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ABSTRACT 
 
Alzheimer’s disease (AD) is a neurodegenerative disease and the most common cause of dementia1. There are 
currently no effective therapies for AD and its etiology remains poorly understood. Recent research has sug-
gested that the gut microbiome may modulate risk for AD, as well as the disease process itself. This paper 
reviews the current knowledge surrounding AD and the gut microbiome, and aims to explore how this relation-
ship may be used to advance our clinical understanding of the disease; including whether the gut microbiome 
could be a novel drug target or even serve as a potential biomarker for AD. Although this relationship between 
AD and the microbiome has not yet been fully elucidated, the gut microbiome is known to dynamically respond 
to lifestyle factors including sleep, exercise, and nutrition, all of which impact AD-risk. This body of evidence 
suggests that there may be a relationship between microbiome health and AD. Early studies are investigating 
whether the microbiome is changed in individuals with AD, and whether any metabolites or bacterial signatures 
unique in AD populations could be used as a biomarker for early detection of the disease. This review will 
discuss these points and reflect on how the clinical landscape for AD may be improved by assaying the micro-
biome and implementing lifestyle factors that both improve microbiome health and reduce AD risk.  
 

Alzheimer’s Disease 
 
Alzheimer’s disease (AD) is a progressive, age-related neurodegenerative disease and is the most common 
cause of dementia1. AD can take over a decade to progress and is associated with severe amnesia, or memory 
loss, and cognitive decline. Individuals with AD can initially present with minute memory problems such as 
the inability to find common objects or trouble finding their way home. As the disease progresses, they develop 
dementia and worsening cognitive function. As they lose their memories, they lose their social connections and 
their personal identity. At the final stages of the disease, those with AD are rendered completely dependent and 
are unable to perform any activities of daily living alone. In this way, AD is an extremely taxing disease on 
those afflicted, their families, and their caretakers. In the end, death is an inevitable outcome of the disease. 

While a small percentage of AD cases are inherited genetically (early-onset AD), most cases of AD 
are sporadic and occur after the age of 65; this is known as late-onset AD1. The cause of sporadic AD  remains 
elusive. However, it is well established that one of the primary risk factors for the disease is age2. AD is asso-
ciated with the hallmark pathologies of amyloid plaques and neurofibrillary tangles, which accumulate in the 
brain and impair neuronal health1,3.  
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Figure 1. Neuropathology of Alzheimer’s disease (AD). Compared to a healthy brain, hippocampal volume is 
decreased in AD, amyloid plaques accumulate extracellularly, and neurofibrillary tangles composed of hyper-
phosphorylated tau proteins form inside the neurons. These signature AD pathologies are accompanied by neu-
ronal death. 
 

Amyloid plaques are large extracellular clumps of amyloid beta (A𝛃𝛃) protein that aggregate together 
between neurons4. Neurofibrillary tangles, made up of hyperphosphorylated tau protein, typically form later on 
in the progression of AD following the formation of amyloid plaques3,5.6. These tangles are protein aggregates 
that form inside of neurons themselves. These hallmark AD pathologies first appear in the hippocampus where 
memories are formed, and then progress globally throughout the brain. The progressive spread of these mis-
folded proteins is accompanied by large-scale neuronal dysfunction and death. As neurons die off, the brain 
atrophies or shrinks, causing cognitive decline and dementia.  

Currently, there is no treatment available for AD that can alter the progression of the disease. As AD 
is the leading cause of dementia and among the leading causes of death in the US, there is a deep clinical need 
for effective therapeutics7. This article examines new scientific developments that suggest that the microbiome 
may modulate AD risk as well as AD pathologies in the brain. Microbiome bacterial and metabolic signatures 
have also been suggested as possible biomarkers to help in early diagnosis of the disease8–12. 
 

Gut Microbiome 
 
The human microbiome is a collection of diverse microorganisms, including fungi, bacteria, protozoa, archaea, 
and viruses13,14,15. These microorganisms live all over the human body including in the gut. It is estimated that 
there are 10-100 trillion bacterial cells in our body16,17. This estimation does not provide an absolute count as 
the number of viruses and microbes in our body is still unknown. Other estimations, however, suggest that there 
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are ten microbes in our body for every one human cell18. The majority of these microorganisms are not harmful 
to humans, but are very beneficial and play an essential role in human health. They contribute to shaping our 
immune system and participate in nutrition as they help digest food and release important metabolites19–23 .A 
healthy microbiome can be characterized as being diverse14,15,24–30. An unhealthy microbiome would lack diver-
sity and may contain a higher proportion of bacterial species associated with disease31–33. This imbalance is 
known as dysbiosis. Dysbiosis has been associated with various diseases such as inflammatory bowel disease, 
asthma, diabetes, allergies, cancer, and even autism34–40.   
 

 
 
Figure 2. Gut microbiome and impact on human physiology. The gut microbiome is composed of microbiota 
lining the intestinal lumen. Microbial species can promote health, or in cases of dysbiosis can promote disease. 
 

The microbiome can be heavily influenced by an individual’s environment and lifestyle. One of the 
primary modulators of the microbiome is diet; different dietary patterns have been associated with different 
microbial signatures, some of which have been linked to diseases such as Chron’s disease 33. In addition to diet, 
the microbiome can also be altered through sleep. Sleep efficiency and gut microbiome diversity have been 
shown to be positively correlated, while gut microbiome diversity and the time it takes for people to wake from 
sleep are negatively correlated41. These findings suggest that sleep quality and gut microbiome health are closely 
related, but it is unclear which process is the driver of this effect, or whether this relationship is bidirectional. 
Interestingly, many of the factors which influence the microbiome also influence AD risk42–44. Indeed, studies 
have demonstrated a correlation between human microbiome signatures and AD8,10,12,45. 
 

Relationship Between Microbiome and Brain 
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The connection between the gut and the brain is poorly understood. The bidirectional relationship wherein the 
gut and the brain influence each other is a relatively new concept, termed the gut-brain axis46–48. Communication 
along the gut-brain axis links the cognitive and emotional centers of the brain with peripheral intestinal func-
tions48.  

The gut microbiome is a key participant in the gut-brain axis, which interacts with the brain through 
the vagus nerve, which can directly influence the central nervous system (CNS) and behavior48–55. A healthy 
microbiome also regulates the immune system by promoting anti-inflammatory activity, in part through the 
release of short-chain fatty acids19,56–60. Anti-inflammatory activity is important because inflammation can neg-
atively impact behavior and can even contribute to depression61. There are many other diseases that have been 
associated with altered activity of the gut-brain axis, such as obesity, Schizophrenia, and autism62–65,66.  

The dysbiosis of the gut has also been linked with impaired cognitive function and the ability to form 
memories47. One study which aimed to observe the effects of infection and dysbiosis on cognitive function in 
mice demonstrated that when mice  were exposed to stress, the germ-free mice which lack a microbiome dis-
played obvious memory impairment67. However, the administration of probiotics alleviated this impairment67. 
This study demonstrates the link between the intestinal microbiome and memory function. Since AD is also 
characterized by impaired memory, perhaps there is a similar level of dysbiosis in AD as well, which could be 
resolved with a therapeutic method such as use of probiotics.  
 

Gut Microbiome and Alzheimer’s Disease Risk 
 
Currently, there are studies that link the gut microbiome to AD risk8,10–12,68.  Investigating whether there are 
specific gut microbial signatures associated with AD cases may provide a potential early detection method or 
biomarker for the disease. Additionally, understanding the relationship between the gut microbiome and AD 
pathogenesis may open a door to developing new therapeutic approaches.  
 Some studies have begun to clarify the relationship between the gut microbiome and AD pathology in 
the brain. Administration of amyloid-beta oligomers into the GI tract has been demonstrated to impact levels 
of amyloid pathology in the CNS in mice9. These results suggest that accumulation of amyloid pathology in 
late-onset AD may initially be triggered in the GI tract before progressing to the brain. Gut microbial popula-
tions and intestinal inflammation may also influence AD progression. Mice with AD pathology were found to 
have different gut microbial signatures than wild-type mice, and also presented with inflammation and degen-
eration of the intestinal lining12. Fecal transplants from wild-type mice into these AD mice reduced A𝛃𝛃 plaques 
and neurofibrillary tangles in the brain, rescued cognitive impairment, and reversed the abnormalities found in 
the gut lining12. Clarifying a role for GI involvement early on in AD is important because it offers a potential 
method for early detection and may lead to microbiota-targeted therapies. If these findings can be replicated in 
humans, fecal transplantation may present a therapeutic approach to modulate intestinal health, cognition, and 
AD pathology.   
 Since AD is a human disease, it is important to understand whether microbial signatures are altered in 
AD patients compared to healthy individuals. One study concluded that the microbiomes of patients with mild 
cognitive impairment (MCI) were different from those with AD dementia8. Additionally, investigating the gut 
microbial metabolites of healthy individuals, people with MCI, and people with AD further confirmed that there 
are microbial signatures uniquely associated with AD8. These specific microbial signatures could aid in early 
detection of AD.  
 

Can the Microbiome Be Used as a Biomarker? 
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Biomarkers are minimally invasive, easily measured biological signatures that are often used to  assist with 
diagnosis and drug development. Novel methods of early detection for AD are of the utmost importance, as 
they may provide a therapeutic window to help slow down or even prevent the progression of  the disease. The 
current biomarkers for sporadic AD include monitoring the cerebrospinal fluid (CSF) and imaging the brain 
with PET scans to determine the progression of amyloid and tau accumulation in the brain69,70.  However, as 
spinal taps are painful and invasive and PET scans are expensive, there is a clinical need for new, inexpensive, 
and non-invasive biomarkers for AD.  
 Currently, research is being conducted for easier methods to measure microbiome activity as a bi-
omarker for AD. Bile acid (BA) metabolites are produced by gut bacteria and can be measured in the blood. 
One study examined BA metabolites as a way to indirectly assess the metabolic activity of the microbiome, and 
found that several BA metabolite signatures correlated with AD biomarker signatures71. In addition to BA me-
tabolites, short-chain fatty acids and lipopolysaccharides produced by the gut microbiome may be other blood 
biomarkers that can inform us about AD progression. In fact, studies have shown that high levels of short-chain 
fatty acids and lipopolysaccharides correlated with amyloid deposits in the brain11. These studies suggest that 
there is a link between AD and the microbiome, and also that observing the blood for BA metabolites, short-
chain fatty acids, and lipopolysaccharides could serve as a way to detect the onset of AD pathology.  In this 
way, examining microbiome-activity through metabolites in the blood may provide a new and easy biomarker 
for AD, and is much more efficient than assessing the microbiome through sequencing fecal samples.  
 

How Do Diet and Lifestyle Affect Disease-Associated Microbiome 
Signatures? 
 
Many of the environmental and lifestyle factors that influence the microbiome can also alter risk for developing 
AD. As discussed earlier, diet strongly influences the diversity of the microbiome33. Since many Western diets 
are dominated by hyper-processed foods, the microbiome composition of individuals who consume these diets 
must be less diverse compared to the composition of individuals who consume more traditional or Eastern diets 
which consist of a variety of fruits, vegetables, grains, and fibers. It is plausible that since there is a link between 
the health of the microbiome and AD risk and pathogenesis, individuals who consume a Western-style diet that 
is less healthy for the microbiome may be at a higher risk for AD. Individuals who consume a diet that promotes 
a more diverse microbiome may have reduced AD risk. When the microbiomes of adults with normal brain 
function and those with MCI were examined, unique microbial signatures were identified in those with MCI, 
which were modifiable through dietary intervention10. These microbial signatures also correlated with AD CSF 
biomarkers, which also responded to the dietary intervention10.  These findings suggest that eating a healthier 
diet can lead to a more diverse microbiome and serve as a preventative measure for AD.  
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Figure 3. Environmental and lifestyle impacts on microbiota and Alzheimer’s disease (AD) pathology. Envi-
ronmental signals and lifestyle factors alter the composition of the gut microbiome and metabolites released 
from these bacterial species can impact AD pathology. These metabolites can serve as potential biomarkers for 
AD. 

There are also studies that correlate sleep with AD risk; repetitive patterns of disturbed sleep are asso-
ciated with developing AD72–74. Fewer hours of sleep each night has been correlated with increased amyloid 
pathology in the brain44,72–74. A lack of sleep quality has also been associated with reduced diversity of the gut 
microbiota41. This suggests that perhaps engaging in a lifestyle that promotes a more diverse gut microbiome 
can improve sleep, which in turn may result in a lower deposition of amyloid in the brain.  

Exercise can also positively impact the gut microbiome and is inversely associated with risk for de-
mentia43,75–79. More exercise can not only decrease AD risk, but can also increase gut microbiome diversity, as 
the microbiomes of professional athletes have been found to have higher diversity than those of healthy, non-
athletic individuals80.  These findings suggest that maintaining an active lifestyle can help prevent dysbiosis as 
well as lower AD risk.  

Lifestyle factors such as such as an individual’s surrounding environment may also impact the micro-
biome and AD. In fact, data suggests that living in an urban or a rural area has been shown to differentially 
affect microbiome composition81,82.  For example, the gut microbiome composition of people living in rural 
areas of North India were found to be more diverse compared to those who lived in urban areas82. Urban envi-
ronments tend to have more air pollution, and studies have found that persistent exposure to particulate matter 
from polluted-air led to gut dysbiosis in mice83. Perhaps dysbiosis may similarly occur in humans with repetitive 
exposure to air pollutants. Importantly, air pollution is also thought to be associated with increased AD risk84,85. 
It is possible that dysbiosis triggered by air pollution may underlie this increased AD risk in humans with high 
exposure to air pollution, such as in  urban environments.  
 

Conclusion 
 
Several studies have suggested a strong link between the microbiome and AD risk. As observed in mouse 
models and human studies, examining the gut microbiome for signature alterations could serve as an indicator 
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for onset of AD pathogenesis. The discovery of microbial signatures uniquely associated with AD may lead to 
novel approaches for AD prevention, diagnosis, and treatment. Further research in this area may provide a 
pathway for therapeutic measures for AD which target the microbiome through probiotics or fecal transplants. 
Currently, no effective treatments exist for AD, and preventative measures are of the utmost importance. The 
health and diversity of the gut microbiome can be improved by healthy lifestyle factors such as improving sleep 
quality, consuming a better diet, getting more exercise, minimizing exposure to air pollution, and perhaps using 
probiotics. These lifestyle factors can also be implemented as preventative measures to lower AD risk. Looking 
at alterations of gut microbiota through blood or stool samples could provide more accessible biomarkers to 
measure AD progression. Finally, as fecal transplants minimized the formation of A𝛃𝛃 plaques and neurofibril-
lary tangles in the brains of AD mice, they may one day be a promising therapy for AD in humans. Our current 
understanding of the role of the gut microbiome in AD-risk suggests that this intersection is an exciting and 
promising direction for the field to explore, both in terms of improving clinical treatments as well as diagnosing 
the disease.  
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