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ABSTRACT 

Alzheimer's disease (AD) is a neurodegenerative disease characterized by dementia and, eventually, a loss of 
cognitive abilities. Two histopathological features are associated with AD, neurofibrillary tangles, and amyloid-
beta plaque. Both contribute to neuron cell death, neuron dysfunction, and AD pathogenesis. Current methods 
to diagnose AD remain reliant on symptomatic diagnosis with interviews that can be time-consuming, costly, 
and inaccurate. Alternative methods such as brain imaging are expensive and require extensive laboratory setup 
for accurate results. Thus molecular-level quantitative approaches are necessary. Omics datasets and machine 
learning technology advancements have opened new avenues to diagnose AD. This paper proposes using sta-
tistical methods such as principal component analysis, t-distributed stochastic neighbor embedding, and Kol-
mogorov-Smirnov test combined with Benjamini-Hochberg correction through feature selection and dimen-
sionality reduction to isolate significant features associated with AD. Furthermore, we developed machine 
learning models based on logistic regression, random forest classifier, and deep neural network (DNN) classifier 
to predict AD diagnosis. Eight unique genes (TGM2, NKIRAS1, SYK, GABARAPL2, ABCC12, NDEL1, 
TEP1) were identified as significant biomarkers of AD and confirmed previous works identifying prognoses' 
roles in AD. After extensive hyperparameter tuning, the DNN model showed the best prediction performance 
for AD diagnosis among the three machine learning algorithms. The DNN model and preprocessed dataset 
demonstrated a 5-fold cross-validation accuracy of 0.823 and AUC-ROC of 0.940. Its code is publicly available 
at https://www.kaggle.com/neobrando/ml-dnn. 

Introduction 

Alzheimer’s is a severe, chronic neurodegenerative disease characterized by mild cognitive impairment and 
slow loss of memory and cognitive ability. Dementia caused by Alzheimer’s often interferes with daily function 
and eventually leads to complete dependency on others (National Institute on Aging, 2021). Alzheimer's is 
documented as the 7th leading cause of death in the US, and the Alzheimer’s association stated deaths per year 
from Alzheimer's is projected to rise due to the aging population (Alzheimer's Association, 2021). 

Alzheimer's disease (AD) is divided into two sub-variants based on onset age. Early Onset AD 
(EOAD) begins from ages 30-65, and Late Onset AD (LOAD) starts at age 65. EOAD and LOAD are more 
common in families with a history of AD. 60% of EOAD cases have at least one other AD within their family; 
of these, 13% inherit the disease in an autosomal dominant manner (Campion et al., 1999) (Brickell et al., 2006). 

Alzheimer’s disease involves the presence of 2 histopathological features: neurofibrillary tangles and 
amyloid-beta plaque (Braak & Braak, 1997) (Bekris et al., 2010). Neurofibrillary tangles in AD brains com-
monly contain hyperphosphorylated tau, which aggregates into an insoluble form (Iwatsubo et al., 1994). High 
concentrations of these tau tangles cause the death of neurons through the impediment of intracellular nutrient 
and neurotransmitter transportation (National Institute on Aging, 2017). Despite the presence of tau tangles in 
AD, the mutation of the gene MAPT, which encodes the main component of neurofibrillary tangles, has not 
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been genetically linked to AD (Iwatsubo et al., 1994). Amyloid-beta plaque is believed to develop due to mu-
tation of APP, amyloid precursor protein. Specifically, APP-derived 42 amino acid residue is implicated in 
oligomerization and accumulates in the form of plaques (Goedert & Spillantini, 2006). These amyloid plaques 
contribute to neurodegeneration in patients with Alzheimer's through direct interference with neuron commu-
nication (National Institute on Aging, 2021). 
 
 
Genetics of Alzheimer's 
 
Twin studies support genetic causation for AD. 79% of AD risk is associated with genetic influence, with a 
45% concordance rate of AD among identical male pairs (University of Southern California., 2006). Based on 
these results, a few genes have been identified as associated with either autosomal dominant or sporadic inher-
itance of AD: Amyloid Precursor Protein (APP), Presenilin 1 (PSEN1), Presenilin 2 (PSEN2), and Apolipopro-
tein E (APOE) (Bekris et al., 2010).   
 
Purpose 
 
Recent developments in the use of big data and machine learning algorithms have created the “Omics-Era.” 
(Sancesario & Bernardini, 2018).  Furthermore, with investigation in the genetics of AD reopened as a result of 
scrutiny over the landmark 2006 APP Nature study (Piller, 2022), the use of computational bioinformatics such 
as genome-wide association studies (GWASs) may identify novel pathways in the development of AD (Bel-
lenguez et al., 2022). In this study, we used statistical analysis methods to determine the significance of the 
expression of genes in controls and AD patients based on the dataset provided in the paper “Prediction of Alz-
heimer's disease based on the deep neural network by integrating gene expression and a DNA methylation 
dataset” (Park, 2021). Then, we created logistic regression, random forest, and deep neural network models to 
test the applicability of the determined genes in diagnosing AD patients. Developing machine learning models 
using omics data at the molecular level is necessary to predict AD more quantitatively since conventional AD 
diagnosis were mostly based on interview and brain imaging, which is labor-intensive and costly. This study 
investigates multiple techniques of machine learning performance testing as a form of AD diagnosis through a 
quantitative format.  
 

Methods 
 
Datasets 
 
The datasets used in this study focus on two types of omics datasets: gene expression and DNA methylation 
titled “allforDNN_ge_sample.tsv” and “allforDNN_me_sample.tsv” respectively (Park et al., 2020). These da-
tasets were provided by the original authors of the paper, “Prediction of Alzheimer's disease based on the deep 
neural network by integrating gene expression and a DNA methylation dataset,” by combining two large-scale 
gene expression profiles, GSE33000 (Narayanan et al., 2014) and GSE44770 (Zhang, 2013), which focused on 
tissue samples from the prefrontal cortex area. This combined dataset, “allforDNN_ge_sample.tsv”, contains 
257 normal and 439 AD samples with 200 gene features, Sample ID, Label_AD, and Label_NO.  

The DNA methylation profiles from GSE80970 (Smith, 2018), containing 68 normal and 74 AD sam-
ples, were modified into the dataset, “allforDNN_me_sample.tsv” with 500 methylation features, Sample ID, 
Label_AD, and Label_NO.  The GSE dataset’s original beta-value was converted into M-values to increase 
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statistical validity when creating “allforDNN_me_sample.tsv” (Du et al., 2010). All datasets were subsequently 
normalized in preparation for statistical analysis.  
 
Statistical Analysis 
 
Due to the high number of features within the dataset, statistical analysis via dimension reduction was carried 
out to reduce the risk of overfitting and feature space. Dimension reduction also provides a means to identify 
significant gene expression or methylation expression patterns for the onset of AD by eliminating non-signifi-
cant features from processed datasets (van Driel & Brunner, 2006). To accomplish this, we propose three ap-
proaches for dimension reduction: Principal Component Analysis, T-distributed Stochastic Neighbor Embed-
ding, and the Kolmogorov Smirnov Test with False Discovery Rate P-value Correction.  
 
 
Principal Component Analysis 
Principal Component Analysis (PCA) is a regularly used dimension reduction method that searches for linear 
combinations of features in principal components (PC) and reduces the dimensionality of datasets (Ma & Dai, 
2011).  In this study, we use the PCA library provided by Sklearn that uses “the LAPACK implementation of 
the full SVD or a randomized truncated SVD by the method of Halko et al. 2009” (Sklearn, 2009). In imple-
menting PCA, the “svd_solver” option was set to full to select for PC by use of the standard LAPACK solver 
and postprocessing.  In this study, PCA plots were visualized with the plot visualization software provided by 
plotly (Plotly, n.d.). PCA was preferred over alternatives such as ICAs since no specific independent condition 
was identified as necessary to be optimized. Rather, since PCA focuses on variance, it was sufficient to indicate 
features with statistically significant difference of expression between control and AD sets (Ma & Dai, 2011). 
 
T-distributed Stochastic Neighbor Embedding  
T-distributed Stochastic Neighbor Embedding (t-SNE) is another dimensionality reduction step commonly used 
in data analysis pipelines for genetic analysis (Kobak & Berens, 2019). Unlike PCA, t-SNE is a non-linear form 
of dimensionality reduction and preserves the neighborhood to a point to determine variance. In this study, we 
used the t-SNE package from Sklearn that implements the t-SNE test by minimizing the Kullbac-Leiber diver-
gence on the gene expression and DNA methylation datasets (Sklearn, 2014). In running the package, the 
method was set to “exact” to run a slower, exact algorithm without the default Barnes-Hut approximation and 
increase possible accuracy.  
 
Kolmogorov-Smirnov Test (KS test) and False Discovery Rate p-value correction (FDR) 
In this paper, a combination of the Kolmogorov-Smirnov Test (KS test) and False Discovery Rate p-value 
correction (FDR) were used to determine the existence of significant differences of genetic and methylation 
feature expression between AD patients and normal controls. KS test has been successfully applied in previous 
studies in the analysis of disease gene data, including multiple cancers (Su et al., 2017), and is commonly paired 
with the use of FDR (Rogers & Weiss, 2017). Before using a KS test, we split the gene expression and methyl-
ation expression datasets between control and AD patients. Then we implemented the Scipy “ks_2samp” pack-
age on both datasets (Scipy, n.d.). With the resulting p-values from the KS test, we used the statsmodel false 
discovery rate to correct p-value of each gene and methylation feature (Statsmodels, 2019). These p-values 
were then filtered to create a gene and methylation features list with p-values < 0.05.  
 
Machine Learning Models 
 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 3



Logistic Regression 
Logistic Regression is a classifier algorithm which estimates the probability of an event occurring or classifi-
cation between multiple features. We used the Sklearn Logistic Regression software with the maximum number 
of interactions modified to 2,000 and using the “SAG'' solver (IBM, n.d.) made by Mark Schmidt, Nicolas Le 
roux, and Fancis Bach in the study “Minimizing Finite Sums with the Stochastic Average Gradient” (Schmidt 
et al., 2017). The “SAG” solver was used specifically over the default lbfgs since SAG provides faster conver-
gence on the features provided and thus the most accurate model possible with our sample limited dataset.  
 
Random Forest Classifier 
The random forest regressor is an estimator algorithm that fits trees to subsamples of the dataset to improve the 
predictive accuracy of the function and identify significant features through sampling. In this study, we used 
the RandomForestClassifier available in the Sklearn package (Sklearn, 2018) to create a RandomForestClassi-
fier model. For both the methylation and genetic datasets we replicated the RandomForestClassifier from the 
study “Prediction of Alzheimer’s disease based on deep neural network by integrating gene expression and 
DNA methylation dataset” study’s github. The study used the following parameters:  “criterion = 'entropy', 
oob_score = True, n_estimators = 100, n_jobs = -1, random_state  = 0, max_depth  = 6” (Park et al., 2020). 
Random Forest is commonly used as an alternative to logistic regression as a standard approach for binary 
classification (Couronné et al., 2018). The addition of Random Forest provides a secondary confirmation tool 
for the effectiveness of selected features (Couronné et al., 2018). 
 
Deep Neural Network 
A Deep Neural Network is a machine learning method that uses the implementation of layers of individual 
processing units called neurons to determine weights between features and create a prediction model (Snoek et 
al., 2012). The DNN model was created from exhaustive hyperparameter search through repeated trials. Thus, 
the DNN used in this study comprises 8 ReLu (rectified linear) activation function hidden layers with 306 
neurons and a sigmoid final layer for classification between normal and AD. The model’s learning rate is set at 
0.02 and the dropout rate set to 0.85, and a callback feature was added to terminate the model training if a 
decline in accuracy due to overfitting was detected. The model of DNN was implemented with API in Google 
TensorFlow v2 (Martin et al., 2015).  

All machine learning models were evaluated primarily using the receiver operating characteristic and 
the area under the curve (AUC-ROC) approach. Models were also evaluated using validation accuracy to de-
termine their accuracy over a similar dataset compared with the testing set. AUC-ROC is commonly used in 
the evaluation of medical diagnostic tests due to its evaluated accuracy not being influenced by the decision 
criterion (Hajian-Tilaki, 2013). Thus, AUC-ROC was ultimately used to evaluate model effectiveness as it is 
able to assess the inherent ability of a diagnostic test to distinguish between a diseased and control population 
and serve as an accurate indicator of model effectiveness in this study 
 

Results 
 
PCA 
 
As shown in figure 1, analysis of the genetic PCA plot based on the top 4 PCs with classification based on 
controls versus AD shows PC1, PC2, PC3, PC4 explain 30.5%, 11.8%, 5.2%, and 5.1% of the variants respec-
tively. The methylation PCA plot shows a much lower variance associated with the first PC: PC1, PC2, PC3, 
and PC4, explaining 21.3%, 16.0%, 5.4%, and 4.6% of the variance, respectively. The results indicate that a 
discernable difference in gene expression is observed between normal and AD patients but not the methylation 
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expression dataset which seems to separate based on an unknown artifact. Thus, the methylation dataset was 
discarded for the remainder of this study due to the existence of a confounding effect.  
 
t-SNE plots 
 
The t-SNE preprocess helped further reduce the dataset's dimension. As seen in figures 3, similar to the PCA 
plot, there is a clear separation between normal and AD for the genetic t-SNE plot. Interestingly both the PCA 
plot and t-SNE plot of the genetic expression dataset suggest that patients of AD have reduced expression of 
their associated features. 

 
Figure 1. PCA Plot of Principal Components representing the features of Genetic Dataset  
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Figure 2.  t-SNE plot for Genetic Dataset 
 
KS test and FDR adjusted by Benjamini-Hochberg Procedure 
 
To further reduce the dimension size of the dataset, we separated features based on statistical significance with 
KS test and FDR. The resulting list for the gene expression dataset contained 177 significant gene features. 
From the list of significant genes generated, 20 genes with the smallest p-values and the highest stats score were 
selected. As the example in figure 4 shows, these genes were graphed using histograms comparing gene ex-
pression levels between normal and AD patients using matplotlib (Hunter, 2007).  FAM131A, a gene associated 
with Severe Congenital Neutropenia 4 and Uterine Body Mixed Cancer, showed the greatest separation in ex-
pression between AD and normal patients (Genecard, n.d.-a).  
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Figure 3. Genetics Dataset Features Histogram, An example of 4 out of the 20 most significant genes was 
graphed based on gene expression count in a histogram format.  

 
 
With each statistical analysis step performed, the top 20 most significant genes were collected and 

analyzed through GeneCard for their attributed functions and related disorders. A sample of this step is shown 
in Table 1. 
 
Table 1. A compiled list of the top 10 of 20 genes based on the lost p-value and greatest associated variance. 
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Rank: Gene Name Function  Disorders 

1 FAM131A Platelet count and regulation Severe Congenital Neutropenia 4  
Uterine Body Mixed Cancer.  

2 GABARAPL2 Golgi traffic 
Autophagy Mitophagy 

Neuronal Ceroid Lipofuscinosis 
Granulomatous Amebic Encephalitis 

3 LRTM2 Heparin and Roundabout binding.  
Axon guidance  

Synapse assembly.  

Spondylometaphyseal Dysplasia 
Axial and Preretinal Fibrosis. 

4 CXorf21 Innate immune response 
Toll-like Receptor signaling 

Lysosomal lumen pH.  

Systemic Lupus  
Erythematosus 

5 SPEF1 Filopodia assembly 
Lamellipodium assembly 

 
Negative regulation of cell death. 

Hydrocephalus Syndrome 1 

6 SYK Coupling activated immunoreceptors 
 

Phagocytosis 
Epithelial cell growth  

Tumor suppressor  

Immunodeficiency 82 With Systemic In-
flammation   

 
Arthritis 

7 MST150 
(SMIM3) 

Identical protein binding activity N/A 

8 ZNF544 DNA-binding transcription activator 
activity,  

 
RNA polymerase activity 

 
Regulation of transcription 

Attention Deficit Hyperactivity Disorder 
 

9 APOL1 Form cholesterol esters  
Lipid exchange and transport  

Cholesterol removal 

Focal Segmental Glomerulosclerosis 4 
 

Glomerulonephritis 

10 RNF135 Protein-protein Protein-DNA interac-
tions 

 

Overgrowth-Macrocephaly-Facial Dys-
morphism Syndrome  

Autism Spectrum Disorder.  
Covid-19 infection 

 
Note: The data for each gene regarding its function and related disorders are from Genecards, Gene-

Cards – the human gene database, www.genecards.org, Safran M, Rosen N, Twik M, BarShir R, Iny Stein T, 
Dahary D, Fishilevich S, and Lancet D. The GeneCards Suite Chapter, Practical Guide to Life Science Data-
bases (2022) pp 27-56 [PDF]. 
 
 
Machine Learning Models 
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We used logistic regression, Random Forest, and DNN to test the effectiveness of the selected features after 
dimension reduction in successfully diagnosing AD. As the methylation data yielded no significant features, 
only the genetics dataset was used for this process. Our study uses three models to test the selected features to 
confirm no one model outperforms on random. The three models are also commonly employed in machine 
learning bioinformatics and thus would effectively replicate the machine learning conditions of a related exper-
iment (Kong & Yu, 2018) (Inza et al., 2009). 
 
Logistic Regression 
Logistic regression is commonly cited as the baseline of the other types of machine learning algorithms due to 
its simplicity of understanding (Jochen, 2021). Thus, our study used logistic regression as a baseline model to 
test the effectiveness of the preprocessed dataset. After training the logistic regression model with the genetic 
dataset filtered for the 20 most significant genes, the maximum cross-validation accuracy received was 0.85 
and a minimum of 0.82, with a mean accuracy of 0.841 at a standard deviation of 0.11. The logistic regression 
was subsequently investigated with the use of a ROC curve. As shown in figure 4, the curve returned an AUC-
ROC of 0.83. 
 
Random Forest 
After training and testing through the 5-fold cross validation of the gene dataset, the Random Forest models 
had a maximum cross-validation accuracy of 0.863, minimum of 0.813, mean of 0.838, and standard deviation 
of 0.017. 

The Random Forest trained models were then subsequently graphed using ROC. As shown in figure 
4, the resulting AUC-ROC was measured to be 0.86, greater than the mean cross-validation accuracy of 0.838 
but less than the maximum cross-validation accuracy of 0.863.  
 
Deep Neural Network (DNN) 
As outlined in the methods, the genetics dataset is separated into test and training groups by the partition-
TrainTest_ML_for_CV_DNN package provided by the aforementioned study’s Github. Each model’s dataset 
was partitioned through the use of 5-fold cross validation to create an additional validation set based on an 
unused split dataset.  During the training and testing phase, batch size of 256 with 100 epochs per generation. 
After training, the models were evaluated based on cross-validation accuracy across a validation dataset. The 
maximum validation accuracy of the DNN models produced through this replication was 0.850, with a mini-
mum of 0.791 and an average of 0.8232. The trained models were plotted with a ROC curve to determine their 
AUC measurement and determine the models' effectiveness. The maximum obtained AUC for the ROC curve 
of the DNN models was an area of 0.940: the highest out of any other model.  
 
Performance Comparison  
As shown in Figure 4, upon examination of each model together, we found that on the AUC-ROC, DNN was 
the best algorithm. Overall, averaging across each model's results concluded a mean validation accuracy of 
around 0.834 and an average AUC of 0.877. These results support that the genes determined based on the 
statistical analysis with PCA, t-SNE, and KS test FDR show a level of significance and some predictive value 
in correlation with AD to be explored further (Barkved, 2022) (Google, 2019). 
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Figure 4. Combined ROC graphs between Logistic Regression, Random Forest Plot, and DNN. 
 

Discussion 
 
The top 20 genes were analyzed through GeneCard for their individual functions, disorders, and potential links 
with Alzheimer's. Of the 20 genes listed, previous studies concerning AD prognosis and genetics identified 
eight genes as having a strong correlation to AD. 

GABARAPL2 (ATG8) was strongly involved in vesicle elongation and autophagosome assembly. 
This is hypothesized to interact with the p62 protein in forming LC3-bound autophagosome membranes asso-
ciated with AD (Caberlotto et al., 2019) (Weidberg et al., 2011). 

LRTM2 was confirmed as a potential biomarker of AD using LASSO logistic regression in a previous 
study (Yu et al., 2021). Furthermore, a study in Biorxiv by Chanabasayya Vastrad documented an upregulation 
of the gene in AD patients (Vastrad & Vastrad, 2021). 
  SYK has been implicated in AD due to its effects on tau hyperphosphorylation and the regulation of 
beta-amyloid production and clearance through its effects on the blood-brain barrier. Transgenic mice overex-
pressing SYK developed excess amyloid beta accumulation while inhibiting SYK-reduced beta-amyloid levels 
and tau hyperphosphorylation (Paris et al., 2014). In another study, SYK is known to be recruited by stress 
granules in microglial cells, which promote inflammation and are associated with AD (Ghosh & Geahlen, 
2015). 

TEP1, also known as Telomerase Associated Protein 1, encodes for telomerase that repairs the cell's 
shortening of telomeres from cell division (Harrington et al., 1997). TEP1 has been shown to prevent apoptosis 
and thus prevent neurodegeneration associated with AD (Zhu, 2001).  TEP1 and longer telomeres have also 
been associated with AD due to having a positive correlation with APOE epsilon 4 (Wikgren, 2010). 

NKIRAS1 is known to regulate NF-κB activity (Genecard, n.d.-c). The NF-κB pathway is associated 
with AD due to its mediation of brain inflammation (Feng et al., 2017). Stimuli activate NF-κB, which in turn 
regulates expressions of isoforms of SET, which is directly implicated in AD pathogenesis. Sirtuin deacetylates, 
which down-regulate NF-κB, have also been shown to reduce the effects of aging and AD progression 
(Natoli, 2009). 
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ABCC12, also known as ATP Binding Cassette Subfamily C Member 12, is associated with the ATP 
Binding cassette (ABC) transports which mediate transport across cellular membranes. Studies have implicated 
ABC’s role in AD due to their role in detoxification and neuroprotection of brains (Pereira et al., 2017). ABCC1, 
in the same subfamily as ABCC12, has been implicated in amyloid beta transport. Mice with knockouts of 
ABCC1 had up to a 14-fold increase in amyloid-beta levels, and studies have shown ABCC1 activation in 
APPPS1, AD mice can reduce alpha beta levels by up to 80% (Aykac & Sehirli, 2021) (Krohn et al., 2011).  

TGM2, also known as transglutaminase type 2, is found to be highly expressed in AD due to the 
formation of MAM (mitochondria-associated ER membrane) under conditions of high glucose concentration 
(D’Eletto et al., 2018). Significant increases in MAM function have been reported in AD patients (Area-Gomez 
et al., 2012) and implicated in calcium abnormalities associated with AD pathogenesis (Bellenguez et al., 2022). 
TGM2 reduction through the use of urolithin A and other substances has already been proposed to prevent DM-
associated AD by reducing MAM and mitochondrial calcium (Lee et al., 2021). 

NDEL1 regulates neural stem cell apoptosis, differentiation, and proliferation rate (Zhang et al., 2022). 
NDEL1 is also shown to have interactions with miR-103-3p, which are theorized to play a role in AD due to its 
suppression of cells in AD patients (Yang et al., 2018). 
 
Table 2. Summarized table between associated functions and genes connected with AD pathogenesis or causa-
tion. 
 

MAM (Mito-
chondrial) Inter-

actions 

Brain Inflamma-
tion 

Cell Death  Tau Phosphory-
lation 

Amyloid Beta 
Proteins 

Interaction with 
confirmed AD 

genes 

TGM2 NKIRAS1 
SYK 

GABARAPL2  
SYK  
NKIRAS1 
ABCC12 
NDEL1 

SYK 
 

SYK 
ABCC12 

TEP1 

 
As shown in table 2, many of the significant genes share functions. This could imply that the same 

mechanism or pathway in the progression of AD could result from multiple different genetic and environmental 
pathways. The prominence in cell death relation with the genes identified is commonly associated with beta-
amyloid build-up and tau phosphorylation, further promoting the notion of a single mechanism through multiple 
means of causation (Carter & Lippa, 2001).  
 

Conclusion 
 
In this study, we proposed using a multi-omics dataset to identify novel genes and methylations that signifi-
cantly contribute to AD. We subsequently proposed the use of statistical analysis such as PCA, TSNE, and KS 
test-FDR, to reduce the dimension of the dataset and isolate significant features. Due to the insignificant vari-
ance found by statistical analysis on the methylation dataset, the methylation dataset was removed from further 
analysis. To demonstrate the effectiveness of the preprocessed genes, we used three machine learning algo-
rithms logistic regression, random forest, and DNN to train on the selected significant genes and test for accu-
racy. Our DNN model was the most effective diagnostic model with a reported AUC-ROC of 94.0%. The 8 
genes we’ve identified: TGM2, NKIRAS1, SYK, GABARAPL2, ABCC12, NDEL1, and TEP1, all show prom-
ise as alternative genes to be addressed by AD treatments.  
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The limitation of our study is that we only used one multi-omics data set with limited sample sizes, 
gene count, and methylation. As a result, many potential genes and correlations that exist would be lost within 
the possibility of overfitting or simple lack of data. The dropping of methylation data further limited the signif-
icance of the results of this study due to loss of the possible interactions between the datasets. To overcome 
these limitations, the 5-fold cross validation and cross validation process was employed to reduce overfitting 
and maximize the effectiveness of the given genetic dataset.  

Omics models combined with machine learning serve an important advantage of being capable of 
quickly identifying novel biomarkers or drugs for the treatment of AD (Sancesario & Bernardini, 2018). Thus, 
in the future, we propose further studies to determine the mechanisms behind the correlations proposed by this 
paper between the extracted genes and AD, particularly in the form of experimentation through the possible use 
of gene therapy or other epidemiological study techniques. Furthermore, we intend to use a wider breadth of 
the multi-omics datasets with more patients and features for a more in-depth analysis of the causations of AD 
and to further test our study’s AD diagnostic models. 
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