed problem, then we set the UB to infinity to signify that
no feasible routing scheme has been found yet.

Calculating and Comparing Lower Bound (LB)

The lower bound of a branch is the lowest possible value of 𝐽𝐽, which is to say the most optimal solution. In fact, we
can say that the LB is simply the value of 𝐽𝐽 for the relaxed problem. This is because the problem incorporating integer
constraints satisfies all the criteria for the relaxed problem, so if it has some optimal solution, then that optimal solution
must also be a solution to the relaxed problem.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 6

 If the LB is greater than the global minimum UB, that means that whatever solution this branch ultimately yields
cannot be more optimal than that of the branch with the smallest current UB. Thus BB does not have to keep computing
to find a less optimal solution. If the LB is equal to the UB calculated for this branch, then the optimal solution for
this branch is found: the known routing scheme is the most optimal, so no further calculations need to be performed.
If the LB is less than the global minimum UB, nothing can definitely be said, so calculations must continue on that
branch.

Finding the overall solution

If calculations must continue, adjust the road network’s capacities to reflect that the first request has already been
routed by subtracting one from the capacity of each edge the first request’s path passes through. Then remove the
already routed request from the set of requests to be routed. Note that there is a separate copy of the road network’s
capacities and the original requests that is updated for each branch. With the modified capacities and requests, repeat
the process—solve the relaxed problem for the remaining requests, round the paths of the current first request in the
list to create sub-branches, calculate and compare UB and LB, then eliminate or continue computing, adjusting capac-
ities and requests when necessary—until the solution is found or BB is done computing upon all branches.
 If a problem is feasible and the right branch comes first, BB could immediately find the smallest possible global
minimum UB. That UB would be the value of the solution, so for all subsequent branches, the LB will either equal
this UB or will be greater than it. In either case, BB will stop computing on each of those branches, resulting in the
minimum possible number of computations and maximum efficiency. We would like to have a maximally efficient
algorithm, and we can achieve this by training a neural network to predict which request BB should branch on first.
Figure 5 shows how the NN will be incorporated into the overall framework.

Figure 5. The overall routing scheme. Starting with a set of randomly generated requests, the trained NN outputs the
optimal order of the set that minimizes the number of computations BB has to perform. BB then takes in the ordered
requests and returns a solution to the given routing problem.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 7

As we have demonstrated above, it’s possible to use BB alone to solve the AMoD routing problem. However,
we can maximize its efficiency by incorporating a NN.

Creating and Training a Neural Network

Simplifying the problem

An experiment shows that instead of predicting the entire order of requests to put into BB, a NN can equivalently
predict which request should be first in the list. For each of 10 sets of randomly generated requests, a random request
within the set was held in the first position while the rest of the requests were shuffled 7 times, and this was done for
5 different random requests from the original set. A BB tree was built and the number of computations BB performed
was recorded each time the other requests were shuffled. Regardless of how the other requests were ordered, BB
performed the same number of computations for any particular first request. In other words, the identity of the first
request is enough to determine how many computations BB will perform for that set of requests. As such, the problem
can be simplified so that the NN only has to predict which request should be first instead of predicting how all the
requests need to be ordered.

Data Generation

For each set of n randomly generated requests, two random permutations of the set were created for each of the n
requests being first. Although we can be reasonably certain that the ordering of the 2nd through nth request doesn’t
impact the number of BB’s computations, two random permutations were generated instead of one as an extra pre-
caution. Both permutations were inputted into BB, and a tree was built for each. The larger number of computations
performed by BB from the two permutations was assigned to the current first request. When BB had run through all
2n permutations and a number of BB computations was determined for each of the n requests, the request that, being
first, resulted in the least number of BB computations was said to be the corresponding output for the whole set of
requests, the input.

The outputs were determined for 3000 sets of randomly generated requests, and these 3000 input-output pairs
formed the data that would be used to train the NN. The data was then randomly split such that the NN would only
train on 75% of the data, while the other 25% would be used to test the NN’s performance.

Hyperparameter Sweep

Several NNs with different combinations of parameters were trained on the data. All NNs had the same structure with
two hidden layers, so the variables were the size of each hidden layer, the learning rate, and the number of epochs.
However, as the number of epochs is essentially determined by the hidden layer sizes and learning rate, we will not
discuss it further. Let the size of a NN be denoted as (𝑠𝑠1, 𝑠𝑠2), where 𝑠𝑠1 is the size of the first hidden layer and 𝑠𝑠2 is
the size of the second hidden layer. The sizes we tested were (512, 512), (512, 1024), (1024, 512), and (1024, 1024).
The learning rates we tested were 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, and 0.5. Thus, with 4 different sizes and 7 different
learning rates, we tested a total of 28 different NNs.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 8

Figure 6. Training and testing loss curves per epoch. The NN has size (1024, 1024) and a learning rate of 0.07. Both
the train and test loss decrease, indicating that the neural network is fitting to the data. After 800 epochs of training,
the losses begin to plateau, signifying that the model optimization has reached a local minimum.

Two NNs were created and trained for each combination of size and learning rate. The loss, or the error between
the NN’s predictions and the actual output, was collected for the training and testing data, before and after training
each NN. A sample training and testing loss curve is shown in Figure 6. However, as our goal is for the NN to learn
broadly applicable patterns, the testing loss is a better metric than the training loss to measure how well the NN trained.
For each combination of parameters, the average of the testing losses before and the average of the testing losses after
training were recorded, and the percent loss between the two averages was calculated. The results for different NNs
are summarized in Figures (7a) - (7d).

Because all percentage decreases between the testing loss before and after were positive, we concluded that all

NNs trained to some extent. We also observed the same pattern in all of the NN sizes, where the NN trained poorly
when the learning rate was too low. Moreover, apart from learning rates of 0.01 and 0.03, there was no significant
difference in percent testing loss decrease when using any other NN size and learning rate combination. As such, the
NN with size (1024, 512) and learning rate 0.1 had the greatest percent testing loss decrease—89.77%—so this was
the combination of parameters that we used to conduct the rest of the experiments.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 9

 (7a) (7b)

(7c) (7d)

Figures (7a) - (7d). Percent testing loss decreases for NN of varying sizes. The percent loss was calculated between
the testing losses before and after training an NN, for each of 28 NNs with different combinations of parameters (i.e.
NN size and learning rate). All NNs trained to some extent—since all the plotted values are positive—although for all
NN sizes, lower learning rates performed worse.

Results

Given the trained network, we ran trials using randomly generated requests to see how well BB performed on the NN
predicted ordering versus all the possible orderings. In all trials, an ordering was generated for each possible request
being first. BB built a tree for each ordering, and both the number of computations performed, and the amount of time
needed to build the tree were recorded. Figure 8 summarizes the data for the number of computations performed, and
Figure 9 summarizes the data for the run times.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 10

 Number of BB Computations

Trial

NN predicted
ordering

Average of all or-
derings

Minimum of all
orderings

Maximum of all
orderings

Percent improvement (from
average)

1 19 29 19 57 34.48275862

2 22 30 22 66 26.66666667

3 28 48.21428571 28 140 41.92592593

4 23 30 23 69 23.33333333

5 20 29 20 60 31.03448276

6 28 47.85714286 28 134 41.49253731

7 25 28 25 50 10.71428571

8 15 17 15 45 11.76470588

9 19 21 19 38 9.523809524

10 29 45 29 145 35.55555556
Figure 8. The number of computations BB performed when building a tree for different orderings of sets of randomly
generated requests. Over any set of requests, BB performed less computations than average given the NN predicted
ordering. Furthermore, the NN predicted ordering always resulted in the minimum number of computations, which is
exactly what we trained it to do.

 When given the NN predicted ordering, BB always performed the minimum number of computations possible
for that set of requests. This is exactly what we trained it to do, so we can say that the NN training was successful (see
Discussion). Since it always achieved the minimum, it could never have performed worse than average; in fact, the
NN predicted ordering resulted in, on average, 26.6% less computations than the average of all possible orderings.

Similarly, the amount of time BB took to build a tree when given the NN predicted ordering was always almost the
minimum possible for that set of requests. One thing to note here is that BB didn’t take the absolute minimum amount
of time but was nevertheless very close to the minimum and relatively far from the average and maximum. Again, the
NN predicted orderings never performed worse than average and were, on average, 24.1% faster than the averages of
all possible orderings.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 11

 Time Taken to Build Tree (s)

Trial

NN predicted or-
dering

Average of all or-
derings

Minimum of all or-
derings

Maximum of all or-
derings

Percent improvement
(from average)

1 1.741202831 2.380709033 1.640149117 4.186253071 26.86200594

2 2.100915194 2.624884248 2.002646923 5.220301867 19.9616061

3 2.677391052 5.265179472 2.56871295 24.02265906 49.14910182

4 2.031543016 2.489379271 2.022150993 5.090121269 18.391583

5 1.881418943 2.473899388 1.843220949 4.379544973 23.94925387

6 2.974802971 6.847914892 2.902956963 31.39216995 56.55899616

7 2.214895964 2.422634716 2.175100803 3.890120029 8.574910241

8 1.361700058 1.437596242 1.2663908 3.200922251 5.279381056

9 1.641494989 1.782203298 1.636470079 2.94604516 7.895188424

10 3.028402328 4.022616049 2.900734186 10.5824542 24.71560071
Figure 9. Time taken for BB to build the tree for different orderings of sets of randomly generated requests. Here, BB
took close to the minimum amount of time possible to run given the NN predicted ordering compared to all other
possible orderings, still with a significant decrease from the average.

Discussion

We trained our NN to predict which request(s) being placed first in any set would minimize the amount of computa-
tions BB would perform when building a tree. The results show that the NN trained successfully, since in all 10 trials,
the ordering predicted by the NN indeed led to the minimum possible number of computations for the given set of
requests. Similarly, this ordering resulted in fewer computations, and therefore lower runtimes, subject to natural
variability in runtime. The NN also worked with a high accuracy—for this sample, it worked 100% of the time—so
that it could take any arbitrary set of requests and would never predict an ordering that performs worse than picking
one at random.
 Regarding time reduction, 24.1% of the times listed in the table would usually be around 1 second. But in a real-
world AMoD system with thousands of requests, BB would take much longer, at which point decreasing run time by
24.1% would be significant, i.e., on the order of hours saved. The efficient algorithm would be more capable of han-
dling large numbers of requests—this makes implementing a real-world AMoD system more feasible, since we would
have a mechanism that could route requests in a timely manner. With greater efficiency, the algorithm would also
require less power, making it more environmentally friendly as well as lowering the cost. AMoD would become an
affordable, reliable form of transportation, widely accessible to all.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 12

Future Improvements

There are several directions for improving our model. First, in order to be employed in a real-world AMoD system,
the algorithm must be able to service the population of a large city. This would involve hundreds of thousands of
requests compared to the maximum of 30 that we dealt with in this paper. Our model wasn’t tailored to any specific
number of requests, so it should still work on a larger scale with relatively little modification. However, our model
was tailored to one specific road network, and we would like for it to be able to work on any arbitrary road network.
 Second, as mentioned in Mathematical Representation, we only considered requests at one instant in time, and
we assumed vehicles in the system travel along all edges in their routes instantaneously. More work would need to be
done to incorporate vehicle travel times and shift to continuously received requests: that is, change the AMoD problem
formulation to describe a dynamic, rather than static, system. One possible solution is to make the network-flow model
resemble the one in [11], where each new time step is represented by a new copy of the road network.
 We can also combine the results of this paper with other research into AMoD, especially once a continuous
timeline has been added. Since vehicles are reused, a natural extension is to consider rebalancing as well as routing
[13], [14]. Additionally, since vehicles are electric, the interaction with the power grid [18]-[19] and coordinating
charging [20] should also be considered. Finally, the AMoD problem can be converted to an Intermodal-AMoD prob-
lem when other forms of transportation within a system are allowed [21]-[23].

Conclusion

In this paper, we adapted the branch-and-bound algorithm to an AMoD context and showed that it can find integer
solutions to the AMoD routing problem. Using the algorithm, we generated data and trained a neural network to
predict the ordering of a set of randomly generated requests such that BB performed as few computations as possible.
We then demonstrated that the NN predicted orderings indeed resulted in a minimum number of computations and
significantly reduced computation time. These results, when scaled up to a real world AMoD system, can make AMoD
time-efficient and can save computing power, thereby reducing the cost. This allows reliable, eco-friendly transporta-
tion to become more feasible and accessible to all.

Acknowledgements

I would like to thank my mentors, Robin Brown and Somrita Banerjee, for teaching me everything I needed to com-
plete this project. I would like to thank Professor Marco Pavone and Stanford University’s Autonomous Systems
Laboratory for facilitating this research. Finally, I would like to thank my computer for dealing with all my coding
errors and not crashing.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 13

References

 [1] Pavone, M. (2015). Autonomous mobility-on-demand systems for future urban mobility. In Autonomes Fahren
(pp. 399-416). Springer Vieweg, Berlin, Heidelberg. Available at https://link.springer.com/chapter/10.1007/978-3-
662-45854-9_19.

[2] Land, A. H., & Doig, A. G. (2010). An automatic method for solving discrete programming problems. In 50
Years of Integer Programming 1958-2008 (pp. 105-132). Springer, Berlin, Heidelberg. Available at
https://link.springer.com/chapter/10.1007/978-3-540-68279-0_5.

[3] He, H., Daume III, H., & Eisner, J. M. (2014). Learning to search in branch and bound algorithms. Advances in
neural information processing systems, 27. Available at
https://proceedings.neurips.cc/paper/2014/hash/757f843a169cc678064d9530d12a1881-Abstract.html.

[4] R. Zhang and M. Pavone. Control of robotic Mobility-on-Demand systems: A queueing-theoretical perspective.
Int. Journal of Robotics Research, 35(1–3):186–203, 2016. Available at
https://journals.sagepub.com/doi/abs/10.1177/0278364915581863.

[5] Iglesias, R., Rossi, F., Zhang, R., & Pavone, M. (2019). A BCMP network approach to modeling and controlling
autonomous mobility-on-demand systems. The International Journal of Robotics Research, 38(2-3), 357-374.
Available at
https://journals.sagepub.com/doi/full/10.1177/0278364918780335?casa_token=celUGTO7nC4AAAAA%3AU9TeA
BMhkCHjwoQn3X4XruP8ACMaDDFtAZqQeuB4387rgGaK9t9zX9GqS3-hK_4y9FS_73xipoTW.

[6] Hörl, S., Ruch, C., Becker, F., Frazzoli, E., & Axhausen, K. W. (2018). Fleet control algorithms for automated
mobility: A simulation assessment for Zurich. In 2018 TRB Annual Meeting Online (pp. 18-02171). Transportation
Research Board. Available at https://trid.trb.org/view/1495210.

[7] Levin, M. W., Kockelman, K. M., Boyles, S. D., & Li, T. (2017). A general framework for modeling shared
autonomous vehicles with dynamic network-loading and dynamic ride-sharing application. Computers, Environment
and Urban Systems, 64, 373-383. Available at
https://www.sciencedirect.com/science/article/pii/S019897151630237X?casa_token=dt530Laj49sAAAAA:c2Jr6ayr
7lbPrhlG5BJ__sDAEik1sIBukQRoVHr0eHt96IlM4kthOl_xJHH5t1G8V5z39E-0JQ.

[8] Iglesias, R., Rossi, F., Wang, K., Hallac, D., Leskovec, J., & Pavone, M. (2018, May). Data-driven model
predictive control of autonomous mobility-on-demand systems. In 2018 IEEE international conference on robotics
and automation (ICRA) (pp. 6019-6025). IEEE. Available at https://ieeexplore.ieee.org/abstract/document/8460966.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 14

https://link.springer.com/chapter/10.1007/978-3-662-45854-9_19
https://link.springer.com/chapter/10.1007/978-3-662-45854-9_19
https://link.springer.com/chapter/10.1007/978-3-540-68279-0_5
https://proceedings.neurips.cc/paper/2014/hash/757f843a169cc678064d9530d12a1881-Abstract.html
https://journals.sagepub.com/doi/abs/10.1177/0278364915581863
https://journals.sagepub.com/doi/full/10.1177/0278364918780335?casa_token=celUGTO7nC4AAAAA%3AU9TeABMhkCHjwoQn3X4XruP8ACMaDDFtAZqQeuB4387rgGaK9t9zX9GqS3-hK_4y9FS_73xipoTW
https://journals.sagepub.com/doi/full/10.1177/0278364918780335?casa_token=celUGTO7nC4AAAAA%3AU9TeABMhkCHjwoQn3X4XruP8ACMaDDFtAZqQeuB4387rgGaK9t9zX9GqS3-hK_4y9FS_73xipoTW
https://trid.trb.org/view/1495210
https://www.sciencedirect.com/science/article/pii/S019897151630237X?casa_token=dt530Laj49sAAAAA:c2Jr6ayr7lbPrhlG5BJ__sDAEik1sIBukQRoVHr0eHt96IlM4kthOl_xJHH5t1G8V5z39E-0JQ
https://www.sciencedirect.com/science/article/pii/S019897151630237X?casa_token=dt530Laj49sAAAAA:c2Jr6ayr7lbPrhlG5BJ__sDAEik1sIBukQRoVHr0eHt96IlM4kthOl_xJHH5t1G8V5z39E-0JQ
https://ieeexplore.ieee.org/abstract/document/8460966

[9] Zhang, R., Rossi, F., & Pavone, M. (2016, May). Model predictive control of autonomous mobility-on-demand
systems. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1382-1389). IEEE.
Available at https://ieeexplore.ieee.org/abstract/document/7487272.

[10] Xu, J., Rahmatizadeh, R., Bölöni, L., & Turgut, D. (2017). Real-time prediction of taxi demand using recurrent
neural networks. IEEE Transactions on Intelligent Transportation Systems, 19(8), 2572-2581. Available at
https://ieeexplore.ieee.org/abstract/document/8082792.

[11] Tsao, M., Milojevic, D., Ruch, C., Salazar, M., Frazzoli, E., & Pavone, M. (2019, May). Model predictive
control of ride-sharing autonomous mobility-on-demand systems. In 2019 International Conference on Robotics and
Automation (ICRA) (pp. 6665-6671). IEEE. Available at https://ieeexplore.ieee.org/abstract/document/8794194.

[12] Rossi, F., Zhang, R., Hindy, Y., & Pavone, M. (2018). Routing autonomous vehicles in congested
transportation networks: Structural properties and coordination algorithms. Autonomous Robots, 42(7), 1427-1442.
Available at https://link.springer.com/article/10.1007/s10514-018-9750-5.

[13] Salazar, M., Tsao, M., Aguiar, I., Schiffer, M., & Pavone, M. (2019, June). A congestion-aware routing scheme
for autonomous mobility-on-demand systems. In 2019 18th European Control Conference (ECC) (pp. 3040-3046).
IEEE. Available at https://ieeexplore.ieee.org/abstract/document/8795897.

[14] Wollenstein-Betech, S., Houshmand, A., Salazar, M., Pavone, M., Cassandras, C. G., & Paschalidis, I. C.
(2020, September). Congestion-aware routing and rebalancing of autonomous mobility-on-demand systems in
mixed traffic. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) (pp. 1-7).
IEEE. Available at https://ieeexplore.ieee.org/abstract/document/9294258.

[15] Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., & Dilkina, B. (2016, February). Learning to branch in mixed
integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 30, No. 1). Available
at https://ojs.aaai.org/index.php/AAAI/article/view/10080.

[16] Etheve, M., Alès, Z., Bissuel, C., Juan, O., & Kedad-Sidhoum, S. (2020, September). Reinforcement learning
for variable selection in a branch and bound algorithm. In International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research (pp. 176-185). Springer, Cham. Available at
https://link.springer.com/chapter/10.1007/978-3-030-58942-4_12.

[17] Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimization.
The Journal of Machine Learning Research, 17(1), 2909-2913. Available at
https://www.jmlr.org/papers/volume17/15-408/15-408.pdf.

[18] Rossi, F., Iglesias, R., Alizadeh, M., & Pavone, M. (2019). On the interaction between Autonomous Mobility-
on-Demand systems and the power network: Models and coordination algorithms. IEEE Transactions on Control of
Network Systems, 7(1), 384-397. Available at https://ieeexplore.ieee.org/abstract/document/8737720.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 15

https://ieeexplore.ieee.org/abstract/document/7487272
https://ieeexplore.ieee.org/abstract/document/8082792
https://ieeexplore.ieee.org/abstract/document/8794194
https://link.springer.com/article/10.1007/s10514-018-9750-5
https://ieeexplore.ieee.org/abstract/document/8795897
https://ieeexplore.ieee.org/abstract/document/9294258
https://ojs.aaai.org/index.php/AAAI/article/view/10080
https://link.springer.com/chapter/10.1007/978-3-030-58942-4_12
https://www.jmlr.org/papers/volume17/15-408/15-408.pdf
https://ieeexplore.ieee.org/abstract/document/8737720

[19] Estandia, A., Schiffer, M., Rossi, F., Luke, J., Kara, E. C., Rajagopal, R., & Pavone, M. (2021). On the
interaction between autonomous mobility on demand systems and power distribution networks—an optimal power
flow approach. IEEE Transactions on Control of Network Systems, 8(3), 1163-1176. Available at
https://ieeexplore.ieee.org/abstract/document/9354039.

[20] Boewing, F., Schiffer, M., Salazar, M., & Pavone, M. (2020, July). A vehicle coordination and charge
scheduling algorithm for electric autonomous mobility-on-demand systems. In 2020 American Control Conference
(ACC) (pp. 248-255). IEEE. Available at https://ieeexplore.ieee.org/abstract/document/9147734.

[21] Salazar, M., Lanzetti, N., Rossi, F., Schiffer, M., & Pavone, M. (2019). Intermodal autonomous mobility-on-
demand. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3946-3960. Available at
https://ieeexplore.ieee.org/abstract/document/8894439.

[22] Wollenstein-Betech, S., Salazar, M., Houshmand, A., Pavone, M., Paschalidis, I. C., & Cassandras, C. G.
(2021). Routing and rebalancing intermodal autonomous mobility-on-demand systems in mixed traffic. IEEE
Transactions on Intelligent Transportation Systems. Available at https://ieeexplore.ieee.org/document/9541261.

[23] Zgraggen, J., Tsao, M., Salazar, M., Schiffer, M., & Pavone, M. (2019, October). A model predictive control
scheme for intermodal autonomous mobility-on-demand. In 2019 IEEE Intelligent Transportation Systems
Conference (ITSC) (pp. 1953-1960). IEEE. Available at https://ieeexplore.ieee.org/abstract/document/8917521.

Volume 11 Issue 4 (2022)

ISSN: 2167-1907 www.JSR.org 16

https://ieeexplore.ieee.org/abstract/document/9354039
https://ieeexplore.ieee.org/abstract/document/9147734
https://ieeexplore.ieee.org/abstract/document/8894439
https://ieeexplore.ieee.org/document/9541261
https://ieeexplore.ieee.org/abstract/document/8917521

