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ABSTRACT 
 
The gradual increase in online fencing videos over the past decade has allowed for novel technical projects in 
fencing that rely heavily on data, such as artificial intelligence.  This study resulted in a state-of-the-art light-
weight Temporal Convolutional Network to referee fencing bouts and classify actions as either a touch for the 
fencer on the left or the fencer on the right. To address this problem, we developed a pose estimation and audio 
analysis approach to autonomously referee fencing bouts. Using a custom dataset of international level fencing 
from the last 7 years, including ~4000 unique clips, our model achieved an accuracy of 89.1%, a 20% increase 
over previous state-of-the-art models. This model leverages advancements in human pose estimation to extract 
the position of both fencers and avoids high computational loads typically associated with CNNs. Additionally, 
it uses a novel technique to solve the issue of blade contact, a key component of refereeing fencing that was 
generally unaddressed in previous works. Our novel solution uses audio to ‘listen’ for the sound of blade contact 
rather than attempting to identify it visually.  
 

Introduction 
 
Relevant Rules of Fencing 
 
Fencing is generally a simple sport where the fencer that lands a valid hit with their blade onto their opponent 
scores a point. However, complexities arise when both fencers hit each other at the same time. In this situation, 
the fencing rulebook states that a referee will determine who had right of way during the action and will award 
the point to that fencer. The concept of right of way is difficult to explicitly define, although it is generally 
given to whichever fencer starts their attack firsts, and transfers to the other fencer if their attack fails. The 
beginning of an attack is identified by a combination of various factors such as the fencer’s direction of move-
ment, whether or not their sword arm is extending, their body language, etc. These factors are impossible to 
quantify and referees may vary in how they interpret these movements and priority.  

An important consideration while refereeing fencing is blade contact. Right of way, also known as 
priority, transfers from one fencer to another when their attack fails. One of the most common reasons an attack 
fails is due to a fencer successfully blocking and deflecting an incoming attack using their blade. This is known 
as blade contact and generally, blade contact is synonymous with the transfer of priority, making it an important 
cue for referees to look out for.  
 
Importance 
 
Technology in fencing is generally an underdeveloped field and automated referees present potentially signifi-
cant benefits to the sport. Automated referees will offer a more consistent call compared to a group of human 

Volume 11 Issue 4 (2022) 

ISSN: 2167-1907 www.JSR.org 1



   
 

referees with slightly different interpretations of the fencing rules. Since the overall fencing referee community 
is also relatively small, AI referees may be useful for the training of new referees where veteran referees are 
unavailable.  
 An automated refereeing system may also be important in standardizing the calls of human referees. 
An AI system could flag calls from human referees that it disagrees with, which could later be reviewed by a 
panel of veteran referees. If the panel agrees with the human referees, that data would be used to improve the 
AI referee, while if the panel disagrees with the human referee, they could offer corrective feedback to that 
referee.  
 Another promising application lies in sports broadcasting. Priority is generally not understood by spec-
tators and an AI referee can display visual cues that indicate which fencer has priority so that spectators can 
understand how priority works and how it influences a fencer’s decisions during a bout.  

 
Figure 1. AI-generated arrows show which fencer has priority. 
 
Temporal Convolutional Networks 
 
This paper uses temporal convolutional networks (TCNs) for temporal analysis rather than a standard LSTM 
or GRU approach. Compared to other temporal architectures, TCNs feature a flexible receptive field that can 
exhibit longer memory while also maintaining faster execution times. The size of a TCN’s receptive field can 
be calculated using equation 1, where Ksize is the kernel size, Nstack is the number of stacks, n is the number of 
layers and di is the dilation value at the ith layer [2].  
 

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 + 2 ∙ (𝐾𝐾𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓 − 1) ∙ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ �𝑑𝑑𝑓𝑓

𝑛𝑛−1

𝑓𝑓

 

Equation 1: Receptive field formula 
 

TCNs calculate convolutions in parallel rather than sequentially, resulting in both a faster processing 
time and lower memory usage [3]. Additionally, TCNs have shown better performance on various sequence-
based tasks than traditional RNNs [4].  
 

Previous AI Work in Fencing 
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GitHub user Sholtodouglas used an LSTM-based approach with optical flow to detect motion and achieved 
results of 60% accuracy [5]. His model leverages transfer learning using Inception V3 with a custom recurrent 
network at the top. Sholtodouglas also pioneered a new method of data collection specifically for fencing which 
inspired our data collection process.  

A more recent approach from Alexandre Pageaud uses OpenPose, a pose estimation program for pre-
processing, which is later fed into a CNN-LSTM model that achieved 70% accuracy [6]. These results are 
similar to early work in this study, which used pose estimation and a TCN model. Pageaud cites the lack of 
information on blade contact as a major shortcoming, which is addressed in this paper using a novel audio 
approach.  

Since 2012, Fencing Tracking and Visualization System has been developing methods to track blades 
for sports broadcasting and spectator displays, with two notable solutions. The first, published in 2018, uses IR 
reflectors taped onto a fencer’s blade and IR cameras to track the position of blades [7]. The second, developed 
in 2020 uses a purely camera-based approach, with no additional equipment attached to the fencers. Instead, 
Yolo V3 is used for object detection with footage from a large array of cameras filtered using Lidar [8]. Both 
of these methods produced high-accuracy blade tracking and have been used in some high-level fencing tour-
naments.  

 

Dataset 
 
A custom dataset was created for this paper using online videos of 33 international competitions dating back to 
2015. These videos were all recorded from cameras located near the center of the fencing piste on a relatively 
tall tripod.  
 

 
Figure 2. Example frame from the dataset.  
 

Another important similarity among the videos is that they feature the same scoreboard. When fencers 
score a hit, the scoreboard will show a corresponding light. A valid hit from the fencer on the left is signified 
by a red light, a valid hit from the fencer on the right is represented by a green light, and invalid hits from either 
fencer are shown with white lights.  
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Figure 3. Scoreboard lights when both fencers score a valid hit.  
 

Since refereeing is only applicable when both fencers score a hit, a program was used to go through 
each video, detect when both lights go off, and then save the 2 seconds before that hit. Labeling each clip was 
also done autonomously using the scoreboard and a digit recognition program. There are three scenarios that 
were labeled. Firstly, if both fencers scored a valid hit, priority was given to whichever fencer saw a score 
increase. In figure 3, if the score changed to 8-12, then priority was given to the left fencer. The second scenario 
is if the left fencer scores an invalid hit while the right fencer scores a valid one. In this case, if the score does 
not change, that means priority was given to the fencer with an invalid hit and if it does change, priority was 
given to the fencer with a valid hit [5]. The third scenario is the reverse of scenario two, where the right fencer 
scores an invalid hit, and the left fencer scores a valid hit. This algorithmic approach allowed us to cut and label 
hundreds of hours of fencing footage with very few man-hours.  
 The collected dataset featured 4500, two-second long clips that were labeled as either “Left” or 
“Right”. Each clip also had its corresponding audio saved. Data augmentation was also performed by flipping 
each clip horizontally and reversing its label to double the final dataset to 9000 clips. Although the dataset was 
relatively balanced before data augmentation (49% Left / 51% Right), horizontal data flipping resulted in a 
perfectly balanced dataset. 80% of the dataset was used for training while 20% was set aside for validation 
testing.  
 

Methods 
 
Both video and audio data had features extracted using off-the-shelf packages to save time during model training 
and ensure only relevant features were extracted.  

 
Figure 4. Overall Allez Go Network Architecture 
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PoseNet 
 
Visually, the most important feature to extract was the position and stance of both fencers. A traditional CNN 
approach was tested but proved to be too computationally intensive and required unworkably long training 
times. Instead, a human-pose-estimator, PoseNet was used for visual feature extraction.  
 

 
Figure 5. Example skeleton pose outputted by PoseNet 
 

PoseNet is a real-time pose-estimating algorithm developed by TensorFlow. The program outputs the 
pose of all human figures within a frame with a corresponding confidence value [9]. However, to retain only 
the pose of both fencers, only the two poses with the highest corresponding confidence value were kept. This 
approach generally worked although a major issue arose when referees cross the camera’s field of view. Po-
seNet generally detects the referee, who is closer to the camera, with higher confidence than one of the fencers. 
These scenarios were manually filtered out from the dataset. Additionally, unnecessary information, such as the 
position of the fencer’s toes or head were removed to combat overfitting.  

 
Table 1. Clip counts for each class before and after manual filtering 

 
Before Filtering After Filtering Percent Filtered 

Left 3829 2441 36.2% 

Right 4066 2542 37.5% 

Total 
(before data augmentation) 

7895 4983 36.9% 

 
Unfortunately, PoseNet does not come in with a built-in pose tracker. This means that the fencer on 

the left will not always be given the same index in a list. A rudimentary tracking system was implemented 
where the pose with the smaller median of x-coordinates would be placed first in the list, resulting in the dataset 
having a consistent format of [left fencer, right fencer]. Additionally, all values were normalized to fit between 
0 and 1.  
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Figure 6. Plot of preprocessed X-Y coordinates of fencer’s poses 
PyAudio Analysis  
 
Short-term audio features were extracted using the PyAudio Analysis library. This library extracts 34 different 
audio features such as zero crossing rate, MFCCs, and spectral flux [10]. Features were extracted in 0.33-second 
time intervals to match the frame rate of the video data. This encourages the model to analyze the visual and 
audio data in tandem. One benefit of this is to distinguish between audio from the bout in question and back-
ground audio from other bouts. If the visual position of both fencers suggests that blade contact may have 
occurred and in the audio, there is the sound of blade contact then it is highly likely that blade contact occurred. 
On the other hand, if visually, the fencers are far away and unlikely to beat blades the sound of blade contact is 
likely to be from another bout in the background. 
 
Table 2.  Features extracted by PyAudioAnalysis [10] 

Feature ID Feature Name Description 

1 
Zero Crossing 
Rate 

The rate of sign changes of the signal during the duration of a partic-
ular frame. 

2 Energy The sum of squares of the signal values (normalized) 

3 
Entropy of En-
ergy 

Can be interpreted as a measure of abrupt changes. 

4 
Spectral Cen-
troid 

The center of gravity of the spectrum. 

5 
Spectral 
Spread 

The second central moment of the spectrum. 

6 
Spectral En-
tropy 

Entropy of the normalized spectral energies. 

7 Spectral Flux 
The squared difference between the normalized magnitudes of the 
spectra of two successive frames. 

8 
Spectral 
Rolloff 

The frequency below which 90% of the magnitude distribution of the 
spectrum is concentrated. 
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Feature ID Feature Name Description 

9-21 MFCCs 
Mel Frequency Cepstral Coefficients form a cepstral representation 
where the frequency bands are distributed according to the mel-scale. 

22-33 
Chroma Vec-
tor 

A 12-element representation of the spectral energy where the bins rep-
resent the 12 equal-tempered pitch classes of western music (semitone 
spacing). 

34 
Chroma Devi-
ation 

The standard deviation of the 12 chroma coefficients. 

 
A computer-vision approach to detecting blade contact was not chosen due to the relatively low image 

quality of our dataset, making it difficult to see blades. Additionally, pursuing a computer-vision approach to 
detecting blade contact would require a time-intensive, manual, frame-by-frame labeling of videos. While track-
ing blade’s visually is technically possible, as proven by Fencing Tracking and Visualization System’s work, 
their methods are unfeasible for training a referee since both are relatively novel and have not seen widespread 
use, leading to insufficient data to train an AI algorithm with.  

 
Figure 7. Example of easy-to-see blades (on the left) and difficult-to-see blades (on the right). It should be 
noted that this example frame has relatively good lighting compared to most of the dataset.  
 
Model Architecture 
 
An initial model that only had visual input produced results of around 65% accuracy, which increased to 68% 
after intensive hyperparameter tuning, adjusting dropout intensity, number of layers, and other parameters. A 
confusion matrix of the visual-only model shows that it struggles on ‘priority left’ clips.  
 
Table 3. Confusion matrix of visual-only model  

 Predicted Label 

Volume 11 Issue 4 (2022) 

ISSN: 2167-1907 www.JSR.org 7



   
 

Right Left 

Tr
ue

 L
ab

el
 Right 720 185 

Left 418 491 

 
After manual analysis, it was concluded that the presence of blade contact was a common feature 

among clips that the model incorrectly predicted, matching conclusions by Pagaeud in his work. Both the con-
fusion matrix and manual analysis support the theory that the model is missing critical information to distinguish 
between certain ‘Left’ or ‘Right’ calls. The visual-only model defaults to labeling these undistinguishable clips 
as ‘right’ (label = 0), resulting in an unbalanced confusion matrix. It was concluded that blade contact was the 
missing information and that audio should be added to the architecture.  

The final model architecture is shown in figure 8, with two sub-models, one for video and one for 
audio concatenating into a combined model. The first four layers feature temporal convolutional networks while 
the final classification is done by dense layers. Hyperparameter tuning was conducted to combat overfitting, 
which was a systemic issue throughout the entire development process. Nearly all model architectures tested 
achieved near-perfect train accuracy with varying degrees of test accuracy.  

 

 
Figure 8. Model Architecture 
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Experimentally, a temporal convolutional network was proven to perform better than traditional tem-
porally aware model architectures such as LSTMs and GRUs. It is suspected that this is due to TCN’s flexible 
receptive field, allowing it to be the exact length of our input sequence. Each clip in our dataset is 2 seconds 
long with 30 FPS, leading to a total sequence length of 60 steps. The receptive field of Allez Go’s TCN was 
calculated to be 61 using equation 1 with kernel size = 2, number of bases = 2, number of layers = 4, and 
dilations 1,2,4,8 respectively. . This allows TCNs to avoid overfitting to a greater extent than LSTMs and GRU 
by allowing us to reduce the model’s size while still maintaining full coverage. Thanks to this, the final archi-
tecture is relatively lightweight, with only 109,315 parameters. Additional steps taken to combat overfitting 
were the inclusion of several dropout layers with values ranging from 0.01 to 0.15 and L2 regularization. Due 
to TCN’s ability to train in parallel [3], the model was trained in less than three hours on a Google Colab Tesla 
T4 for 5000 epochs.  
 
Table 4. Performance comparison of similarly sized architectures 

Method Accuracy Recall Precision F1-Score 

LSTM 79.4% 0.769 0.810 0.789 

GRU 63.9% 0.462 0.682 0.551 

TCN (Visual Only) 66.8% 0.540 0.726 0.620 

TCN (Allez Go) 89.1% 0.879 0.886 0.882 

Results 
 
The final model achieves 89% accuracy after modest hyperparameter tuning: mainly focused on dropout inten-
sity and the number of connected layers. Some common features among clips incorrectly predicted by the model 
include a complete lack of audio and possible blade contact that is inaudible through the microphone. A confu-
sion matrix shows that the model performs equally well on both “Left” and “Right” calls.  
 
Table 5. Confusion matrix for Allez Go 
 

 
Predicted Label 

Right Left 

Tr
ue

 L
ab

el
 Right 802 103 

Left 110 799 

 
It should also be noted that Allez Go suffers from overfitting, with a near-perfect train-set accuracy. 

Despite this clear sign of overfitting, the model generalizes well to the test set.  
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Figure 9. Train and test accuracy plot 
 

Compared to previous state-of-the-art models, our main innovation was the inclusion of audio for the 
purpose of tracking blade contact. Previous work similarly used pose estimation and recurrent networks and 
achieved roughly ~70% accuracy, matching our visual-only model’s performance as well. However, after in-
cluding audio in the architecture, our model saw an immediate jump to roughly 90% accuracy.  
 
 
 
 
Table 6. Comparison with previous works 

Name Accuracy* Approach 

Sholtodouglas [5] ~60% Recurrent, Pre-Trained Inception V3, and Optical Flow 

Fencing Matches AI [6] ~70% Pose Estimation and CNN + LSTM model 

GalDude33 [11] ~70% Pose Estimation and Optical Flow 

Allez Go (Ours) 89.1% Pose Estimation and Audio 

*Only approximate accuracies were provided by previous works 
 

Conclusion   
 
This paper presents two novel techniques to automate fencing refereeing that resulted in a 20% increase over 
previous state-of-the-art models. Our AI fencing referee highlights the potential of TCNs in certain use cases 
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to perform better than traditional recurrent architectures. Additionally, in a field generally focused on computer 
vision, our model shows that sound can also be an important aspect to consider for automated sports refereeing 
or other scenarios where spatial awareness is required and image quality is poor.  
 In the future, we would like to train a model to recognize specific actions, rather than just giving a 
general ‘Left’ or ‘Right’ call. Further improvements could also include a more precise approach to extract only 
fencers from the PoseNet outputs. Gradual improvements to the model could also be made by retraining it as 
new fencing footage becomes available.  

The work presented in this paper is available for use via an online web app. In terms of performance, 
the model is able to run on only a CPU and 800 MB of memory, despite working with relatively large video 
files. Each frame takes roughly 250 milliseconds to process, with the slowest step being the pose-estimator.  
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