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ABSTRACT 
 
This paper introduces DeepSPICE, a machine learning approach to accelerate the characterization of the build-
ing blocks, or cells, of digital integrated circuits. In contrast to the current approach of computing the input-to-
output propagation delays of a cell by simulating all possible input event combinations, DeepSPICE employs a 
Deep Neural Network (DNN) to learn from the propagation delays obtained by simulating a small subset of 
input event combinations and to predict those for the rest. The DNN for training and prediction is created using 
the Keras framework, and Python is used for automating the entire flow. The effectiveness of the DeepSPICE 
approach is demonstrated on 14 CMOS logic cells with the number of inputs ranging from 2 to 7. Simulations 
to create the training set for each cell are performed using the open source NGSPICE circuit simulator on their 
transistor-level circuit descriptions. Experiments using two different train:test ratios of 0.25:0.75 and 0.3:0.7 
demonstrate the promise of reduction in time with DeepSPICE, especially for large cells where simulation costs 
are expensive. For cells with at least 6 inputs, DeepSPICE computes propagation delays for all input event 
combinations 2 to 2.2 times faster than baseline while limiting the error between 6.3% and 12.3%. 
 

Introduction 
 
Digital integrated circuits, or chips, are used to implement complex arithmetic and logic functions on silicon. 
Usually, a single chip is designed, and then several identical such chips are manufactured on a silicon wafer. The 
individual chips from each wafer are then separated and packaged to be sold to customers.  

The process of designing a chip has several steps. The design of the functionality to be manufactured is 
first specified behaviorally using a hardware description language, such as Verilog, in a hierarchical manner. 
Subsequently, using software tools, this functional description is then synthesized to a structural implementation, 
or a circuit netlist, that is an interconnection of smaller building blocks called cells. Cells are used to implement 
small primitive Boolean functions such as NAND, NOR, and other complex functions using an interconnection 
of semiconductor devices called transistors, which act as switches. As examples, the symbols for cells that im-
plement 2-input NAND and NOR functions along with their Boolean input-output relations expressed as truth 
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tables are shown in Figure 1(a) and 1(b), and Figure 1(c) and 1(d), respectively. An example of a circuit netlist 
comprised of such cells is shown in Figure 2. To enable creation of the circuit netlist, a standard library of cells 
is designed by the owners of the manufacturing process and made available to the designers of integrated circuits. 
Figure 1. (a) NOR cell symbol, (b) NOR truth table, (c) NAND cell symbol, (d) NAND truth table. 
  As part of the creation and validation of a circuit netlist, certain properties need to be determined to 
ensure that they meet the desired specifications. Examples of these properties are the maximum time taken by 
the circuit to complete its desired function and the power consumed during the circuit’s operation. The time taken 
by a circuit to complete its function is usually calculated by measuring the time for changes at inputs to propagate 
to its outputs, which is known as propagation delay. Changes at inputs of a digital circuit are caused by Boolean 
events, which can be transitions from Boolean 0 to 1 (rise) or 1 to 0 (fall). Please refer to Figure 3 for an illustra-
tion of events. Determination of the properties of a circuit netlist is usually performed in a hierarchical manner 
using pre-computed values for the corresponding properties of the component cells that make up the netlist. One 
of the methods to determine the propagation delays of a circuit netlist hierarchically from those of its constituent 
cells is called timing analysis [13]. 
  To aid in determining the properties of a circuit netlist, the provider of a cell library characterizes each 
cell in the library by determining these properties of the cell through analog simulations of its transistor-level 
circuit description. However, the behavior of each type of transistor can vary across a single chip and from chip-
to-chip across a silicon wafer due to variations in the manufacturing process. So, the properties of each cell in 
the library need to be determined over the range of these manufacturing process variations. A tutorial on cell-
based design methods used in practice can be found in [1], and details on the standard cell library characterization 
process can be found in [8]. 
  The process of characterizing all the cells in a standard library is usually computationally expensive [7] 
[12]. For a library with typically several thousand cells, this characterization process involves simulating the 
transistor-level description of each cell (1) for each of its possible input events, and (2) over different operational 
behaviors of the transistor switches to account for variations in the manufacturing process across different chips 
on a wafer.  

Recently, there have been research works to speed up this cell characterization process using machine 
learning methods. These works have addressed either accelerating the circuit simulation time for any given input 
event combination by speeding up the simulator itself [2], or accelerating the characterization of each cell over a 
range of manufacturing process variations (the second aspect mentioned in the previous paragraph) [7]. 

However, reducing the high computation time for simulating all possible input event combinations for 
a given cell has not been explored, and this work aims to address this goal. This work introduces DeepSPICE, 
an approach that uses supervised machine learning to reduce the total time needed to compute the input-to-output 
propagation delays of a cell. We also show that the speed-up provided by DeepSPICE is more for larger cells. 

Figure 2. Example of a circuit composed of gates. 
 
  The paper is organized as follows. The motivation and background information are provided in Section 
II. Section III describes the DeepSPICE approach. Experiments on a set of test cases along with results are de-
tailed in Section IV. Next steps in this research are outlined in Section V. The paper concludes in Section VI. 
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Motivation and Background 
 
Cell delay computation 
 
As mentioned in the Introduction (Section I), each cell in a library with typically several thousand cells needs to 
be characterized using simulations of its transistor-level circuit description to determine the propagation delay 
and power. The number of cell inputs in a typical library can range from 1, for a non-inverting buffer and an 
inverting NOT cell, to more than 15 for complex cells. For a cell with n inputs, the number of combinations of 
Boolean values that can be applied and simulated is 2n, which is the number of rows of the function’s truth table. 
However, to compute delays which involve propagation of rise (0 to 1) or fall (1 to 0) events from inputs to the 
output, the number of all possible input event combinations to be simulated is 2n x 2n = 4n. An example for a 2-
input NOR gate is shown in Figure 3 where the number of input event combinations is 16. For a 12-input cell, 
the number of possible input event combinations is 412, or 16.8 million. Assuming one second per simulation of 
one input event combination, these simulations would take ~194 days to complete. One possible option to reduce 
the execution time of this process is to partition this input event set into subsets and execute the simulation of 
these subsets on multiple machines in parallel. While this approach decreases the overall time, it comes at the 
cost of increased computation resources. This paper introduces DeepSPICE, an approach that simulates only a 
small subset of input event combinations and then employs supervised machine learning on the results to predict 

the results for the rest of the input event combinations. This work addresses speed-up only for estimating delays 
(not power) of each cell. However, the approach can be applied towards speed-up for estimating power as well. 
The next section provides background information on two types of transistors and how they are used as switches 
in a cell. 
Figure 3. Events at inputs of a cell and input event combinations. 
 
Transistors as switches 
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Cells are implemented using transistors as switches. Two predominant types of transistors used are the N-channel 
Metal-Oxide Semiconductor (NMOS) field effect transistor (FET) and the P-channel Metal-Oxide Semiconduc-
tor (PMOS) field effect transistor. Each of these two types of transistors has 4 terminals: gate, drain, source and 
bulk, where the bulk is usually connected to either the source or drain. The gate terminal serves as the switch that 
turns on electrical conduction between the drain and the source terminals. The transistor conducts when the 
voltage differential between the gate terminal and the source terminal exceeds a certain threshold voltage, and 
when there is a potential difference between the drain and the source terminal. An NMOS transistor turns “ON” 
when the voltage at its gate terminal exceeds that at the source terminal by the threshold voltage. A PMOS 
transistor turns “ON” when the voltage at its gate terminal falls below that at the source terminal by the threshold 
voltage. The symbol for an NMOS transistor and a simplified description of its use as a switch is shown in Figure 

4. Similarly, Figure 5 shows the symbol for a PMOS transistor and its use as a switch.  
Figure 4. NMOS transistor as a switch. 

To simplify description, we can consider that an NMOS transistor turns “ON” when a Boolean value of 
1 is applied at its gate terminal, and turns “OFF” when a Boolean value of 0 is applied at its gate terminal. 
Similarly, a PMOS transistor turns “ON” when a Boolean 0 is applied at its gate terminal, and turns “OFF” when 
a Boolean 1 is applied at its gate terminal. More information on transistor operation and their use as switches can 

be found in [3] and [10]. 
Figure 5. PMOS transistor as switch. 
 
Cell implementation using transistors 
 
Cells that implement primitive Boolean functions are constructed using transistors as switches. In Complemen-
tary MOS cells, or CMOS cells, a network of PMOS switches is used to implement the rows of truth table of the 
function for which the output value is a Boolean 1, and a network of NMOS switches is used to implement the 
rows of the truth table for which the output value is a Boolean 0. In the CMOS implementation of a cell, each 
output wire of the cell has some capacitance to the ground terminal. The value at the output of the cell depends 
on whether this output capacitor is charged to the supply voltage or is discharged to the ground (or 0 volts). The 
PMOS network of a cell is used to implement the Boolean 1 value at the output by establishing a conducting path 
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from the supply voltage to the output wire through “ON” PMOS switches for the output capacitor to be charged 
to the supply voltage. The NMOS network of a cell is used to implement the Boolean 0 value at the output by 
establishing a conducting path from the output wire to the ground through “ON” NMOS switches for the output 
capacitor to be discharged to the ground.  

The implementation of a CMOS NOR cell, for which the symbol and truth table are given in Figure 6(a) 
and 6(b) respectively, is shown in Figure 6(c). In Figure 6(c), the PMOS network is shown shaded in light green 

and the NMOS network is shown shaded in light blue. To understand the operation of this cell, consider the first 
row of the truth table in Figure 6(b) where a = 0, b = 0, and out = 1. As discussed in Section II-B, since a PMOS 
transistor turns on when its gate terminal is a Boolean 0, applying a = 0 and b = 0 will turn on the two PMOS 
transistors connected in series thereby connecting the out terminal to the supply voltage. This results in the ca-
pacitor at the out terminal being charged to the supply voltage, and hence attaining a Boolean value of 1 as 
specified in the truth table. 
  Similarly, Figure 7(c) shows the implementation of a CMOS NAND cell, for which the symbol and 
truth table are given in Figure 7(a) and 7(b) respectively. More information on CMOS logic gates can be found 
in [9]. 

 
Figure 2. (a) NAND cell symbol (b) NAND truth table (c) CMOS NAND cell. 
 
Simulation of a cell to determine properties 
 

Each cell in a standard cell library is characterized through analog simulations of its transistor-level 
circuit description to determine its properties, such as propagation delays of events at its inputs to its outputs, 
and the power it consumes during its use. In this paper, we only focus on the propagation delays.  

Figure 1. (a) NOR cell symbol (b) NOR truth table (c) CMOS NOR cell. 
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The circuit that is simulated includes (a) the transistor-level description of the cell that provides the 

connections between the transistors that make up the cell, (b) the connection of the cell’s power supply to a DC 
voltage source (labeled as V in Figure 8), (c) the ground connection (labeled as Gnd in Figure 8), (d) capacitor 
connected to the output terminal to model the load provided by other cells when this cell is part of a circuit 
netlist, and (e) a voltage source connected to each of the cell’s input terminals to provide the input event for the 
cell. Each voltage source is modeled as a piece-wise linear voltage waveform corresponding to one of four 
events that can be applied to that input, namely 0 to 0, 0 to 1, 1 to 0, or 1 to 1 (shown in Figure 3). Each 1 to 0 
or 0 to 1 event has a specified transition time and is modeled as a linear ramp of the voltage source from the 
initial voltage value to the final voltage value over this transition time. The piece-wise linear voltage waveforms 
at each input are set up such that the start and end points of transitions at all the inputs are aligned in time. 

The circuit description along with an input event combination is created in a specific file format along 
with commands to measure the input-to-output event propagation delay. This file is then provided to an analog 
circuit simulator that simulates the circuit in incremental time steps. At each time step, the simulator (a) uses 
models for transistors and other circuit components (b) uses appropriate process technology parameter values 
for these models, and (c) solves network equations to determine the voltage and current values at locations 
within the circuit in response to applied input event. In this manner, the voltage waveform at the output terminal 
is generated as a time series in response to the input event waveforms. The circuit file format and the analog 
circuit simulator that is used is usually either an open source or commercial version of the original Berkeley 
SPICE [11] file format and simulator. This work uses the open source NGSPICE [4] simulator for the experi-
ments instead of commercial simulators such as HSPICE [5] and SPECTRE [6] due to cost and licensing con-
siderations. 

In this work, the input-to-output event propagation delay is measured as the difference between the 
time at which a transition at the cell’s output reaches 50% of its final voltage value and the time at which the 
transition at each of its inputs reach 50% of its final voltage value. An example simulation setup for the NOR 
cell in Figure 6(c) is shown in Figure 8 for the case where each of the cell inputs, a and b, has a rising transition 
(a 0-to-1 event). The delay is measured as (t2 – t1). In this work, we also measure this delay for different transi-
tion times for the voltage sources at the input terminals. 
  As described above, determination of the input-to-output propagation delays of a cell involves 
simulating all possible input event combinations at its input terminals. As mentioned in Section IIA, this work 
(DeepSPICE) aims to reduce the overall time needed for the determination of these delays by simulating only a 
subset of input event combinations and using machine learning on these results to predict the delays for the rest 
of the input event combinations. DeepSPICE is based on the following observations. In each cell, there are paths 
through its PMOS transistor network from power supply to output that charge the output, and paths through its 
NMOS transistor network from output to the ground terminal that discharge the output voltage. One or more of 

Figure 3. Circuit simulation setup for cell delay determination. 
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these paths can be activated by an input event combination and can contribute to a different input-to-output delay. 
As the size of a cell increases, the number of paths to charge and discharge the output can increase exponentially 
with the number of inputs while the number of transistors in the cell increases at a significantly smaller rate. The 
hypothesis is that even though the number of charge (or discharge) paths can increase exponentially with the 
number of inputs, these paths share a significant number of transistors since the number of transistors does not 
increase as much. So, it should be possible to learn the charge (or discharge) patterns of a cell, and therefore its 
delays, by exercising only a subset of these paths using the corresponding input event combinations. The Deep-
SPICE approach is described in the next section. 
 

DeepSpice Approach 
 
The DeepSPICE approach for a cell is illustrated in Figure 9. There are two parts to this approach. The first part, 
depicted in steps within the shaded box in Figure 9, deals with creating the training set to be used for machine 
learning. The total set of input event combinations (set T) is computed, and a small random subset (set TR) is 
chosen from set T for determining the input-to-output delays through circuit simulations as described in Section 
IID. The simulations are repeated for 3 different transition times, and the propagation delays are recorded. 

  In the second part, a Deep Neural Network (DNN) built with dense layers in Keras is constructed and 
used for training. The neurons per layer and the number of layers are scaled based on the number of inputs in the 
cell. The ReLU function is used to model the non-linearity inside each neuron. The input features of the DNN 
are the initial input voltage, the final voltage, and the transition time at each input terminal of the cell, and the 
output feature is the measured input-to-output delay (as described in Section IID) for the corresponding input 
event combination and transition time. These features are shown in Figure 8. The DNN is trained on the input 
event combinations in TR along with their corresponding delays, and the DNN is used to predict the delays for 
the input event combinations in the remaining set, TS = T – TR. 
  To measure the effectiveness of the DeepSPICE approach, two metrics are used. The first is the quality 
metric which represents the error in prediction. This is measured by the Normalized Root Mean Square Error 
(NRMSE), which is defined below. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (%) = 100 𝑥𝑥 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇𝑇𝑇 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇𝑇𝑇
 

  The speed-up obtained by DeepSPICE is measured by the Acceleration Factor which is defined below. 

Figure 4. DeepSPICE Flow. 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
 

where time for baseline is the time needed to simulate all input event combinations (set T) for a cell, and time 
for DeepSPICE is the summation of the time taken for simulating the subset TR, the training time, and the time 
for predicting the delay of subset TS.  
 

Experiments and Results 
 
The DeepSPICE approach was used on 14 CMOS cells that implement different Boolean functions. Two 2-input 
cells, three 3-input cells, three 4-input cells, three 5-input cells, two 6-input cells, and one 7-input cell were 
created for this experiment and for each of these cells, the CMOS transistor network was specified in the SPICE 
file format. The characteristics of the cells used for the experiments are given in Table 1. The function imple-
mented by each cell is given in column 5 of Table 1. Similar to the transistor implementations discussed for a 
NAND and NOR cell in Section IIC, the Boolean function of each cell in Table 1 is implemented using a PMOS 
transistor network and an NMOS transistor network. The total number of PMOS and NMOS transistors used to 
implement each cell is given in column 3 of Table 1. The total number of baseline simulations is given in column 
4 of Table 1. 
 
Table 1. Characteristics of cells used for experiments. 

 
Table 2. DeepSPICE results for the case when 25% subset is used for training. 
 

Cell Inputs 
Number of 

transistors in 
cell 

Number of 
baseline 

simulations 
Boolean function implemented by the cell 

1 2 4 18 𝑎𝑎𝑎𝑎��� 
2 2 4 18 (𝑎𝑎 + 𝑏𝑏)���������� 
3 3 6 90 𝑎𝑎� + 𝑏𝑏�𝑐𝑐 ̅
4 3 6 90 𝑎𝑎� (𝑏𝑏� + 𝑐𝑐̅ ) 
5 3 10 96 𝑏𝑏� (𝑎𝑎� + 𝑐𝑐̅ ) + 𝑎𝑎�𝑐𝑐̅  
6 4 10 384 𝑎𝑎�𝑏𝑏� + 𝑑̅𝑑�𝑏𝑏� + 𝑐𝑐̅� 
7 4 12 378 𝑎𝑎�𝑏𝑏�𝑐𝑐̅ + 𝑑̅𝑑�𝑏𝑏� + 𝑐𝑐̅� 
8 4 12 360 𝑎𝑎�𝑑̅𝑑 + 𝑏𝑏�𝑐𝑐̅�𝑎𝑎� + 𝑑̅𝑑� 
9 5 10 1530 𝑏𝑏�𝑐𝑐̅ +  𝑎𝑎�𝑑̅𝑑𝑒̅𝑒 + 𝑐𝑐̅𝑑̅𝑑 
10 5 12 1512 𝑎𝑎�𝑏𝑏�𝑒̅𝑒 + 𝑏𝑏�𝑐𝑐̅ + 𝑎𝑎�𝑑̅𝑑𝑒̅𝑒 + 𝑐𝑐̅𝑑̅𝑑 
11 5 16 1536 𝑎𝑎�𝑏𝑏�𝑒̅𝑒 + 𝑎𝑎�𝑐𝑐̅𝑒̅𝑒 + 𝑏𝑏�𝑐𝑐̅ + 𝑎𝑎�𝑑̅𝑑𝑒̅𝑒 + 𝑐𝑐̅𝑑̅𝑑 
12 6 22 5760 𝑎𝑎�𝑐𝑐̅𝑓𝑓̅ + 𝑎𝑎�𝑐𝑐̅𝑒̅𝑒 + 𝑎𝑎�𝑐𝑐̅𝑑̅𝑑 + 𝑎𝑎�𝑑̅𝑑𝑒̅𝑒 + 𝑏𝑏�𝑐𝑐̅𝑒̅𝑒 + 𝑐𝑐̅𝑑̅𝑑𝑒̅𝑒 
13 6 30 6120 𝑎𝑎�𝑐𝑐̅𝑓𝑓̅ + 𝑎𝑎�𝑐𝑐̅𝑒̅𝑒 + 𝑎𝑎�𝑐𝑐̅𝑑̅𝑑 + 𝑎𝑎�𝑑̅𝑑𝑒̅𝑒 + 𝑏𝑏�𝑐𝑐̅𝑒̅𝑒 + 𝑐𝑐̅𝑑̅𝑑𝑒̅𝑒 + 𝑎𝑎�𝑒̅𝑒𝑓𝑓̅+ 𝑏𝑏�𝑑̅𝑑𝑓𝑓 ̅
14 7 30 24426 𝑎𝑎�𝑏𝑏�𝑑̅𝑑 + 𝑏𝑏�𝑐𝑐̅𝑒̅𝑒 + 𝑐𝑐̅𝑑̅𝑑𝑓𝑓̅+ 𝑑̅𝑑𝑒̅𝑒𝑔̅𝑔 + 𝑎𝑎�𝑒̅𝑒𝑓𝑓̅+ 𝑏𝑏�𝑓𝑓𝑔̅̅𝑔 
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  For each cell, the transistor length was set to 0.18 micrometer, while the widths of different transistors 

in the cell were specified to provide a reasonable output transition time. A load capacitor of 5fF was connected 
at each cell’s output. The temperature for simulation was set to 27C. For each input event combination for a cell, 
the delays  
were computed for three different input transition times, 10ps, 20ps and 30ps. As mentioned in Section IID, the 
simulations were performed using the open source NGSPICE circuit simulator and transistor models that were 
provided with the simulator. 

For a given cell, the total number of input event combinations, called NIC, is given by twice the prod-
uct of the number of truth table rows for which the output is 1 and the number of truth table rows for which the 
output is 0. This number captures all possible transitions that can occur at the output of that cell. The total 
number of baseline simulations, BS, for the set T is then NIC x 3, to account for three different transition times 
at the input terminals. 

For each cell, DeepSPICE was performed with two training options. The first option used training with 
a 25% subset of the baseline simulations, and the second option used training with a 30% subset of baseline 
simulations. For each training option, 3 trials were performed with different randomly selected training sets. 
For each trial, 3 different DNN training and prediction runs, each with different initial DNN starting states, 
were performed and the mean results from the 3 runs were computed and recorded. 

Results of the experiments with 25% subset of baseline simulations used for training are given in Table 
2. Results with 30% subset of baseline simulations used for training are given in Table 3. In each table, each 
row contains the results for a different cell, with rows ordered in non-decreasing order of number of inputs of 
cell. The time for baseline simulations for each cell is shown in column 3. Each consecutive pair of the next 6 
columns, column 4 through 9, provide the cumulative DeepSPICE time and the associated error in each of 3 
trials. The final two columns provide the mean acceleration factor and the mean error with the DeepSPICE 
approach. 
 
 

Cell Inputs 
Time for 
baseline 

(sec) 

Trial 1 Trial 2 Trial 3 
Mean Accel-
eration Fac-

tor 

Mean 
Error 
(%) 

Time 
for DS 
(sec) 

Error 
with DS 

(%) 

Time 
for DS 
(sec) 

Error 
with DS 

(%) 

Time 
for DS 
(sec) 

Error 
with DS 

(%) 
1 2 0.40 2.20 25.25 2.52 27.37 2.26 32.77 0.17 28.46 
2 2 0.36 2.10 43.89 2.13 40.97 2.14 48.46 0.17 44.44 
3 3 2.97 2.92 33.69 2.95 28.95 2.97 31.39 1.01 31.34 
4 3 2.22 2.74 30.39 2.56 26.70 2.61 22.28 0.84 26.46 
5 3 2.89 2.55 28.58 2.66 25.50 2.62 26.16 1.11 26.75 
6 4 11.21 7.94 22.43 8.03 17.74 8.30 26.39 1.39 22.19 
7 4 10.62 7.75 25.36 7.13 27.16 7.33 27.64 1.44 26.72 
8 4 12.80 8.02 26.05 7.71 25.76 8.55 29.13 1.58 26.98 
9 5 45.16 29.54 9.64 29.47 10.10 29.28 8.69 1.53 9.48 
10 5 39.61 27.95 9.70 27.82 9.95 27.85 11.24 1.42 10.30 
11 5 49.52 29.70 13.14 29.55 9.76 30.97 10.68 1.65 11.20 
12 6 246.55 122.53 16.07 125.60 5.30 122.41 15.63 2.00 12.33 
13 6 309.54 147.19 7.11 148.01 8.99 147.14 6.95 2.10 7.68 
14 7 1404.80 631.54 6.57 632.72 6.53 628.36 5.82 2.23 6.31 
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Table 3. DeepSPICE results for the case when 30% subset is used for training. 

 
A graphical view of average acceleration factor (shown as a blue dot) and error (shown as an orange 

dot) obtained over the 3 trials for each cell using a 25% training subset is shown in Figure 10(a). A similar view 
is provided in Figure 10(b) for results when using a 30% training subset. In both figures, the X axis represents 
cell IDs with cells ordered in non-decreasing order of number of inputs. 

From Figure 10(a), which corresponds to results using a 25% subset for training, it can be seen that 
for the 6 largest cells, with inputs ranging from 5 to 7, DeepSPICE is 1.42-2.23 times faster than the baseline 
approach while limiting the error between 6.31% and 12.33%. In fact, for the largest cell with 7 inputs, Deep-
SPICE performs fastest with 2.23 times acceleration over baseline with an error of 6.31%. For the 3 cells with 
4 inputs, the results are mediocre – DeepSPICE is only 1.39-1.58 times faster than baseline while the error is 
in the range of 22.19-26.75%. For cells with at most 3 inputs, DeepSPICE provides only limited acceleration 
for 2 cells while it is actually slower than baseline for 3 cells, and the errors are at least 25%. Hence, for smaller 

Cell Inputs 
Time for 
baseline 
(sec) 

Trial 1 Trial 2 Trial 3 
Mean Accel-
eration Fac-
tor 

Mean 
Error 
(%) 

Time 
for DS 
(sec) 

Error 
with DS 
(%) 

Time 
for DS 
(sec) 

Error 
with DS 
(%) 

Time 
for DS 
(sec) 

Error 
with DS 
(%) 

1 2 0.40 2.26 33.51 2.18 40.74 2.51 38.39 0.17 37.55 
2 2 0.36 2.28 38.78 2.11 58.57 2.25 35.35 0.16 44.23 
3 3 2.97 3.06 32.75 3.17 28.22 3.08 27.59 0.96 29.52 
4 3 2.22 2.86 30.08 2.61 27.86 2.79 24.31 0.81 27.. 
5 3 2.89 2.73 28.48 2.84 25.30 3.01 26.47 1.01 26.75 
6 4 11.21 9.96 13.83 9.99 18.95 9.95 19.32 1.12 17.37 
7 4 10.62 9.61 26.60 9.99 24.24 10.15 21.91 1.07 24.25 
8 4 12.80 9.77 25.12 10.46 16.49 10.16 26.94 1.26 22.85 
9 5 45.16 36.33 8.82 35.27 8.58 35.93 7.88 1.26 8.43 
10 5 39.61 34.64 8.93 34.23 8.11 35.46 8.82 1.14 8.62 
11 5 49.52 38.03 9.15 37.03 8.98 37.34 9.30 1.32 9.14 
12 6 246.55 146.91 4.94 148.29 4.59 146.69 4.68 1.67 4.74 
13 6 309.54 179.00 6.55 176.51 8.08 177.44 8.33 1.74 7.65 
14 7 1404.80 753.06 5.74 758.49 6.85 752.47 6.24 1.86 6.28 

Figure 5. Mean Error and Mean Acceleration factor when using (a) 25% subset for training, (b) 
30% subset for training. 
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cells, the baseline approach is better than DeepSPICE. From Figure 10(b), which corresponds to results using 
a 30% subset for training, it can be seen that for the 6 largest cells, DeepSPICE performs 1.14-1.86 times faster 
than the baseline approach, and it limits the error between 4.74% and 9.14%. For the 3 cells with 4 inputs, 
DeepSPICE is barely faster than the baseline approach by a factor of 1.07-1.26 times, with errors in the range 
of 17.37-24.25%. For cells with at most 3 inputs, DeepSPICE is slower than the baseline for 4 cells, and the 
errors are at least 25%. Overall, the trend is similar to the results from the 25% training subset (Figure 10(a)) 
with a reduction in both the acceleration factor and mean error.  

In summary, DeepSPICE shows promising results, especially for large cells for which simulations are 
computationally expensive. This validates the hypothesis that for large cells, it is possible to learn their charging 
and discharging patterns, and hence the delays, from simulating a small subset of input event combinations. 

Results on smaller cells are not impressive. This can be attributed to the fact that small cells have few 
input event combinations to begin with, and training with an even smaller set of input event combinations can 
result in the loss of significant information. Therefore, for small cells, delay computations with a full set of 
baseline simulations would be the recommended approach. 
 

Future Work 
 
Work is ongoing to improve DeepSPICE to reduce the mean error further. One approach is using the time series 
waveforms at the input terminals as features. Also, so far, the experiments were performed using a representa-
tion of cell using ideal conductors as wires to connect the transistors. In practice, cell implementations contain 
wires with non-zero resistances and certain pairs of conductors within cells having capacitances. The next step 
is to evaluate DeepSPICE on such cell implementations. 

In this work, DeepSPICE was used only to predict delays. It can be extended to predict the power 
consumption of a cell for input event combinations. The DeepSPICE concept can also be extended to higher 
levels of design hierarchies to predict properties of circuits that contain an interconnection of cells as building 
blocks. 

The current version of DeepSPICE used a DNN architecture for machine learning. One of the next 
steps is to explore a Recurrent Neural Network (RNN) architecture for this application and compare with the 
current results. 
 

Conclusion 
 
This work introduced DeepSPICE, a machine learning approach to accelerate the determination of the input-
to-output propagation delays of cells, which are building blocks of digital circuits. Results using DeepSPICE 
demonstrate the promise of this approach, especially for large cells for which exhaustive simulations can be 
computationally very expensive. 
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