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ABSTRACT 
 
Due to a mix of climate change and California’s mega-drought, California’s wildfire seasons have overall gotten 
progressively longer, more destructive, and more expensive. In 2020 alone, around 9,900 wildfires burned about 4.3 
million acres, costing the state over $12 billion. (Kerlin, 2022) Larger and more numerous wildfires pollute billions 
of harmful particles into the atmosphere, including PM2.5. This study aims to use features of wildfire and other factors 
to predict whether a wildfire pollutes enough PM2.5 particles to be detrimental to human health. The 8 features used 
in the model are the acres burned, the length in days of the fire, available green space within a 15-mile radius of the 
fire, the highest population density within a 15-mile radius of the fire, electricity usage, median income, temperature, 
and precipitation. A Gradient Boosting Classifier (GBC) was applied to the dataset to predict whether a wildfire’s 
emissions necessitated an evacuation. The GBC results achieved a high accuracy of 0.931 as well as a great Area 
Under the Curve (AUC) of 0.911. By far the most important feature in the GBC is Length, with a feature importance 
score of 0.109 +/- 0.009.  
 

Introduction 
 
Wildfires are uncontrolled fires 
that burn vegetation in the wild. 
They occur in forests, grasslands, 
savannas, and other ecosystems. 
There are many types of wildfires, 
including ground fires, surface 
fires, and crown fires. Ground fires 
ignite in soils with a lot of vegeta-
tion, like plant roots. Surface fires 
burn dead or dry plants on the sur-
face. Crown fires burn the leaves 
and the canopies of trees and 
bushes. The severity of wildfires 
depends on the wind, high temper-
ature, little rainfall, and other envi-
ronmental factors (National Geographic Society, 2019) 

Not only are there the physical cost of the wildfires, but millions of California residents are also 
exposed to harmful levels of air pollution from wildfires, with particulate matter (PM) particles being the 
worst. PM particles are made up of a multitude of tiny particles and liquid droplets. Some examples are 
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acids, organic chemicals, metals, and soil/dust particles. Within PM, there are classifications based on size, 
with the important ones being PM2.5 (μm) and PM10. PM10 is primarily caused by the combustion of 
gasoline, oils, etc while PM2.5 is caused mainly by fires. PM smaller than 10 micrometers is detrimental 
to the health of humans because the particles can pass through our throat and mouth into our lungs. When 
in the lung, it either goes into our blood-
stream affecting other organs or inhibits 
the function of the lungs and heart. (En-
vironmental Protection Agency, n.d.) 
This study focuses on PM2.5 particles 
since the particle matter is so small that it 
gets trapped deeper in the human body, 
affecting more critical systems and mak-
ing them harder to remove. Thus it is im-
perative to study possible ways to reduce 
fire damage and protect the health of Cal-
ifornians and their structures. 
 The main goal of this study is to 
predict whether the severity of PM2.5 
emissions was high enough that the sur-
rounding population would have to evac-
uate. Machine learning techniques were used to explore the relationship between PM2.5 emissions and the 
attributes of wildfires and their surroundings.  
 
Methods 
 
3.1 Features in the model 
 
The 8 features used in the model were the acres burned by the fire, the length in days of the fire, the amount 
of vegetation within a 15 mile radius of the fire, the maximum population density of cities within 15 mile 
radius of the fire, the electricity usage of counties, the median income of counties, the temperature of the 
days before, and the amount of precipitation in the days leading up to the fire. Acres burned, represented in 
the model as AcresBurned, was selected to be a feature due to the belief that the more acres burned, the 
more PM2.5 emissions there would be due to a larger amount of land to burn. Length, represented by 
Length, was a feature because the longer a fire burns, the more PM2.5 it pollutes into the atmosphere. 
Vegetation, represented by available_green, was selected to be a feature due to the belief that the more 
plants there are, the more the fire can combust, resulting in more PM2.5 emissions. Population, represented 
by nearby_maxdensity, was a feature because the more people that are living in a certain area, the more fire 
stations are needed to support the neighborhood, resulting in more firefighters putting out a potential fire, 
reducing PM2.5 emissions. Electrical usage, represented by dratio, was selected to be a feature because 
sparks from power lines are one of the biggest igniters of wildfires. The more electricity used, the higher 
the probability of starting a wildfire, increasing PM2.5 emissions. Median income, represented by income, 
was a feature due to the theory that places with a higher income would have a quicker response to a wildfire 
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that threatened the county. Counties with higher median incomes would have more funding for their fire 
department, potentially resulting in quicker responses and faster extinguishment. Temperature, represented 
by temp, was selected to be a feature because the higher the temperature, the easier it is for a fire to spread 
and the harder it is to extinguish it. A larger fire will emit more PM2.5 particles. Precipitation, represented 
by precip, was a feature because the less rain, the drier the conditions. One of the driving factors of fire 
intensity is the dry conditions that make fires more destructive and harder to put out. More intense fires will 
result in more PM2.5 emissions.  
 

A. California Wildfires 
 The starting point for the main dataset was a dataset off of Kaggle called ‘California wildfires 
(2013-2020)’. This dataset was chosen because California has one of the most numerous and largest fires. 
This dataset provided all the fires from 2013-2020 in all counties of California with features such Acres-
Burned, Date_Started, Date_Ended, longitude, and latitude. By counting the number of days between 
Date_Started and Date_Ended, the feature Length was created.  
 

B. Filters for Wildfires 
Three filters were added to this dataset, with the first filter limiting the length of the fire to be 

greater than 0 days and less than 100. In the dataset, more than half of the fires had lengths greater than 100 
days without large acres burned. Including these extraneous fires would have skewed the data. The 0 day 
restriction was added because there weren’t any increases in the PM2.5 measurements. After applying the 
length filter, the number of fires went from a total of 1636 to 728 fires.  

The second filter was getting rid of fires under 50 acres. Looking at the PM2.5 data in the timeframe 
of the fire, there were no noticeable changes in the air quality measurements. Including these fires would 
have lessened the potential positive correlations between acres burned and the concentration of PM2.5 par-
ticles. This filter reduced the number of fires from 728 to 523.  

The last filter was removing certain counties. When getting the air quality data, some counties 
(Alpine, Amador, Lassen, Modoc, Sierra, Tuolumne, and Yuba) didn’t have any data at all. Including these 
fires would have made it impossible to calculate any correlation between acres burned and air quality. 
Adding this filter decreased the number of fires from 523 to 474 fires.  

 
C. PM2.5  

From California Environmental Protection Agency Air Resources Board’s Air Quality Query tool, 
PM2.5 measurements were taken between the date started and ended for all fires. Three different ways to 
quantify the PM2.5 data into a single number were calculated from those measurements. The first way was 
PM2.5_integrated, or PM2.5_int. PM2.5 integrated is just the sum of PM2.5 measurements subtracted by 
the median value of the year. This was done to increase the disparity between small and large fires, making 
it easier to predict the severity of PM2.5 emissions. The mean wasn’t selected because if the change in air 
quality from the wildfires were massive, the baseline value would be skewed to a higher value. With me-
dian, even if there were a lot of outliers, there would be no skewed data. The second way was PM2.5_max. 
This is just the maximum concentration of PM2.5 within the timeframe of the wildfire. The larger the fire, 
the higher the PM2.5_max value. The third way was PM2.5_1day. This is just the PM2.5 measurement one 
day after the start of the fire. This was considered because the higher the PM2.5 measurement is at the start, 
the higher the chance that this will become a large fire that pollutes more PM2.5 particles. To represent 
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PM2.5 emissions in binary, the feature to be predicted, dangerous, was created. Humans that are exposed 
to PM2.5 levels above 50 µg/m3 for long periods are at a heightened risk for cardiovascular disease. We 
define the target dangerous to have a value of 0 for fires that have a PM2.5_max value from 0 up to 50 
µg/m3 (i.e., are not dangerous) while a 1 represents all fires with a PM2.5_max value of greater than 50 
µg/m3 (i.e., are dangerous). 
 

D. Green Space and Population 
The vegetation data and population data used in the model were from the USDA Forest Service’s 

Urban Forest Data. Since most of the fires didn’t start within cities, the vegetation (nearby_greenspace) and 
population (nearby_pop) data attached to each fire were the sums of the data from all cities within a 15 mile 
radius from the longitude and latitude of each fire. A 15 mile radius was chosen because this was the po-
tential amount of vegetation that could be burned as well as the population that would be in immediate 
danger. Since the USDA dataset didn’t have longitude and latitude for the cities, CDPs, and towns, another 
dataset was needed. The dataset used was one from simplemaps of cities in the US. The final cities, CDPs, 
and towns considered were those that were in both USDA and simplemap datasets.  

The feature available_green was chosen over nearby_green because including areas that couldn’t 
be burned would add unnecessary noise to the dataset. An alternate feature representing population is 
nearby_maxdensity. It was calculated by finding the maximum density out of all the nearby cities to the 
fire. This was included in the model instead of nearby_pop because the model had a higher Area Under the 
Curve (AUC) with nearby_maxdensity.  

 
E. Electricity Usage 

 Electricity Usage wasn’t initially considered to be a feature of the model, but after reading through 
the paper “Data-driven wildfire risk prediction in Northern California”, it was added as a feature. Electricity 
usage data used was from a dataset from Kaggle called California- electricity consumption by county. The 
variable used to quantify the data into one number is called dratio. Dratio is the difference between the 
electricity usage from 2019 subtracted by the usage from 1999 divided by the usage from 2019. For each 
fire, the feature dratio was added by the county in which the fire was located.  
 

F. Median Income 
 The median income dataset used in the model was taken from KidsData. Each value represents the 
average median income for each county from 2014 to 2018. For each fire, the feature income was added by 
the county in which the fire was located and the year the fire occurred.  
 

G. Temperature and Precipitation 
 The temperature and precipitation datasets were from the NOAA’s National Centers for Environ-
mental Information. The dataset contained the monthly averages of temperature and precipitation for each 
county of all 50 states from 1895 to 2022. Only the data from Californian counties from the years 2013-
2022 were taken. Since the temperature before the fire determines fire creation, the initial plan was to get 
the average temperature 30 days before the start date. Since the dataset only contained monthly averages, 
fires that occurred before the 15th day took the previous month’s temperature and precipitation averages 
while the fires that occurred on or after the 15th took the current month’s temperature and precipitation 
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averages. The temperature and precipitation values were added to each fire based on the county and start 
date.  
 
3.2 Algorithm 
 
Ensemble methods 
 
In machine learning, ensem-
ble methods are a technique 
used to balance bias and vari-
ance. Bias is the difference 
between the actual value and 
the value predicted by the 
model. Variance represents a 
model’s sensitivity to changes 
in data. A model with low bias 
usually has high variance 
while a model with high bias 
usually has low variance. En-
semble methods combine 
multiple models to better bal-
ance bias and variance. Two 
ways of combining multiple 
models are bagging and 
boosting. (Chong, J. 2021) 

The bagging 
method creates several inde-
pendent parallel decision 
trees1 that use different sub-
sets of the training data. 
Once it creates the trees, it 
uses the mode of the predic-
tions from all the trees to de-
termine a final result, which 
reduces error. An example 
of the bagging method is a 
Random Forest Model 
(RFM). RFMs should be 
used when looking for the 
significance of predictors, a 
quick benchmark model, and with imperfect data. (Chong, J. 2021). 

1 A decision tree is like a flow chart; e.g., to classify fruit it might ask is the fruit round? Then, is it red? etc.  
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The boosting method creates multiple sequential models that focus on the mistakes of the previous 
one and improves upon it to create a better model and reduce error. The key differences between boosting 
and bagging is that boosting methods aren’t parallel but are sequential and aren’t independent but fully 
dependent. An example of a boosting method is a Gradient Boosting Model (GBM). Like a RFM, GBMs 
should be used when looking for the significance of predictors. But unlike RFMs, GBMs should be used 
when prediction time is important because building sequential trees is time-consuming. (Chong, J. 2021) 
 

A. Model tuning and performance metrics 
For both algorithms, hyperparameters were adjusted to reduce overfitting. With a dataset of only 

474 rows, any ensemble method would just overfit with default hyperparameters. To reduce overfitting, the 
hyperparameters of n_estimators, max_depth, and min_sample_leafs were adjusted. N_estimators is the 
number of boosting stages in the model. Normally more boosting stages result in better performance. How-
ever, to limit overfitting, a smaller number of stages was needed. To balance the number of estimators and 
performance, 20 estimators were used. Max_depth limits the number of nodes per tree. Since the best per-
formance resulting from max_depth depends on how each input variable interacts with each other, different 
values were tested. A max_depth of 5 was chosen due to a high AUC. Min_sample_leafs are the minimum 
number of samples per leaf node. The higher the min_sample_leafs, the smoother the model is, or the more 
extreme values are removed. Since most of the extreme values were important, a smaller min_sample_leafs 
would benefit the model, resulting in a value of 5.  

Accuracy is the percentage of correct classifications by the model out of all cases, i.e. True Positives 
plus True Negatives divided by the sum of True Positives, True Negatives, False Positives, and False Neg-
atives. Area Under the Curve (AUC) is a way 
to measure the performance of a classifica-
tion model on all possible classification 
thresholds. It is the probability of choosing a 
random positive example over a random neg-
ative example. The higher the AUC, the bet-
ter it is at distinguishing between the two. 
(Bhandari, A. 2020).  

The classification model provides a 
probability that a fire is dangerous, which is 
converted into a yes/no classification based 
on a threshold that we allow the algorithm to 
determine automatically. In deciding which 
model to use (Random Forest Classifier 
(RFC), Gradient Boosting Classifier 
(GBC)), simplicity and performance were 
the key factors. The GBC was selected be-
cause it had a higher AUC out of the two.   
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Results 
 

4.1 Performance and Feature Importance 
 Figure 1. 

Accuracy and AUC of the GBC on Training and Test data 

 Accuracy Area Under the Curve 

Training 0.993 1.000 

Test 0.931 0.911 

 
 After applying the GBC to the training data, its accuracy was 0.993 and its AUC was 1.0. When 
the model was applied to the test data, its accuracy was 0.931 and its AUC was 0.911. (Figure 1) This means 
that the model is slightly overfitting, resulting in slightly biased predictions.  
 

Figure 2. 
Confusion Matrix for GBC on Test Data 

True Positive 
Correctly classified 
dangerous 
11 
5.851% 

False Positive 
Incorrectly classified 
dangerous 
6 
3.191% 

False Negative 
Incorrectly classified 
not dangerous 
7 
3.723% 

True Negative 
Correctly classified 
not dangerous 
164 
87.234% 

 
 After applying the GBC to the test data, there are 164 true negatives, 7 false negatives, 6 false 
positives, and 11 true positives. This means that the model isn’t leaning toward either false negatives or 
false positives, resulting in a good balance between safety and risk-taking.  
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Figure 3. 
Bar Graph of Relative Feature Importance from GBC 

 
 Compared to the rest of the features, Length is the most important by far. (Figure 3) 
 

Figure 4. 
Statistically Important features in GBC 

 
 In calculating the importance of each feature, all features are statistically significant, with all means 
being greater than twice the standard deviation. (Figure 4) These scores also support Figure 3, with Length’s 
score of 0.109 +/- 0.009 being significantly greater than temp’s score of 0.015 +/- 0.004. (Figure 4) 
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4.2 Partial Dependence Plots 
 

Figure 5. 
Partial Dependence plots of Length (a) and temp (b) 

a) b)  
  
The partial dependence plot for Length (a) supports the positive correlation between length of the fire and 
PM2.5 emissions. Supporting the feature importance graph, the partial dependence plot of temp (b) shows 
that the model predicts there is an overall positive relationship between temperature and PM2.5 emissions.  
 

Figure 6. 
Partial Dependence Plots of precip (a) and dratio (b) 

a) b)  
  
The partial dependence plot of precip (a) shows an overall negative relationship between precipitation and 
PM2.5 emissions. Similarly the partial dependence plot for dratio (b) shows an overall negative relationship 
between electricity usage and PM.5 emissions.  
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Figure 7. 
Partial Dependence Plots of available_green, and income 

a) b)  
  
In addition to the feature importance graph showing available_green isn’t particularly important, the partial 
dependence plot (a) shows that the model predicts that there is no strong pattern in the relationship between 
the hectares of available green space and PM2.5 emissions. This is also the case with the partial dependence 
plot of income (b) where there is no strong pattern.  
 

Figure 8. 

a) b)  
  

Even though AcresBurned didn’t have a high feature importance score, the partial dependence plot (a) 
shows that the model predicts a positive relationship between the acres burned and PM2.5 emissions. The 
partial dependence plot for nearby_maxdensity (b) shows that the model predicts there is an overall slight 
positive relationship. Partial Dependence Plots of AcresBurned and nearby_maxdensity 
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4.3 Correlations 
 

Figure 9. 
Correlation between Features Heat Map using a Linear Relationship 

 
 
In addition to the GBC, linear relationships between independent variables shows that Length  cor-

relates with dangerous significantly more than the other features. (Figure 8) Other notable correlations are 
between nearby_maxdensity and available_green, as well as nearby_maxdensity and income. These corre-
lations are relatively strong, with values of 0.533 and 0.367 respectively. They make sense, as large cities 
would have a high density, as well as a lot of green space within and around it, and cities with higher 
densities, usually have higher median incomes.  
 

Figure 10. 
 
Pearson, Spearman, and Kendall tau Correlation Coefficient for Length vs PM2.5 max. 

 
 

With the Pearson Correlation Coefficient being 0.522 (Figure 10), there is a significant positive 
correlation between Length and the severity of PM2.5 emissions. With the Spearman Correlation Coeffi-
cient being 0.577 (Figure 10), there is a positive association between the two. The Kendall tau Correlation 
Coefficient of 0.424 (Figure 10) supports the positive association found with the Spearman Correlation 
Coefficient. All p values are near 0 indicating that the correlations are highly significant.  
 
Discussion 
 
It was hypothesized that AcresBurned, Length, available_green, nearby_maxdensity, dratio, income, temp, 
and precip would predict whether the level of PM2.5 emissions would jeopardize the health of humans. The 
results of a GBC provide an overall high predictive power, with an accuracy of 0.931 and an AUC of 0.911. 
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(Figure 1) This result is plausible since all the features included in the model have a logical connection to 
wildfire creation.  

The most important feature in the model is Length with a feature importance value of 0.109 +/- 
±0.009 (Figure 4). Not only was Length important in the GBC, but it was also important with linear rela-
tionships, as it had a correlation value of 0.538. (Figure 10) This makes sense because the longer a fire 
burns, the higher amounts of PM2.5 it will pollute. While the feature importance scores of the other features 
weren’t as high as Length, all the features had statistically significant scores, making them of secondary 
importance but still helpful in predicting the severity of PM2.5 emissions. The partial dependence plots 
support this conclusion, as only the plot for Length shows a strong relationship.  

Several limitations of the datasets used may explain why some of the features that were expected 
to be strongly predictive did not have high relative importance in the model. The only dataset available for 
green space was those within city limits of California cities, which is not necessarily the amount of vegeta-
tion at the site of the fire. The electricity usage dataset used to calculate dratio only had yearly averages, 
which isn’t ideal since electricity usage varies by month, and this variation could explain why dratio doesn’t 
have a high feature importance score. Temperature and precipitation datasets also suffer from a similar 
limitation because instead of having daily values, the dataset used only had monthly averages. The way the 
monthly temperature and precipitation averages were included may have addressed this limitation to a cer-
tain degree, but there still is plenty of noise within the dataset. The PM2.5 measurements weren’t neces-
sarily accurate because of the distance between air quality reading stations and the location of the fire. 
Environmental features could have introduced additional noise into the data, such as the wind blowing the 
smoke away from the stations, producing an inaccurate reading.  
 
Conclusion 
 
This paper addresses the problem of predicting whether the severity of PM2.5 emissions after a wildfire is 
detrimental to human health. The hypothesis is that acres burned, length in days, green space near the fire, 
population density close to the fire, electricity usage, income, temperature, and precipitation would be cru-
cial to predicting PM2.5 emissions. The results validate the hypothesis. The GBC had high accuracy as well 
as a decent AUC. Out of all the features, length had the highest feature importance. The lower feature 
importances for the other features could be from the noise in the dataset.  
 A continuation of this research project would be to get more precise 
datasets and add new features. Instead of relying on air quality reading sta-
tions not near fires, collecting PM 2.5 measurements at the actual fire site 
would be more precise. If possible, determining the wind speed would be a 
feature that could potentially increase the accuracy and AUC of the model. 
After plotting the fires on a topographical map of California, the fires all 
seemed to be located in the forests of the mountains and not in the farmland 
of Central Valley. This raises the potential of having land type as a new 
feature in a future model.  
 As mentioned before, the main goal of this study was to predict how 
dangerous a wildfire is based on PM2.5 emissions. The most important feature in the model is Length, 
which in real life is not an ideal way to predict if the PM2.5 threshold will be exceeded because length is 
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not a known value until after the fire. One remedy would be to change what Length represents. Instead of 
being the duration of the fire in days, it perhaps could be the number of days it takes to exceed the PM2.5 
emission threshold, or the length of the fire so far. 
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