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ABSTRACT 

Examines the capabilities of Autoregressive-Conditional-Heteroskedasticity (ARCH) family models (with Ar-
tificial Neural Networks) to predict volatility of thirty equities from a five-year fiscal-period. The models un-
derwent the maximization of its parameters through Hessian matrices and were used to predict volatility by 
maximizing the log-likelihood function. Trained Long-Short-Term-Memory models using Neural-Net-En-
hanced-ARCH algorithms and calculated the Root-Mean-Square-Error. Found the RMSE value of the tradi-
tional ARCH/GARCH models as 1.1695 as opposed to the algorithm’s 0.8763.

Motivation 

About eight months ago, I had watched a video segment produced by Yahoo Finance which summarized the 
happenings of stock market for the past week when, suddenly, the market crashed. The stock prices for 
Gamestop and AMC Entertainment Holdings, Inc had surged, an increase measuring 104% and 301%, respec-
tively. Upon further investigation regarding the anomaly in the news, I discovered that the New York Stock 
Exchange had reached insurmountable volatility rates, causing many investors to gain high returns on their 
investments. This event proved just how volatile and unpredictable a market can be, and how seemingly non-
influential variables can change the fate of a stock share. A group of investors pooling funds into a stock and 
“holding” their shares were able to turn the fortune of other investors and firms overnight and cause the stock 
market to have one its highest volatility rates. 

I was motivated to research mathematical finance and conduct a study that was centered around the 
volatility of stocks using GARCH family models and AI. After reading a plethora of articles on the event, I 
found that none of the articles contained any scientific evidence of the oddity, rather just empirical information 
of share prices. Furthermore, the articles were “projection-centric”, discussing the direction of the stock prices 
instead of addressing the sophisticated evidence of the volatility change in them. In this paper, I present further 
research on creating and analyzing volatility capabilities of ARCH models using Artificial Neural Networks to 
further help investors and federal regulation companies forecast volatility more accurately. 

Introduction 

The notion of prudently forecasting volatility in the stock market has been one that has been widely accepted 
by those within the realm of financial statistics. Per its definition, volatility, or variance can be defined as the 
rate at which a stock’s price rises or falls over a given period, in a financial data set. Intuitively, more stock 
price volatility refers to higher risk posed for investment, but they also allow an investor to predict future vari-
ations in share price, with almost all financial applications of volatility models including anticipating future 
returns. To predict the magnitudes of returns, a volatility model, a forecast quantile, or even the whole density 
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function, of the prices can be employed. With the advent of Artificial Intelligence (AI), specifically Machine 
Learning, financial estimations can be made more accurately. Artificial Neural Networks, or computational 
algorithms used for pattern detection, are an integral part of forecasting financial derivative prices and can also 
be employed to project volatility within the stock market. In this paper, forecasting volatility using accepted 
theories, G(ARCH) families, as well as Artificial Neural Networks are used to predict volatility of thirty Big-
Cap stocks from the S&P 500 stock index. 

First put forth by Tim Bollerslev and S.J Taylor in 1986, the Autoregressive Conditional Heteroske-
dasticity, or the ARCH model, is a class of statistical models that are used to estimate and project the volatility 
of financial integrants such as options, stocks, bonds, etc. ARCH-type models are also a part of the stochastic 
volatility model family which are models in which the variance of a stochastic process is randomly distributed. 
In “A Practical Guide to Volatility Forecasting Through Calm and Storm” by Robert Engle, Bryan Kelly, and 
Christian Brownlees, every model within the ARCH family is used to forecast the volatility based on data from 
the years 1990 to 2008. The study examined the way design elements are implemented into a real-time volatility 
forecasting approach, such as the model type, the quantity of data to utilize in the estimate, the frequency of 
estimation updates, and the use of heavy-tailed likelihoods for volatility forecasting. The investigation pro-
gresses to the experiment stage where a wide variety of domestic and foreign equity indexes and exchange rates 
are used to test the process in different environments. These environments included the volatility spike in the 
third and fourth quarters of 2008 (2008 Financial Crisis) to examine if the model works in turbulent times. The 
findings were that the threshold GARCH model, the simplest asymmetric generalized autoregressive condi-
tional heteroskedasticity (GARCH) specification, is the best forecaster across all asset classes. Furthermore, the 
researchers concluded that the GARCH family functions performs with the most precision over a long period 
of time. 

Among the financial derivatives that act as agents of our markets, options are the most are one of the 
widely used derivatives for forecasting volatility from historical prices. They are considered to be the most 
helpful in predicting volatility because of their high susceptibility to volatility changes, which can indicate high 
potential returns. In particular, the implied volatility of an option, which indicates the stock’s predicted volatility 
throughout the option’s life, is used by many researchers for analysis. In “Using Neural Networks to Forecast 
the S&P 100 Implied Volatility” by Linda Salchenberger and Mary Malliaris, the authors present a neural net-
work that was able to successfully predict the most often utilized volatility (implied) by traders. In every sce-
nario studied within the study, neural networks, an algorithm proved to efficiently describe inconsistent inter-
actions, proved as one viable strategy to forecast local options’ volatility and hence may be utilized to produce 
reliable forecasts. The historical volatility was calculated for each trading day in 1992 using a size 30 Index 
price sample. The authors utilized the Black-Scholes model to generate implied volatility for three different 
contracts to find the closest at-the-money: current month, one month out, and two months away, with 250 ob-
servations in each series of volatility in the experiment. The results were that the portion of successful projec-
tions using neural networks had a value of 0.794. With a significance threshold of 0.0001, the future implied 
volatility and neural network prediction had a correlation of 0.8535, indicating a moderately strong relationship 
between the two mediums of forecasting. 

Another method for foretelling volatility in financial markets includes using Machine Learning in an 
out-of-sample forecast. In “A Machine Learning Approach to Volatility Forecasting” by Bezirgen Veliyev, 
Mathias Siggaard, and Kim Christensen, the researchers aimed to find whether a large count of inconsistent 
variables display conditional heteroskedasticity and serial correlation and prove the accuracy of machine learn-
ing (ML) within the experiment. The authors of this research studied the out-of-sample performance of a variety 
of machine learning approaches for the projection of volatility, including tree-based algorithms such as gradient 
boosting and random forest, as well as neural networks. The results of this method were then compared to the 
results yielded by the HAR (traditional volatility model). This paper’s findings were organized into five cate-
gories. First, the HAR model is compared against off-the-shelf implementations of several ML approaches for 
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out-of-sample predicting accuracy. Second, if regularization was used to account for over-fitting, significant 
statistics regarding volatility projection may recover using ML. When more factors are added to the HAR model, 
the forecast accuracy improves. Third, the authors discovered a nonlinear interaction between variables by look-
ing at the structure of ML approaches. Fourth, the authors use accumulated local effect (ALE) plots to calculate 
variable relevance. Fifth, the authors look at how machine learning approaches react to pure noise factors. The 
two new mediums of forecasting were discovered to provide greatly enhanced predictions when compared to 
HAR. To confuse or distort the signal, the authors added a plethora of noise variables to the information set to 
check robustness of the models. In contrast to linear regression, the majority of ML approaches were somewhat 
resistant to this impact. Finally, the authors use ALE plots to examine the data’s underlying structure to pinpoint 
the primary factors that contribute to improved prediction. 

The intricacy of predicting volatility is what contributed to its many benefits for investors. With the use 
of past prices of financial instruments, the volatility of these rates can be determined effectively and accurately. 
With the improvements being made to the traditional volatility indicator models, namely ARCH models, these 
results continue to become more accurate. Moreover, with enhancements to Machine Learning and AI, these 
processes can be done quickly and efficiently. 
 

Data 
 
Thirty equities from the S&P 500 will be selected for the analysis based on their relative weights. The equities 
will be chosen from a wide range of sectors ranging from Informational Technology to Energy. The stock index 
for the shares will be computed using a Capitalization Weighted Index, which involves smaller components that 
are weighted with the relative total market capitalization of the stock. The daily closing prices were collected 
from the past five years using online platforms, namely MarketWatch. The following formula will compute the 
price of each stock at the end of the five-year fiscal period using log-returns 
 𝑃𝑃𝑡𝑡  =  𝑃𝑃0(1 + 𝑟𝑟)  =  𝑃𝑃0𝑒𝑒𝑅𝑅   
Then divide both sides of the equation by P0 and apply the natural logarithm (ln), utilizing Euler’s number, e, 
as its base 

𝑙𝑙𝑙𝑙 �
𝑃𝑃𝑡𝑡
𝑃𝑃0
� = 𝑙𝑙𝑙𝑙(1 + 𝑟𝑟) = 𝑙𝑙𝑙𝑙𝑒𝑒𝑅𝑅 

𝑙𝑙𝑙𝑙 �
𝑃𝑃𝑡𝑡
𝑃𝑃0
� = 𝑙𝑙𝑙𝑙(1 + 𝑟𝑟) = 𝑅𝑅𝑙𝑙𝑙𝑙𝑒𝑒 

The functions,  f(x) = lnx and f(x) = e, equate to 1 as they are inverses, leaving the equation to be 
 

𝑙𝑙𝑙𝑙 �
𝑃𝑃𝑡𝑡
𝑃𝑃0
� = 𝑙𝑙𝑙𝑙(1 + 𝑟𝑟) = 𝑅𝑅 

, where R, the value that is continuously compounded which will grow from P0 to Pt, is the same value as ln(1 
+ r) 

Thus, the computed log-returns formula 
 Ri = log(Pi/Pi−1)  
and volatility σt

2, where 
 𝜎𝜎𝑡𝑡2  =  𝑉𝑉𝑉𝑉𝑟𝑟{𝑍𝑍𝑡𝑡2|𝐹𝐹𝑡𝑡−1} 
where Ft represents the amount of information set available at time t and Xt is the random process can both be 
used for the analysis of time-series forecasting. 
 

Autoregressive Time-Series Forecasting 
 
ARCH Family Models 
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The ARCH family was created by Robert Engle in 1982 and evolved into a sphere of statistical tools used to 
forecast and analyze the volatility of financial derivatives using a time series. The ARCH family is comprised 
of 12 family models including the most prominent Autoregressive Conditional Heteroskedasticity (ARCH), 
Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Integrated Generalized Autoregressive 
Conditional Heteroskedasticity (IGARCH), and GARCH-in mean (GARCH-M), etc. Throughout the process, 
all family functions are used for the characterizations of the observed time series. 
 
ARCH Model 
Proposed by Robert Engle in 1982, the Autoregressive Conditional Heteroskedasticity (ARCH) model utilizes 
log-returns as a product of Gaussian White Noise and volatility in a conditional variance process with an auto-
regressive structure. In the ARCH process, the Gaussian White is described a random, stationary process (with 
a mean of zero) in which any two values in the set of data are statistically independent. Let ϵt be the Gaussian 
white noise with a unit variance in the data. at is the process of ARCH 

𝑍𝑍𝑡𝑡 ≡  𝜎𝜎𝑡𝑡𝜖𝜖𝑡𝑡 
where 

𝜎𝜎𝑡𝑡 =  �𝜔𝜔 +  �𝛼𝛼𝑖𝑖𝑍𝑍𝑡𝑡−𝑖𝑖2

𝑝𝑝

𝑖𝑖=1

 

Here, the formula models the heteroskedasticity by correlating the linear combination of squared dis-
turbance in earlier data to the conditional variance of the disturbance term. 
 
G(ARCH) Model 
The GARCH model is regarded as Bollerslev’s earliest and most fundamental symmetric model. The GARCH 
model extends the ARCH models by modeling the present variance of financial data at time t using values of 
previous squared returns and prior variances. As seen below, the GARCH (p,q) model is designated as a linear 
function of previous squared residuals and lagged conditional variances, where p is notated as a sequence of the 
series in terms of σ2 and q of the ARCH in terms of a2 

  
𝑍𝑍𝑡𝑡 ≡  𝜎𝜎𝑡𝑡𝜖𝜖𝑡𝑡 

  
(𝜖𝜖𝑡𝑡|𝜓𝜓𝑡𝑡−1) ~ 𝑁𝑁(0,𝜎𝜎𝑡𝑡2) 

𝑡𝑡 =  1,2, . . . ,𝑙𝑙 

𝜎𝜎𝑡𝑡   
2 =  𝜔𝜔 +  �𝛼𝛼𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑍𝑍𝑡𝑡−𝑖𝑖2  +  �𝛽𝛽𝑖𝑖𝜎𝜎𝑡𝑡−𝑖𝑖2

𝑞𝑞

𝑖𝑖=1

,∀𝑡𝑡∈  ℤ 

where αi ≥ 0, βj ≥ 0, ω > 0, i = 1, 2..., q, j = 1, 2..., p, at/It ∼ (0, σ2). αi and βi are the coefficients of any unknown 
parameter in the data, ϵt are the error terms, It is the set of information available at time t, and at is the dependent 
variable. 
 
ARMA Model 
 
The Autoregressive-Moving-Average model is a parsimonious model theorized by Peter Whittle in 1951 which 
aims to calculate the stationary stochastic process for two polynomial functions, the autoregression (AR) and 
the moving average (MA) given a set of data. The Box-Jenkins method, which employs the ARMA model to 
create a best-fit in order to model a forecasting time series paradigm, is used to estimate the model. The auto-
regressive function is then used in order to generate a regression of the past (lagged) values in the data. The 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 4



 

moving-average function is used in order to create a modelling of the error (or residual) as a linear combination. 
Below, both functions in the ARMA model are represented. 
 
Autoregressive model 
Below, the first function in the ARMA model, the Autoregressive Model, is split into its components. 

𝑋𝑋𝑡𝑡 =  𝑐𝑐 +  �𝜑𝜑𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑋𝑋𝑡𝑡−𝑖𝑖  

+  𝜀𝜀𝑡𝑡 
where c is the constant, εt, is the Gaussian white noise, and φ1,...,φp are the parameters from the set of data. 
 
Moving-Average Model 
Below, the moving-average of the data is modelled with order q 

𝑋𝑋𝑡𝑡 =  𝜇𝜇 +  𝜀𝜀𝑡𝑡  +  �𝜃𝜃𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

 

where µ is the assumption of Xt, εi ... is the Gaussian White Noise, and θ1,...,θq are the parameters in the set of 
data. 
 
 
Combined ARMA (p,q) Model 
Below, the pairing of both the Autoregressive model and the Moving-Average model is presented, thus equating 
to 

𝑋𝑋𝑡𝑡 =  𝑐𝑐 +  𝜀𝜀𝑡𝑡  +  �𝜑𝜑𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑋𝑋𝑡𝑡−𝑖𝑖  +  �𝜃𝜃𝑖𝑖

𝑞𝑞

𝑖𝑖=1

𝜀𝜀𝑡𝑡−𝑖𝑖   

where p represents the Autoregressive function and q is the Moving-Average function. 
 
ARIMA Model 
 
The Autoregressive Integrated Moving Average model is a generalization of the ARMA model. The model is 
used in sets of data where non-stationary exists in the mean. The “integrated” component in the ARIMA model 
is referred the number of times needed for the model to achieve its stationarity. Given data from time t, the 
formula below models the ARIMA model 

�1 −  �𝛼𝛼𝑖𝑖𝐿𝐿𝑖𝑖
𝑝𝑝′

𝑖𝑖=1

�𝑋𝑋𝑡𝑡  =  �1 +  �𝜃𝜃𝑖𝑖𝐿𝐿𝑖𝑖
𝑞𝑞

𝑖𝑖=1

� 𝜀𝜀𝑡𝑡 

where αi represents parameters of the AR portion, θi represents the parameters of the IMA component, εt are the 
error terms in the set of data, and L is the lag operator. The model is then used to identify any autocorrelation 
within the data. 
 

Neural Network Volatility Forecasting 
 
A neural network is a type of computer algorithm that uses approaches akin to those used in the human brain, 
hence its designation “neural.” The algorithm is made to operate information as well as recognize sequences. 
The function is modeled after the components and activities of brain cells, specifically the nodes. The technique 
employs numerous basic processing components working in tandem to achieve high computing speeds. The 
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concept of Neural Network Volatility Forecasting has been a profound one developed by Ormoneit and Neu-
neier (1996). It was first used to predict volatility of financial equities in the Frankfurt Stock Market (FWB). 
Neural networks have consistently outperformed linear models in a number of situations. They’ve been espe-
cially successful at capturing complicated linkages where linear models fall short. 

 
 

Using LSTM-ANN Models 
 
One of the most frequented types of Recurrent Neural Networks (RNN) utilized is within Long Short-Term 
Memory (LSTM). A recurrent neural network (RNN) is a type of a artificial neural network that uses time series 
to train input data, using previous inputs to affect new outputs. This recurrent neural network is suited for 
projecting time series and is designed to prevent long-term reliance difficulties. The LSTM model, proposed 
by Jurgen Schmidhuber and Sepp Hochreiter in 1997, is comprised of a distinctive collection of memory cells 
which restores the RNN’s hidden layer nodes. To maintain the condition of the memory cells, the LSTM refines 
input via the gate structure. It has input, forgotten, and output gates in its door construction. Three sigmoid 
layers, a layer that decides if fresh data should be up to date and/or ignored, and one tanh layer, a layer that has 
all of the new input’s potential values through the making of a vector, make up each memory cell. The tanh 
activation function is utilized in LSTM network to select a potential cell state as well as an upgraded hidden 
state. 

Figure 1. The most popular type of neural network structure for prediction is a feed-forward multilayered 
network. This form of network has at least three layers. The input layer is where data is presented to the 
network. The “hidden layer” is the next layer, in which it generates an internal delineation of the data presented 
to the network. The output layer is the last layer in which each component in its layer instantaneously gets 
information from neurons in the preceding layer  (Templeton  2015) 
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The LSTM unit’s forgotten gate selects which cell state data is removed from the model. The memory 
cell receives the previous moment’s output ht−1 and the current information xt as inputs and transforms them 
(through σ) into a long vector [ht−1, xt] to become 

𝑓𝑓𝑡𝑡  =  𝜎𝜎(𝑊𝑊𝑓𝑓 ·  [ℎ𝑡𝑡  −  1, 𝑥𝑥𝑡𝑡]  +  𝑏𝑏𝑓𝑓)  
where the weight matrix and bias of the forgetting gate, respectively, are Wf and bf, and σ is the sigmoid function. 
The major purpose of the forgotten gate is to keep track of how much the previous moment’s cell state Ct−1 is 
reserved for the prior moment’s cell state Ct. Based on ht−1 and xt, the gate will produce a number between 0 and 
1, with 0 denoting complete discard and 1 denoting total reserve. 
 

 
 

The input gate controls the quantity of the present instance input, xt, is retained for the cell state Ct, 
preventing irrelevant data from reaching the memory cells. It serves two purposes: to determine the condition 
of the cell that has to be modified; the sigmoid layer selects the value to be updated. The other option is to 
update the information to reflect the current status of the cell. To regulate how much current information is 
aggregated, the tanh layer creates a candidate vector, Cˆ

t. 
𝑖𝑖𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑡𝑡  ·  [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]  + 𝑏𝑏𝑖𝑖 ), 

 
�̂�𝐶𝑡𝑡 =  𝑡𝑡𝑉𝑉𝑙𝑙ℎ(𝑊𝑊𝑐𝑐  ·  [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]  + 𝑏𝑏𝑐𝑐),  

 
𝐶𝐶𝑡𝑡  =  𝑓𝑓𝑡𝑡  ·  𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡  ·   �̂�𝐶𝑡𝑡 

A sigmoid layer determines the output information initially, then is refined by tanh and paired with 
the sigmoid layer output to generate a final output portion 

𝑂𝑂𝑡𝑡  =  𝜎𝜎(𝑊𝑊𝜎𝜎  ·  [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]  +  𝑏𝑏𝑜𝑜)   
This gives a final output cell value as 

ℎ𝑡𝑡 =  𝑂𝑂𝑡𝑡 ·  tanh(𝐶𝐶𝑡𝑡) 
 

Figure 2. Above, the architecture of the LSTM model and its components are shown. It is composed of four 
gates: the learn gate, forget gate, remember gate, and use gate. Learn Gate: The instance that the information 
as well as the STM are combined so relevant information provided via the STM may be applied to the input in 
the instance. Forget Gate: When LTM goes through the forget gate, it rejects information that is not useful. 
Remember Gate: LTM information that is pertinent; in the updated LTM, the STM and instance is integrated 
into the Remember Gate. Use Gate: predicts the output of the current event and acts as a newly modified STM. 
( i  d  2021) 
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Maximum Log-Likelihood Function 
 
In the event that data in a set has heteroskedasticity, the Ordinary Least Square Estimation (OLS) as well as the 
co-variance matrix proves to be inefficient in calculating the maximization of parameters. In the ARCH family 
processes, the maximum log-likelihood function is used to maximize the parameters of the respective models. 
Maximum Likelihood estimation (MLE) chooses the model parameter values that have a higher likelihood of 
generating the data than any other parameter value. By definition, the realization of the conditional variance ht 

is 

𝐿𝐿 =  ��
1

2𝜋𝜋ℎ𝑡𝑡

(
−𝜀𝜀𝑡𝑡

2

2ℎ𝑡𝑡
)𝑇𝑇

𝑖𝑖=1

 

The conditional maximum likelihood (CML) approach is commonly utilized to approximate difficulty 
parameters of the log-likelihood function. The strategy is based on maximizing of these parameters’ conditional 
likelihood given a set of minimal enough statistics for the ability parameters. Through this, the conditional log-
likelihood is then defined as 

1
𝑇𝑇 − 1

log 𝑓𝑓(𝑥𝑥2 . . .  𝑥𝑥𝑇𝑇|𝑥𝑥1;  𝜃𝜃) =  
1

𝑇𝑇 − 1
log 𝐿𝐿 (𝜃𝜃|𝑥𝑥1, 𝑥𝑥2 . . . 𝑥𝑥𝑇𝑇  )  

 

 =  −1
2

log(2𝜋𝜋) 1
2(𝑇𝑇−1)

∑ log𝜎𝜎𝑡𝑡   
2𝑇𝑇

𝑡𝑡=2 −  1
2(𝑇𝑇−1)

∑ 𝜀𝜀𝑡𝑡
2

𝜎𝜎𝑡𝑡   
2

𝑇𝑇
𝑡𝑡=2  

However, in order to optimize the ARCH or GARCH processes’ parameters, α and β, the Maximum 
Likelihood estimator (MLE) function is used. Any estimate, θˆ

n, that optimizes the likelihood function inside 
any parameter space (set of data), Θ, is referred to as an ML estimator, where 
 

𝜃𝜃�𝑛𝑛 =  𝑉𝑉𝑟𝑟𝑎𝑎𝑎𝑎𝑉𝑉𝑥𝑥𝜃𝜃∈Θ𝐿𝐿𝑛𝑛(𝜃𝜃) 
 

 =  𝑉𝑉𝑟𝑟𝑎𝑎𝑎𝑎𝑉𝑉𝑥𝑥 �− 1
2

log(2𝜋𝜋)  −  1
2(𝑇𝑇−1)

∑ log𝜎𝜎𝑡𝑡2𝑇𝑇
𝑡𝑡=2  −  1

2(𝑇𝑇−1)
∑ 𝜀𝜀𝑡𝑡

2

𝜎𝜎𝑡𝑡   
2

𝑇𝑇
𝑡𝑡=2 � 

By definition, the multiplication of the marginal densities is congruent to the joint-density of a sample where 

𝑓𝑓(𝑥𝑥1, . . . , 𝑥𝑥𝑇𝑇; 𝜃𝜃)  =  𝑓𝑓(𝑥𝑥1; 𝜃𝜃)  ∙∙∙  𝑓𝑓(𝑥𝑥𝑇𝑇;  𝜃𝜃)  =  �𝑓𝑓(
𝑇𝑇

𝑖𝑖=1

𝑥𝑥𝑇𝑇;  𝜃𝜃)  

T, the joint density of the data (x1,···,xT ), given the parameter θ, satisfies 
 

 

Figure 3. The sigmoid function is widely utilized since it contains values between 0 and 1, which contains all 
probability values. The tanh function contains values between -1 and 1 (Sharma, 2017) 
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𝑓𝑓(𝑥𝑥1, . . . , 𝑥𝑥𝑇𝑇; 𝜃𝜃)  ≥  0, 
 

�∙∙∙ � 𝑓𝑓(𝑥𝑥1, . . . , 𝑥𝑥𝑇𝑇; 𝜃𝜃)𝑑𝑑𝑥𝑥1 ∙∙∙  𝑑𝑑𝑥𝑥𝑇𝑇  =  1  

The MLE function was then used in Python through MATLAB, a programming language that plots a 
plethora of functions given different sets with volatile data. The code below illustrates that the Maximum Like-
lihood estimator converges to the true values after a Monte Carlo simulation. Furthermore, the GARCH proce-
dure is implemented using the student-t innovation. 

 
Hessian Matrix 
 
Another approach to maximizing the ARCH family processes’ parameters is through the Hessian Matrix, a 
scalar field that comprises a square matrix of second-order partial derivatives of a scalar-valued function. The 
Hessian matrix function, notated as H, is modeled as 

𝚮𝚮𝑓𝑓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜕𝜕𝟐𝟐𝑓𝑓
𝜕𝜕𝑥𝑥12

𝜕𝜕𝟐𝟐𝑓𝑓
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2

⋯
𝜕𝜕𝟐𝟐𝑓𝑓

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥𝑛𝑛
𝜕𝜕𝟐𝟐𝑓𝑓

𝜕𝜕𝑥𝑥2𝜕𝜕𝑥𝑥1
𝜕𝜕𝟐𝟐𝑓𝑓
𝜕𝜕𝑥𝑥22

⋯
𝜕𝜕𝟐𝟐𝑓𝑓

𝜕𝜕𝑥𝑥2𝜕𝜕𝑥𝑥𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝜕𝜕𝟐𝟐𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛𝜕𝜕𝑥𝑥1

𝜕𝜕𝟐𝟐𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛𝜕𝜕𝑥𝑥2

⋯
𝜕𝜕𝟐𝟐𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

which can simplify (based off its coefficients) to 

(𝚮𝚮𝑓𝑓)𝑖𝑖,𝑗𝑗 =  
𝜕𝜕𝟐𝟐𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

 

Figure 4. Algorithmic code used through MATLAB for the Maximum Log-Likelihood for GARCH and ARCH param-
eters, 𝛼𝛼 and  𝛽𝛽. Uses a Monte Carlo simulation as well as a student-t innovation. (Created by Student Researcher) 
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This matrix is employed within the algorithm and is used to compared to the maximum likelihood function in 
order to fully optimize the parameters. 
 

Econometric Results 
 
After putting the data under their respective conditions, it was found that the most effective way of calculating 
whether the ARCH or GARCH model best fits the financial data was through the use of mean error calculations. 
These calculations are mainly used to evaluate how well a collection of data represents the population as a 
whole. Below, three of the mean error formulas are shown that were used throughout the duration of this project. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑙𝑙
�(𝑦𝑦𝑖𝑖  −  𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 =  ��
(𝑦𝑦𝑖𝑖  −  𝑦𝑦�𝑖𝑖)2 

𝑙𝑙

𝑛𝑛

𝑖𝑖=1

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑|𝑦𝑦𝑖𝑖  −  𝑦𝑦�𝑖𝑖|

𝑙𝑙
 

Over the 5-year fiscal period, from January 1, 2014 to January 1, 2019, a total of 1,770 prices, n, (from 
monthly data) were used through the use of database MarketWatch. In the table below, the respective mean 
error calculations were done for the ARCH/GARCH models. 
 

Table 1. Mean Errors for Traditional ARCH/GARCH Tests (Created by Student Researcher) 

MSE RMSE MAD 

1.3677 1.1695 0.8537 
 

 
This data presented shows that the ARCH/GARCH tests done, on the sample size of 1770, performed 

fairly well indicating a moderately strong RMSE value. 
The neural network process underwent the same ARCH/GARCH process, except with addition of the 

maximization of the log-likelihood function and LSTM training model. Below are the results of the constant 
mean model, the mean model, and volatility model, respectively. 

Table 2. GARCH Model Constant Mean Results (Created by Student Researcher) 

Mean Model Constant Mean R-Squared -0.122 

Vol. Model GARCH Log-Likelihood -13339.2 

Method Maximum Likelihood No. Observations 1770 

Distribution Normal Dep. Variable Volatility 
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Table 3. GARCH Mean Model Results (Created by Student Researcher) 

 Coefficient Std. Err. 95.0 Conf. Int. 

mu 21.6127 0.586 (21.59, 21.64) 
 

Table 4. GARCH Volatility Model Results (Created by Student Researcher) 

 Coefficient Std. Err. 95.0 Conf. Int. 

Omega 0.8342 0.217 (0.824, 0.844) 

Alpha 0.8765 0.0582 (0.874, 0.879) 

Beta 0.1471 0.0505 (0.145, 0.149) 
 

In the neural network process, the LSTM model was utilized to further train the data using epochs in 
a cycle of time. The epochs underwent training to further increase the accuracy of the model. Below, the graph 
illustrates the training of 150 epochs using the data. 

 
After the data set had been trained, the model, where n = 1770, was compared to the real rolling vola-

tility of the 30 equities. As shown below, the LSTM model is graphed on the actual stock volatility. 

Figure 5. Illustrates the training of the LSTM model in the GARCH neural network with 150 epochs. (Created 
by Student Researcher) 
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Lastly, the combination of the LSTM model and the GARCH model produces a graph that is mapped on to 

each other to illustrate the efficacy of both forecasting methods. 

 
With the new addition of the LSTM model, the mean error statistics greatly improved, suggesting a 

more accurate forecast. 

Table 5. Mean Errors for Neural Network Enhanced LSTM GARCH Models (Created by Student Researcher) 

MSE RMSE MAD 

0.7679 0.8763 0.6396 
 

 
 
 

Figure 6. The real rolling volatility of the 30 equities characterized by annualized standard deviations. (Created 
by Student Researcher) 
 

Figure 7. The real rolling volatility of the 30 equities mapped on the LSTM-GARCH model of 1770 observa-
tions. (Created by Student Researcher) 
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Conclusion 
 
In this study, various modes of predicting volatility were utilized, from traditional ARCH and GARCH family 
models, to Neural Network enhanced algorithms. Upon statistical analysis, it was found that the Neural Network 
model greatly outperformed the traditional ARCH and GARCH models. With the neural network’s RMSE value 
of 0.873 and the traditional ARCH/GARCH’s RMSE value of 1.1695, it can be concluded that the neural net-
work LSTM model outperformed the traditional ARCH/GARCH model. With its higher accuracy rate as well 
as efficiency rate, it was concluded that the new and improved neural network LSTM model would be able to 
detect more anomalies in volatility and further forecast the data, while helping institutions and individual in-
vestors choose their portfolios of stocks based on their relative fluctuations and volatility. 

The new concept of financial forecasting is one that is very extensive. New forms of methodologies are 
constantly being created in order to create more accurate models. These creations yield many benefits and aid 
individual investors as well as financial institutions. Moreover, with the direct relation to the Markov Chain and 
GARCH model, it would be a feasible endeavor to further explore the nexus of these two spheres through 
Markov Switching Models. This is a division of nonlinear time series models that are used to project asset 
returns by blending heterogeneous duration of a data set with stochastic volatility components (Xie. Y, 2007). 
This family relies its accurate predictions on the expectation maximization algorithm, which focuses on data 
analysis involving an unobserved variable. Moreover, the adaptability of the model contributes to its usefulness 
when attempting to represent data that seems to cycle through different time periods. For future work, Markov 
Switching Models can be compared to neural networks in a test for efficacy. Both models would be put through 
a series of scenarios that revolve around financial fluctuations and be examined for accuracy when it pertains 
to sensitivity to change. 
 

Acknowledgments 
 
I would like thank my advisor for the valuable insight provided to me on this topic. 
 

References 
 
Bollerslev, T. (2008). Glossary to arch (garch). CREATES Research paper, 49. 
BookDown . (n.d.). https://bookdown.org/compfinezbook/introcompfinr/maximum -likelihood-

estimation.html#the-likelihood-function. (Accessed: 2022-0130) 
Brownlees, C. T., Engle, R. F., & Kelly, B. T. (2011). A practical guide to volatility forecasting through calm 

and storm. Available at SSRN 1502915. 
Christensen, K., Siggaard, M., Veliyev, B., et al. (2021). A machine learning approach to volatility 

forecasting (Vol. 3). Department of Economics and Business Economics, Aarhus University. 
GitHub. (n.d.). https://github.com/. (Accessed: 2022-02-01) 
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780. 
Jia, F., & Yang, B. (2021). Forecasting volatility of stock index: deep learning model with likelihood-based 

loss function. Complexity, 2021. 
Malliaris, M., & Salchenberger, L. (1996). Using neural networks to forecast the s&p 100 implied volatility. 

Neurocomputing, 10(2), 183–195. 
MarketWatch . (n.d.). https://www.marketwatch.com/. (Accessed: 2022-01-36) 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 13



 

Ormoneit, D., & Neuneier, R. (1996). Experiments in predicting the german stock index dax with density 
estimating neural networks. In Ieee/iafe 1996 conference on computational intelligence for financial 
engineering (cifer) (pp. 66–71). 

Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural networks. towards data science, 
6(12), 310–316. 

Templeton, G. (2018). Artificial neural networks are changing the world. What are they. 
Xie, Y. (2007). Maximum likelihood estimation and forecasting for garch, markov switching, and locally 

stationary wavelet processes (Vol. 2007) (No. 2007: 107). 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 14




