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ABSTRACT 
 
Cloud spending has risen on a year-to-year basis, with the pandemic acting as the primary catalyst for its 
recent growth; however, “cloud waste,” referring to cloud resources that are not used to their full capacity, 
also follows this upward trend and causes the loss of an increasingly large amount of money. Unfortunately, 
present-day cloud research lacks data-driven studies that analyze why cloud users are wasting resources, or 
suggestions to users on how to lessen such waste. In order to prevent this over-expenditure, it is vital to 
choose the best-suited options when it comes to virtual machines (VM), especially for small to mid-sized 
businesses with limited funds and a lack of expertise. In this paper, we first analyzed the 235 GB Azure user 
dataset from the users’ perspective. We then implemented machine learning to determine our pricing model 
and the VM costs. With these statistics, we then delineated our methodology to calculate the wasted cost of 
each VM, and using this data, we propose an algorithm that can identify potential candidates with wasteful 
VMs and assist users in reducing costs. By applying our algorithm to approximately 2.7 million VMs, we 
demonstrate that it has the ability to help 66,721 VMs created by 1,520 users lower their monthly costs by 
$14.9 million. We conclude that businesses, while still reaping the benefits of cloud services, can do so at a 
much lighter cost and save on their VMs. 
 

Introduction 
 
As cloud computing technology grows more popular, its spending also accelerates annually; in a 2021 report 
conducted by Flexera involving 753 respondents, which include large enterprises (organizations with 10,000 
or more employees) as well as small to mid-sized businesses (organizations with fewer than 1,000 employ-
ees), 37 percent of enterprises are found to spend more than 12 million that year. For small businesses, 53 
percent spent more than 1.2 million, an increase from 38 percent last year. Gartner furthers this by measuring 
cloud computing’s global growth from 2020 to 2021: worldwide end-user spending was forecasted to in-
crease by 18.4%, from $257.5 billion to a new total of $304.9 billion.  

However, the rapid expansion in cloud expenditure is closely linked to a paralleled surge in cloud 
storage waste and overspending. For example, the Flexera report indicates that an estimated 32 percent of 
cloud resources were wasted according to users in 2021, compared to 30 percent the previous year. As cloud 
waste increases, the monetary waste accumulated from running these applications rises as well. For smaller 
businesses especially, funding is limited, and it is to the users’ advantage that they are able to perform the 
same work with a more efficient solution; in other words, reducing expenditure would directly improve or-
ganizational profit for companies using cloud computing technology. 

Cloud computing services are often charged on a pay-as-you-go basis, allowing the enterprises to 
control and raise their resources when needed. Essentially, cloud computing is beneficial to business owners 
in the way that they are able to plan for provisions. However, users without an IT team may not be wholly 
knowledgeable or aware of its most efficient applications, thus leading them to overestimate their storage 
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needs and, in turn, overspend. While prior studies have succeeded in determining the costs and waste of using 
cloud computing services, no previous work has determined data-driven reasons for cloud waste, or sug-
gested an algorithm to help users in reducing the waste. After analyzing virtual machine workloads, the two 
common reasons as to why waste occurs consist of the following two factors: resources that are paid despite 
being unused (idle resources), and resources that are larger in capacity than needed (over-provisioned re-
sources). 

Online price calculators for major cloud service providers such as Microsoft Azure, Amazon Web 
Services (AWS), and Google Cloud Platform (GCP) provide a diverse selection of virtual machines to its 
users. Without having proper resource management and a thorough understanding of their workload de-
mands, users will be likely to overspend and purchase a virtual machine with excess resources. While the 
issue of idle resources may not be preventable in some cases (i.e. if a company only requires the use of a 
virtual machine for a given amount of time), the second factor, overprovisioned resources, can be solved 
with downsizing in size. We argue that if a user is able to complete their workload with a smaller capacity, 
they should reduce their virtual machine’s size, allowing for more effective and practical use of both the 
machine and the spending that would be otherwise “wasted.” 

In this paper, we first analyzed a characterization of Azure’s virtual machine workload, which in-
cludes the virtual machine’s size, lifetime, deployment size, and usage rates. From this user dataset, we ob-
served that there were groupings of inefficient and efficient users, meaning that while some users were able 
to use their virtual machines to their fullest capacity, the majority of users did not do so. Next, we constructed 
our pricing model using the online Azure price calculator and used a linear regression model, to fill in missing 
cost data points for CPU and memory storage options. For this purpose, we used Java programming to cal-
culate the cost of each individual virtual machine using the lifetime and virtual machine size data.  

Our evaluation of the waste for each virtual machine begins with our methodology considering the 
costs that were calculated with the usage rates. Once the waste for the virtual machines was found, we used 
a waterfall-based recommendation system to help users regulate storage sizes. Based on the number of virtual 
machines created by a single user, the 95th percentile latency of usage rates, and the wasted cost, users could 
downsize their virtual machines in both memory and CPU to have a more cost-effective utilization of cloud 
computing resources.  

Results indicate that by reducing CPU and memory sizes, we can achieve significant cost savings 
for users that were previously unable to make full use of their virtual machines. To quantify these savings, 
we implemented our recommendation algorithm — setting specific parameters in order to maximize its effect 
while also making an effort not to notify too many users — onto the Azure user dataset. Our findings show 
that we were able to help 66,721 virtual machines created by a total of 1,520 users lower their monthly costs 
by 14,988,203.34 USD.  
 

Related Work 
 
The need for a recommendation algorithm is built on the foundations of prior work, which show that despite 
the massive growth of the cloud computing scene, there is an increasingly large amount of cloud waste to 
match this rise in cloud expenditure. As spending rises and the percentage of that spending being cloud waste 
also rises, the money being wasted on unused cloud resources accelerates. The expansion of cloud computing 
services is best depicted through the studies conducted by both Flexera and Gartner (Adler 2022) (Costello 
and Rimol 2020). Flexera also includes the wasted cloud spend: 32%, which is a 2% increase from the pre-
ceding year (Adler 2020). 

For our big data analysis, the characterization of workload behaviors used in our analysis of cost 
and the wasted cost was introduced in the work done by Eli Cortez, et al. (Cortez, et al. 2017). Several pieces 
of data about each virtual machine — including its lifetime, utility rates, CPU sizes, and memory sizes — 
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were provided. However, the costs that each user had spent on each virtual machine were not given; in order 
to calculate the costs, our pricing model (that was created using linear regression) relied on the lifetime and 
sizing data.  

There was an inherent lack of previous studies on several topics, such as why cloud waste exists 
and recommendation algorithms to alleviate waste. Some sources conducted reviews of existing pricing mod-
els (Soni and Hasan 2017). Still, the closest prior work to our purposes constructed a new pricing model and 
proposed three different approaches to calculating the waste cost: uniform distribution, linear inverse distri-
bution, and proportional inverse distribution. Out of the three, linear inverse distribution was selected out of 
a consideration of complexity and accuracy; it was found to be the most efficient and consistently accurate 
method of calculating waste (Vogel 2019). In contrast, our waste cost was determined using a methodology 
based on the cost and average utility rates.  

The literature regarding recommendation algorithms is extensive, especially with regard to social 
and entertainment platforms like Netflix and Youtube (Airoldi, Beraldo, and Gandini 2016) (Varela and 
Kaun 2019). These algorithms are personalized and tailored to personal accounts, ultimately created for the 
purpose of limiting searches and nudging users toward suggested content. Youtube Music, specifically, pro-
duces groupings that are interpreted as crowd-generated music categories, which are shared by a community 
of listeners. By using “comparable situational frames,” Youtube is able to create stylistic congruence 
(Airoldi, Beraldo, and Gandini 2016). These sources analyze how recommendation algorithms work to ac-
commodate individual user preferences, and we extend the same concept (of having customized suggestions) 
over to our recommendation algorithm, which employs a waterfall approach to adapt to the utility rates of 
different users. While a user with a higher utility rate would not be required to reduce the CPU and memory 
sizes of their virtual machine, another user with a lower utility rate may downsize to a lower tier.  
 

Azure Workload Analysis 
 
Microsoft Azure Dataset 
 
We used the Microsoft Azure Public Dataset V2, which was recorded from 2,695,548 VMs in 2019. It con-
tains 235GB of VM usage readings across 30 days, recording the CPU usage of each VM every 5-minutes. 
As a result, many VMs with less than 5 minutes of usage appear to run for 0 minutes. At most, these VMs 
will cost a few cents and cannot be optimized with our recommendation system, so we have omitted them 
from our data.  

The dataset provides important information such as the VM ID, the ID of the user, and the subscrip-
tion ID. It also provides the start and stop times of the VM, in seconds, with 0 starting at the beginning of the 
month. It contains the maximum CPU usage reached, the average CPU usage, and the 95th percentile of the 
max utilization, which means that it is higher than 95% of the utilization readings in that VM. It contains the 
VM category, which is separated into Delay-insensitive, Interactive, and Unknown. Interactive VMs run 
when a user is awake and using it, while delay-insensitive VMs run regardless of the time. Finally, the last 
two columns are the numbers of CPU cores and GBs of memory. Table 1 demonstrates the first 9 VM read-
ings provided by the file. 
 
Table 1. First 9 VM readings from the dataset.  
 

Machine ID User ID Subscription ID Start-time Stop-
time 

Max CPU Avg. CPU P95 CPU Category Cores GB Memory 

71fJw0x+... GB6uQ... 2sh/Zj... 558300 1673700 91.77689 0.72887 20.75962 Delay-insensitive 8 32 

rKggHO/... ub4ty8y... +ZraID... 424500 42540
0 

37.87926 3.32535 37.87926 Unknown 4 32 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 3



YrR8gPt... 9LrdYR... GEyIE... 1133100 1133700 0.30436 0.22055 0.30436 Unknown 4 32 

xzQ++JF... 0XnZZ8... 7aCQS... 0 2591400 98.57342 30.34005 98.21250 Interactive 2 4 

vZEivnh... HUGaZ... /s/D5V... 228300 22980
0 

82.58144 13.87629 82.58144 Unknown 2 4 

MqvcZ... p14cXG... ZFCk8... 1395600 1397700 0.09787 0.03521 0.09787 Unknown 4 32 

034PavX... L9utvn... k2nh5l3... 1422300 1422600 0.07127 0.03270 0.071277 Unknown 4 32 

fBpt5H... IwABY... uYvK2... 2414400 2414700 0.25996 0.07230 0.25996 Unknown 24 64 

ZdSiRJ... 5tTf4IJ... vLlC4aS... 165900 16830
0 

0.0985 0.03419 0.09854 Unknown 4 32 

 
Data Analysis Tools 
 
Orange (Demsar, et al. 2013) is a data visualization and machine learning tool that we used to create graphs, 
organize, and analyze our data set. For example, we used Orange's Linear Regression function to predict 
missing prices of different VM sizes. We also used Java to code our recommendation algorithm, due to it 
being a fast and efficient programming language. 
 
Azure Workload Analysis 
 
As pointed out by the Flexera report, cloud waste is estimated to be 32%. This hypothesis (that some cloud 
users do waste resources) can be confirmed by analyzing the Azure dataset.  

From examining utilization percentages from the entire dataset using Orange, we found that the 
majority of users do not effectively utilize the purchased cloud resources, as shown in Fig. 1. In fact, a 
shocking 72.44% of users have an average utilization of below 20%. The reason for such inefficient VM 
usage is due to inexperienced users who spend heavily on a small number of powerful VMs. For example, 
the median VM in our data, with an average utilization of 8.196% would be wasting over 91% of processing 
power and cost. An experienced user, on the other hand, would instead spread their spending amongst many, 
smaller VMs that are utilized to near max capacity, and can add more if needed. 

 
Figure 2. This figure shows the distribution of the VMs by average CPU utilization. Each bucket is the number 
of VMs in 10% of CPU utilization. 
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Also using Orange, we can see that 58.86% of VMs in the data have 2 cores, while 30.56% have 4 
cores. VMs with 2 cores and 8 gigabytes of memory are the most popular VM size, and account for 31.43% 
of VMs in the data. Through this distribution graph, it is shown how experienced users use a massive amount 

of 2 and 4 core VMs. 
 
Figure 1. This figure shows the VMs distributed by their core count, further split by their GB of memory. 
 
Price Model and Cost of VMs 
 
Our previous analysis confirms the existence of cloud usage waste, as evidenced by the low utilization. To find 
the exact amount, one needs pricing information of the different VM sizes. 

However, the original Azure data set does not provide any cost-related information. In order to analyze 
the efficiency of user spending, we need to construct a pricing model, as well as calculate the estimated wasted 
resources. We used the prices given by the Azure price calculator (standard Linux as the operating system) and 
West US as the region. Due to the Azure price calculator not including some of the VM sizes in our data, we 
used machine learning to create a price model for all VM sizes. This was achieved by using linear regression 
to calculate the coefficients a, b and c in the following equation. The first two stand for the increase in price 
for every additional core and GB of memory, and c stands for the intercept when a and b are zero. 
 

𝑎𝑎(𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  +  𝑏𝑏(𝑚𝑚𝑒𝑒𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚)  +  𝑐𝑐 =  𝛾𝛾 
 
The official Microsoft Azure price calculator was used to find x, y, and γ, which are the core count, 

GBs of memory, and cost per hour. In the finalized equation, a was 0.006 and b was 0.024. The total cost was 
calculated by multiplying γ by the time the VM was used. 
 
Cloud Waste 
 
Next, we estimated the amount of spending that the VM was wasting using the unused CPU processing power 
of the VM. This was achieved by multiplying total spending (γ) and (1 - U ), with U being the average utili-
zation as a percentage. We also used core hours, calculated by multiplying core count and run time (t), as a 
unit of measurement for the processing power of a VM. 
 

𝑊𝑊 =  (1 −  𝑈𝑈 )  ∗  𝛾𝛾 
 

This is one of the parameters we used to identify cloud waste, as a high amount of wasted spending 
is an obvious sign that a smaller VM could provide the same amount of processing power at a lower cost. As 
shown in Table II, a larger 8 core and 32 GB memory machine provides the same amount of core hours as a 
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smaller 4 core and 8 GB memory VM, but has double the cost due to a low average utilization.  
 
Table 2. These two VMS have very similar core hours, but the larger VM costs almost twice as much. 

 Total Cost Core Hours   Cores   GB Memory 
120.428  1180.57 

 
8 32 

62.424  1156 
 

4 8 

 

Recommendation Algorithm 
 
Algorithm Parameters Selection 
 
Our algorithm is made based on important information from the data analysis on VMs. In the end, our algo-
rithm identifies the virtual machines as wasteful if the user had at least 25 virtual machines created, the p95 
of processing utilization was under 75, and the wasted cost was over 75 US dollars. The minimum threshold 
was 25 virtual machines in order to ensure the algorithm focused on users that had enough VMs to be impacted 
by the cost of the cloud. Next, we determined the p95 of processing utilization under 75 because we wanted 
the users to be utilizing cloud services to a substantial degree. Finally, we determined that the wasted cost had 
to be over 75 US dollars because we did not want to give users warnings that had minimal impact on cost. 
Overall, our parameters ensure the algorithm targets users that create a substantial amount of cost wasted, in 
order to create better utilization of the cloud. 
 
Augmented dataset for the Algorithm 
 
The data given by Microsoft Azure’s study was not enough to conduct cost-wasted analysis, so we added more 
data on top of the data given by Azure. First, we changed the time data from start to end to total hours run. 
Next, we calculated the cost by using machine learning, based on the data we got from Microsoft’s pricing 
calculator. After, we used the formula [(1-p95 utilization)*cost] to determine the wasted cost. 
Table 3. Augmented Data (Shows 9 rows of example input) 

Machine ID User ID Subscription ID Time (hrs) Max CPU Avg. CPU P95 CPU Category Cores GB Memory Wasted Cost 
71fJw0x+... GB6uQ... 2sh/Zj... 309.833 91.77689 0.72887 20.75962 Delay-insensitive 8 32 236.218 
rKggHO/... ub4ty8y... +ZraID... 0.25 37.87926 3.32535 37.87926 Unknown 4 32 0.185615 
YrR8gPt... 9LrdYR... GEyIE... 0.166667 0.30436 0.22055 0.30436 Unknown 4 32 0.127718 
xzQ++JF... 0XnZZ8... 7aCQS... 719.833 98.57342 30.34005 98.21250 Interactive 2 4 48.1378 
vZEivnh... HUGaZ... /s/D5V... 0.416667 82.58144 13.87629 82.58144 Unknown 2 4 0.0344495 
MqvcZ... p14cXG... ZFCk8... 0.583333 0.09787 0.03521 0.09787 Unknown 4 32 0.447842 
034PavX... L9utvn... k2nh5l3... 0.0833333 0.07127 0.03270 0.071277 Unknown 4 32 0.0639791 
fBpt5H... IwABY... uYvK2... 0.0833333 0.25996 0.07230 0.25996 Unknown 24 64 0.127907 
ZdSiRJ... 5tTf4IJ... vLlC4aS... 0.666667 0.0985 0.03419 0.09854 Unknown 4 32 0.511825 

 
Algorithm Input 
 
The columns represent from left to right: MachineID, User ID, Subscription ID, Time Run(Hours), Max CPU, 
Avg CPU, p95 CPU, Instance, Core, Memory, Wasted Cost. See Table 3. 
 

Algorithm 1 Our Recommendation Algorithm  
1: Given: VMTable2 consisting of VM V UserID that created it, time VM ran, p95,cores, memory, Cost 

Wasted 
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2: function FINDTARGET(V) 
3: if UserIDcnt <= 25, p95 <75, wastedcost >75 then 
4: WastedList.add(V) 
5: end if 
6: return WastedList 
7: end function 
8: function DROPVM(WastedList)  
9: for each V in WastedList 

10: if p95 <25 then 
11: Drop VM by 3 levels 
12: end if 
13: else 
14: if p95 <50 then 
15: Drop VM by 2 levels 
16: end if 
17: else 
18: Drop VM by 1 level 
19: return RecommendationList 
 20: end function  

 
Algorithm Explanation 
 
There are 2 important steps in our algorithm. First, the algorithm goes through the function FINDTARGET(V) 
in order to sort virtual machines from the given data into a list of wasted virtual machines. Finally, the list is 
put through a drop recommendation algorithm (DROPVM(WastedList))to decide how many levels each virtual 
machine can drop to. 
 
Waterfall Model 
 
Our algorithm classifies the drop recommendation model in 3 levels: 25, 50, and 75. We chose these 3 as 
identifiers for how much we should drop because the utilization rate for each virtual machine is maximized if 
the user requests less computing power (resulting in cost efficiency. If the p95 is less than 25, the virtual ma-
chine will be recommended to drop 3 levels. Our recommended drop will reach 1 if the machine is less than 75 
but greater than 50. Our level drop is defined as dropping the core and memory to the next available tier of 
computing power. For example, a user with 4 cores and 4 gigabytes of memory that is dropping one level would 
be dropped to 2 cores and 2 gigabytes of memory. Furthermore, if the next less computing virtual machine does 
not exist, it will be kept at 2 cores and 2 gigabytes of memory. However, this model assumes that the drop in 
memory will still allow users to run their needed functions in the cloud. The memory of each procedure is not 
given by the user, so this is assumed for our algorithm. 
 
Algorithm Output 
 
At the end of our algorithm, we send users a table of the identified wasted virtual machines along with the 
original given data, the new core and memory, and the total saved cost. In the end of the experimental data 
from the Azure table, we helped 1520 users save a total of 14,988,203.34 US dollars. See Table IV. 
 
Table 4. Output Table (shows 5 rows of example output) 
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Machine 
ID 

User ID Sub-
scription 
ID 

Time 
(hrs) 

Max 
CPU 

Avg. 
CPU 

P95 
CPU 

Category Cores GB 
Memory 

Original 
Cost 

Wasted 
Cost 

New 
Cores 

New GB 
Memory 

Saved 
Cost 

71fJw0x
+... 

GB6uQ..
. 

2sh/Zj... 309.833 91.7768
9 

0.72887 20.7596
2 

Delay-in-
sensitive 

8 32 237.952 236.218 2 2 222.708 

vlb8POl
nY… 

iGfBdg-
MCx... 

t9UC3N
+/G... 

719.833 98.433 3.4993 57.9796 Delay-in-
sensitive 

4 8 138.208 133.372 2 4 68.2402 
 
 

BcGvAP
hri... 

6d+esuB
iA... 

D0Q3S
RMPs... 

719.833 73.8714 
 
 

2.14896 
 
 

25.4091 
 
 

Interac-
tive 
 
 

4 
 
 

32 
 
 

552.832 
 
 

540.952 
 
 

2 
 
 

4 
 
 

482.864 

geYEP2
ZIk... 

izi-
VPtq8b..
. 

QhuPip
O0t... 

250.417 
 
 

67.9572 
 

1.93893 
 
 

8.12882 
 

Delay-in-
sensitive 
 
 

4 
 
 

32 192.32 
 
 

188.591 
 
 

2 2 179.999 
 
 

uxD7b2
CFh... 

cLrGN/b
i4... 

vWzq77
yoJ... 

123.25 
 
 

84.1843 
 
 

18.5928 
 
 

39.0993 
 
 

Unknown 
 
 

4 
 
 

32 
 
 

94.656 
 
 

77.0568 
 
 

2 4 82.6761 
 
 

 

Experimental Results 
 
Experimenting with Parameters 
 
In order to find the correct parameters for our identification of the wasted machines, we experimented with 
different parameters in order to see how many virtual machines would be affected, how many users would be 
affected, and the total cost that would be reduced by our waterfall drop algorithm. Specifically, we tested the 
parameters of virtual machines created by the user and the wasted cost. We tested each parameter individually 
in order to get the most accurate perception of the effect of each parameter.  
 

Parameter Cost Wasted Analysis 
Cost 
Wasted 

VM’s 
Affected 

Total Cost 
Saved 

Users 
Af- 
fected 

100 70226 1.73E+07 3867 
75 
25 

76923 
224272 

1.78E+07 
2.03E+07 

3951 
5541 

   
Parameter VM Machines Created Analysis 

User 
VM 
Count 

VM’s 
Affected 

Total Cost 
Saved 

Users 
Affected 

100 2612411 1.78E+07 961 
75 2617720 1.84E+07 1023 
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50 2628025 1.92E+07 1199 
25 2662110 2.11E+07 2234 

 
Analysis of Experimental Results 
 
Through the parameter cost-wasted analysis, we found that the best fit was 75 because it had the right balance 
of total cost saved and users affected. This way our algorithm would be able to save a significant amount of 
money without affecting an excessive number of users. On the other hand, through the parameter VM Machines 
Created Analysis, we found that if the user created at least 25 virtual machines, then the total amount saved 
would be maximized. By using the “at least 25 VM” parameter, our algorithm would not incorrectly identify 
users that are using the cloud minimally or simply testing the cloud. With these two identified parameters, our 
algorithm was able to create a balance between warning too many users and maximizing cost efficiency.  
 

Conclusion 
 
In this paper, we provide insight into the spending and \waste costs of cloud computing, from the perspective 
of cloud consumers. We discussed the linear regression model used for producing our price prediction equation. 
Using this pricing model, we constructed our methodology for computing each virtual machine’s wasted cost. 
Finally, we discussed the implementation of our recommendation algorithm; this included both the parameters, 
as well as the waterfall model of the algorithm itself. Further configurational nuances are presented as well, 
reinforcing the optimal parameters for our algorithm. The effectiveness of our proposed solution is tested with 
the application of the algorithm onto the Azure user dataset. Out of the 2,695,748 virtual machines in question, 
we demonstrate our ability to save 14,988,203.34 USD across a total of 66,721virtual machines created by 1520 
users. This finding concludes that by reducing the CPU and memory sizes of virtual machines with low utility 
rates, users are able to save significantly on cloud computing resources while still being able to meet workload 
demands.  

However, this study is based upon several key assumptions. First, while calculating the prices for the 
virtual machines, we assumed that the region in which these virtual machines were created was West US, the 
operating system was Windows, the type of virtual machine was operating system only, the tier was standard, 
and the instance type was Dsv5-series. While the first few choices were interchangeable with other options 
available on Azure’s pricing calculator, the last assumption is made upon the fact that the Dsv5-series instance 
has no temporary storage provided; this suits the virtual machines in the user dataset better for the purposes of 
determining the costs. Another assumption was with regard to VMs in the dataset that had more than 64 GB of 
memory or 24 virtual cores; for these, we assumed that they had 128 GB and 32 virtual cores, respectively. We 
also assumed that the costs for these virtual machines were as shown in our pricing model, which was created 
using a linear regression model. Finally, in calculating the effects of our algorithm, we assumed that the users 
would always accept our recommendations for downsizing CPU and memory sizes.  
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