
Fish Species Image Classification Using
Convolutional Neural Networks

Anishka Mohanty1, Guillermo Goldsztein# and Raphaël Pellegrin#

1Researcher Horizon Academics, India
#Advisor

ABSTRACT

This paper demonstrates the classification of various fish species using different machine learning methods. By
incorporating machine learning algorithms, modeling, and training, the project classifies fish species using neu-
ral networks with the help of multiple features like length, width, and more. Ultimately, this project attempts a
deeper analysis of the differences between determining fish species with PyTorch and TensorFlow. Convolu-
tional Neural Networks (CNN) is a powerful algorithm that is used in image classification problems. Python
has various libraries which can be used to build a model for the same purpose; the ultimate goal of this study is
to see whether using different libraries will affect the accuracy. I would like to see whether new and more
advanced methods can be used to classify large schools of fish rather than only in labs. I developed separate
Python codes using PyTorch and TensorFlow individually. Using each code, I obtained results, and in the end,
performed a comparative study between both to come to my conclusion. My main findings were that PyTorch
gave a more accurate prediction comparing to TensorFlow. I believe this was the case because the PyTorch
code incorporated neural networks with more layers, so it increased the training and validation accuracy. From
here, it is evident that while neither method necessarily possesses setbacks, PyTorch has a significant edge in
accuracy (99.75% to 87.22%). Therefore, when scientists apply classification with CNN, PyTorch may be more
optimal for producing better results.

Introduction

Our underwater ecosystem sustains over 34,000 species of fish in fresh and salt waters as of 2021. As the fish
population continues to ascend rapidly, eco-friendly fish classification through machine learning is an efficient
method to help analyze various features of fish for the determination of their species. To date, there are barely
any methods to analyze a large number of fish. Through pattern recognition and machine learning techniques,
scientists can examine fish on a larger scale. In this paper, I used convolutional neural networks to identify fish
species through binary classification across datasets.

Machine learning is an application of Artificial Intelligence (AI) to help construct detailed models
based on given data. Using the patterns determined from the modeling allows the user to predict based on any
additional data and therefore make a decision. The main aim of this project is to validate whether scientists can
use AI, precisely machine learning for sustainable fish classification. Likewise, this project also aims to check
for differences in accuracy and precision while using PyTorch and TensorFlow. This research will help scien-
tists determine which method is more conducive for higher quality classification.

This problem that I worked on belongs to a set of approaches known as supervised learning. Supervised
learning, in shorter terms, indicates any problem consisting of datasets with prescribed labels and features.
Using these prescriptions, the data can be trained into algorithms to formulate predictions. A particular example
consists of features (𝑥𝑥1, 𝑥𝑥2 , . . . , 𝑥𝑥𝑛𝑛) and label 𝑦𝑦. In this problem, each example, an image, consists of numerous
features where one feature corresponds to a pixel in the image. A pixel can hold any integer from 0 to 255.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 1

Normally, the label is an expected prediction of a model when new features from examples are inputted into
the model.

In Section 2, I take a look at the data and in Section 3, I describe the different methods that have been used
in the process to train the model. In Section 4, I obtain the results and discuss the quality of the model. Section
5 continues with a brief comparison between the results obtained with PyTorch versus TensorFlow.

Data

The project reuses a Kaggle Competition dataset with a file size of 2.76 KB which remains as the original
source. This dataset consists of exactly 18,000 fish images including the ground truth files. Samples of the data
can be seen below in Figure 1.

Figure 1. Sample of different species.

For training, the dataset was split into training and validation sets to build the model. The training
dataset is the main dataset which is used to train the model and observe patterns. The validation set is used for
validation of model created during training. Additionally, there is a testing dataset used to evaluate the trained
model for accuracy. The training set always contains the most amount of data followed by a test set and then
the validation set. Later, this data was split into 5040 training images, 2700 test data images and 1260 validation
dataset images once the ground truth files were removed for TensorFlow. In the case of PyTorch, the data was

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 2

split into a training set (7290 images), test data (900 images), and validation set (810 images). The input shape
for the TensorFlow problem was 200 x 200 versus the PyTorch one which was 128 x 128. Once the data was
augmented, this is how it looked like:

Figure 2. Data after augmentation

Method

Multi Classification Problem

A multi-classification problem is any problem that has more than two classes or categories. In this case, there
are 9 categories. Hence, this problem can be considered as a multi-classification problem i.e., each example
would belong to one of these categories. The categories were as follows: Black Sea Sprat, Red Mullet, Trout,
Striped Red Mullet, Shrimp, Red Sea Bream, Gilt-Head Bream, Hourse Mackerel and Sea Bass. For each pos-
sible category, a new variable was created. Because the labels were strings, I converted each categorical value
into a new categorical column and assigned a binary value to the column. It essentially formed a 1D array with
nine components. For example, an image categorized “Shrimp” had an array 0,0,0,1,0,0,0,0,0]. This pro-
cess is called One Hot Encoding. From the project, let’s take a look at the dataset before and after One Hot
Encoding.

Figure 3. Image directory with Class

Table 1. Image directory with label after One Hot Encoding

Image Directory
Black

Sea Sprat
Red Mul-

let
Striped

Red Mullet
Shrimp

Red
Sea

Bream

Gilt Head
Bream

Hourse
Macke-

rel

Sea
Bass

Trout

/content/Fish_Da-
taset/Fish_Da-
taset/Red Mul-

let/...

0 1 0 0 0 0 0 0 0

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 3

/content/Fish_Da-
taset/Fish_Da-
taset/Shrimp/...

0 0 0 1 0 0 0 0 0

/content/Fish_Da-
taset/Fish_Da-
taset/Trout/...

0 0 0 0 0 0 0 0 1

/content/Fish_Da-
taset/Fish_Da-
taset/Red Sea

Bream/…

0 0 0 0 1 0 0 0 0

/content/Fish_Da-
taset/Fish_Da-
taset/Black Sea

Sprat/…

1 0 0 0 0 0 0 0 0

/content/Fish_Da-
taset/Fish_Da-
taset/Hourse
Mackerel/…

0 0 0 0 0 0 1 0 0

/content/Fish_Da-
taset/Fish_Da-

taset/Sea Bass/…
0 0 0 0 0 0 0 1 0

/content/Fish_Da-
taset/Fish_Da-
taset/Gilt-Head

Bream/…

0 0 0 0 0 1 0 0 0

/content/Fish_Da-
taset/Fish_Da-

taset/Striped Red
Mullet/…

0 0 1 0 0 0 0 0 0

When the model is fed with a set of features as the input, it returns a prediction of the labels as its

output. This output, generally denoted by 𝑦𝑦�, is also a 1D array with nine components. This can be expressed as
𝑦𝑦� = [𝑦𝑦�1,𝑦𝑦�2 ,𝑦𝑦�3,𝑦𝑦�4 ,𝑦𝑦�5,𝑦𝑦�6 ,𝑦𝑦�7,𝑦𝑦�8 ,𝑦𝑦�9]. The value of 𝑦𝑦� is always a positive number and the sum ∑ 𝑦𝑦�𝑘𝑘9

𝑘𝑘=1 = 1.
𝑦𝑦�1translates to the probability of the example being labeled “Black Sea Sprat”, 𝑦𝑦�2 interprets the probability of
the example categorizing as “Red Mullet” and similarly for the other 𝑦𝑦�. Thus, if 𝑦𝑦�1 is greater than the other 8
𝑦𝑦�s, then the fish gets predicted as “Black Sea Sprat”. Likewise, if 𝑦𝑦�8 is larger than the other eight components,
then the fish is predicted as “Sea Bass”. This remains as a parallel case when any of the 9 components are
greater than the rest.

Logistic Regression

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 4

Basics
Logistic regression is a machine learning technique that is used to develop models in binary classification prob-
lems. With respect to multi classification problems, it becomes Multinomial Logistic Regression instead of
Binary Logistic Regression. In general, logistic regression is used to find the statistical probability of a category
based on prior observations. The probability 𝑃𝑃(𝑐𝑐 = 1|𝑥𝑥) that the input 𝑥𝑥 will be classified under class 𝑐𝑐 = 1 is
represented by the output 𝜎𝜎(𝑥𝑥). The sigmoid function is the function

𝜎𝜎(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 ⋅⋅⋅ (1)

Figure 4. Sigmoid Activation Function - 𝜎𝜎(𝑥𝑥)

Some properties of the sigmoid function are:
1. Range: 𝜎𝜎(𝑥𝑥)|{0 < 𝜎𝜎(𝑥𝑥) < 1}
2. As the value of 𝑥𝑥 decreases, it approaches towards 0 whereas, when the 𝑥𝑥 value increases, it ap-

proaches towards but does not go beyond 1.
3. From Figure 2, it is seen that 𝜎𝜎(𝑥𝑥) is an increasing function.
4. 𝜎𝜎(𝑥𝑥)= 0.5
Since this problem contains numerous parameters, it can be simplified generally into 𝑘𝑘 features. Calling

these features 𝑥𝑥1, 𝑥𝑥2 , . . . , 𝑥𝑥𝑘𝑘, the prediction 𝑦𝑦� will be in the form
𝑦𝑦� = 𝜎𝜎(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2+. . . +𝑤𝑤𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑏𝑏) ⋅⋅⋅ (2)
where 𝑤𝑤1,𝑤𝑤2, . . . ,𝑤𝑤𝑘𝑘 and 𝑏𝑏 are parameters that will help make the cross-entropy error on the training set mini-
mized.

Categorical Cross Entropy Error
As seen in the basics, logistic regression essentially calculates the probability 𝑃𝑃(𝑐𝑐 = 1|𝑥𝑥) = 𝜎𝜎(𝑥𝑥). Categorical
cross entropy error (a.k.a SoftMax error) also known as the loss function checks the difference between two
probability distributions from the test data for multiclass classifications. Assume there are 𝑘𝑘 features and 1
label. The features are denoted as 𝑥𝑥1, 𝑥𝑥2 , . . . , 𝑥𝑥𝑛𝑛 and the label as 𝑦𝑦. If there are 𝑡𝑡 labels, they are denoted
with 𝑦𝑦1,𝑦𝑦2 , . . . , 𝑦𝑦𝑡𝑡 . The predictions of label 𝑦𝑦 for 𝑡𝑡 labels are denoted by 𝑦𝑦�1,𝑦𝑦�2 , . . . ,𝑦𝑦�𝑡𝑡. If there are 𝑠𝑠 examples,
the features of the 𝑖𝑖𝑡𝑡ℎ example are denoted by 𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2 , . . . ,𝑦𝑦𝑖𝑖𝑘𝑘 and the scaled labels as 𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2 , . . . ,𝑦𝑦𝑖𝑖𝑡𝑡 for 𝑡𝑡 la-
bels. In the same manner, the predictions of the labels are written as 𝑦𝑦�𝑖𝑖1,𝑦𝑦�𝑖𝑖2 , . . . ,𝑦𝑦�𝑖𝑖𝑡𝑡 .

The function of the cross-entropy error is
𝐽𝐽𝐶𝐶𝐶𝐶 = −1

𝑠𝑠
∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 log (𝑦𝑦�𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑦𝑦�𝑖𝑖)𝑘𝑘

𝑖𝑖=1
𝑠𝑠
𝑖𝑖=1 ⋅⋅⋅ (3)

Here are some of the properties that are useful:
1. 𝐽𝐽𝐶𝐶𝐶𝐶(𝑦𝑦1,𝑦𝑦�1) ≥ 0
2. If𝑦𝑦1 = 𝑦𝑦�1, then 𝐽𝐽𝐶𝐶𝐶𝐶(𝑦𝑦1,𝑦𝑦�1) = 0
3. The loss will be zero when the prediction is one (same as the predicted label).
4. Since I used One Hot Encoding, the predictions for the other classes can be ignored and the loss for

the selected class can be found. This is called categorical cross entropy.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 5

Neural Networks and CNN

Neural networks are another mechanism used in machine learning to obtain more precise results and predictions.
In essence, they are another type of function that is more complex than logistic regression. Neural networks
parallel to neurons in our brain. In machine learning, the neurons pass on the input data through various func-
tions to obtain the output. The images are transformed into numbers and are generally arranged in matrices or
arrays. All those numbers are generally denoted by the letter 𝑥𝑥. 𝑋𝑋 is not just one number but a series of images.
The function of all these numbers is commonly denoted as 𝑦𝑦� of 𝑋𝑋. Neurons can be grouped in the layers: Input
layer, Hidden Layer and Output Layer. Figure 5 showcases a simple demonstration of neural networks.

Figure 5. Simple Representation of Neural Networks. The input layer has 2 nodes, the hidden layer has 4 nodes,
and the output layer has 2 nodes in this example.

Neural networks have several parameters:
1. They have 𝑘𝑘 features and 𝑠𝑠 labels. In this example, there are two features and two labels.
2. For the number of layers in the network, there are 𝐿𝐿 layers where the input layer is not

counted. Hence for Figure 5, there are two layers.
3. There is one input layer (layer 0), 𝐿𝐿 − 1 hidden layers and one output layer (layer 3).
4. Layer 𝑙𝑙 has 𝑛𝑛[1] nodes where 𝑛𝑛[0] = 𝑘𝑘 and 𝑛𝑛[𝐿𝐿] = 𝑠𝑠.
5. Every node in a single layer is connected to all the nodes in the subsequent layer.

In a multi classification problem, the activation function used here is the ReLU (rectified linear unit)
function. The ReLU function is the function:

relu(𝑥𝑥) = �𝑥𝑥 if 𝑥𝑥 > 0
0 if 𝑥𝑥 ≤ 0 ⋅⋅⋅ (4)

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 6

Figure 6. ReLU Activation Function - relu(𝑥𝑥)

Convolutional Neural Networks also called CNN are a type of neural networks which are used for
image classification. There are 3 types of layers in CNN: Convolutional Layer for converting the pixels into
one value, Pooling Layer for reducing the dimensions and Fully Connected Layer where all inputs from one
layer connect to every activation node in the next layer.

Results

I executed the project two ways, with PyTorch and TensorFlow. PyTorch is an advanced mechanism that opti-
mizes and trains models for accurate results especially when there is a usage of neural networks. On the other
hand, TensorFlow is a simple machine learning method also used in building models by taking inputs as mul-
tidimensional arrays. In both projects, I used an epoch of 10. An epoch is the number of times the computer
will work through the training dataset. It is a hyperparameter, which means that it can be changed. I also looked
at the validation and training accuracy and loss. The validation and training accuracy are accuracies based on
the specific data set. Simultaneously, I determined the accuracy of the validation images and training images.
Here are the results for PyTorch and TensorFlow:

Figure 7. Results of Precision for Modeling

Table 2. Results For Modelling With TensorFlow

Epoch Accuracy on Validation Images Accuracy on Training Images

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 7

1/10 25.317 16.825

2/10 43.175 31.667

3/10 54.603 44.504

4/10 55.556 52.242

5/10 65.794 59.544

6/10 67.857 67.183

7/10 78.810 72.262

8/10 81.111 77.262

9/10 87.778 81.171

10/10 87.222 82.540
1All data are accurate with 5 significant figures. 3 decimal places have been used for the level of ac-

curacy.

Figure 8. Results of Training vs Validation Accuracy

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 8

Figure 9. Results of Training vs Validation Loss

Table 3. Results For Modelling With PyTorch

Epoch Accuracy on Validation Images Accuracy on Training Images

1/10 98.025 84.733

2/10 98.642 97.901

3/10 99.136 98.861

4/10 99.506 99.053

5/10 99.877 99.204

6/10 99.630 99.314

7/10 99.877 99.424

8/10 99.753 99.588

9/10 99.630 99.506

10/10 100.000 99.739
1All data are accurate with 5 significant figures. 3 decimal places have been used for the level of ac-

curacy.

Quality of a Model

To improve the quality of a model, one can add more layers in the neural network. As the number of layers
increases, the complexity increases and error in the validation set decreases resulting in a more accurate predic-
tion. More data can also be added to the training dataset for reduction of biasedness. Another method can be
minimizing overfitting and underfitting.

In most data, the outputted labels are not 100% the predictions that will be expected. Underfitting is a
term used when the model cannot capture a pattern of the inputted data, mainly due to the minimal amount of
data being processed. One potential method to address this is by feeding in more data into the dataset. Again,
the model can be made more complex by adding
more layers. Unlike this project, if there were to be some inconsistent data, missing information or a noise
(meaningless/unnecessary data) created in the set, it would be recommended to remove them to prevent fluctu-
ations in the accuracy.

On the other hand, overfitting occurs when |𝑦𝑦 − 𝑦𝑦�| ≪ noise. When there is an overload of data fed into
the model, categorization of the data becomes faulty due to an abundance of unnecessary data. The model starts
to follow the pattern of meaningless data in turn giving a lower accuracy. As a solution, one might consider
decreasing the overfitting by increasing the number of training examples, but this may not always be feasible.
Instead, there are two possible methods that can be used:

Splitting of the training dataset further into training set and validation set

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 9

As seen in before, I split the dataset into training and validation. Unlike the training dataset which was used to
train the model, the validation set remained unused for training and was thus better at revealing errors. In the
validation set, a selection of various hyperparameters can be made to help minimize the error.

Figure 10. Underfitting and Overfitting with Different Degrees

From Figure 7, it is evident that Degree 4 gives the most accurate model where the error is the small-
est.

Normally, the Mean Square Error (MSE) is a loss function which is used to minimize the error in a
problem. The squared error is shown as 𝑆𝑆𝑆𝑆(𝑦𝑦�, 𝑦𝑦) = (𝑦𝑦� − 𝑦𝑦)2. The MSE is the average of all the squared er-
rors and it can be denoted as

 𝐽𝐽𝑀𝑀𝑀𝑀𝐶𝐶 = 1
𝑛𝑛
∑ (𝑦𝑦𝑛𝑛� − 𝑦𝑦𝑛𝑛)2𝑛𝑛
𝑖𝑖=1 ⋅⋅⋅ (5)

The smaller the error, the more accurate the predictions. I will not describe the algorithms used to
find the error and hyperparameters as they are easily locatable through libraries like Keras.

Figure 11. Mean Square Error

Regularization

Going back to Section 3.2.1, there are different parameters that are present in the function. In neural networks,
they are called 𝑤𝑤𝑖𝑖𝑖𝑖

[𝑙𝑙] and 𝑏𝑏[𝑙𝑙] which minimize the error. Similar to Method 1, one may split the training dataset
into a validation set and training set. Assume 𝑛𝑛 to be the number of training examples (in this case, it was 5040
images or 7290 for PyTorch). The function for regularization is defined as:

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 10

𝐽𝐽𝑟𝑟𝑒𝑒𝑟𝑟 = 𝐽𝐽 + 𝜆𝜆

𝑛𝑛
Σ(𝑤𝑤𝑖𝑖𝑖𝑖

[𝑙𝑙])2 ⋅⋅⋅ (6)
Note that 𝜆𝜆 is a hyperparameter so its value can be altered to help find the smallest error in the valida-

tion set. While minimizing 𝐽𝐽 selects parameters that attain accurate predictions on the training set, the addition
of the second term in 𝐽𝐽reg penalizes large values of the parameters 𝑤𝑤𝑖𝑖𝑖𝑖

[𝑙𝑙] which smoothens the model. So, the
minimization of the sum of both terms simultaneously tries to keep the predictions on the training set accurate
and control the parameter’s size.

Analysis of the Outputs

Accuracy of predictions is defined as the number of correct predictions divided by the number of total predic-
tions made. Looking back at Table 2 and Table 3, I noticed that the accuracy obtained when using PyTorch was
more precise and closer to 100%. With 99.75% accuracy on validation images, 99.84% accuracy on train im-
ages, and 99.67% accuracy on test images, I concluded that PyTorch appeared to be a more effective and precise
mechanism for modeling large numbers of data. Since the accuracy was close to 1 in this case, the output may
be correct. However, with TensorFlow, the precision of classification for a certain type of species like Sea Bass
and Gilt-Head Bream could definitely be fixed with a better model. Having the same number of epochs, the
validation loss in PyTorch was smaller in comparison to that of TensorFlow. TensorFlow also gave an accuracy
of 87.2% so, possibly with an increase in epoch, the accuracy may increase. Having the accuracy of the valida-
tion set > accuracy of the training set indicated that there was no overfitting which was a good result.

Acknowledgments

I wish to express my sincere gratitude to my instructor, Professor Guillermo Goldzstein for his guidance all
throughout the program. I would also like to thank my TA, Mr. Raphaël Pellegrin, and my family for their
constant support.

References

GERON, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,

Tools, and Techniques to Build Intelligent Systems. O'Reilly.

Ulucan, O. (2021, April 28). A Large Scale Fish Dataset. Kaggle. Retrieved June 23, 2022, from

https://www.kaggle.com/crowww/a-large-scale-fish-dataset

Manure, A., & Singh, P. (2020). Learn tensorflow 2.0: Implement machine learning and deep learning

models with python. Apress.

Stevens, E., Antiga, L., Viehmann, T., & Chintala, S. (2020). Deep learning with pytorch: Build, train, and

tune neural networks using python tools. Manning Publications.

Menard, S. W. (2010). Logistic regression: From introductory to advanced concepts and applications.

SAGE.

Haykin, S. S. (2016). Neural Networks and Learning Machines, 3d Edition. Pearson.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 11

Gulli, A., & Pal, S. (2017). Deep learning with keras: Implementing deep learning models and neural
networks with the power of python. Packt Publishing.

G. Chen, P. Sun and Y. Shang, "Automatic Fish Classification System Using Deep Learning," 2017 IEEE
29th International Conference on Tools with Artificial Intelligence (ICTAI), 2017, pp. 24-29, doi:
https://doi.org/10.1109/ICTAI.2017.00016.

S. Liawatimena et al., "A Fish Classification on Images using Transfer Learning and Matlab," 2018
Indonesian Association for Pattern Recognition International Conference (INAPR), 2018, pp. 108-112, doi:
https://doi.org/10.1109/INAPR.2018.8627007.

Xiu Li, Min Shang, H. Qin and Liansheng Chen, "Fast accurate fish detection and recognition of underwater
images with Fast R-CNN," OCEANS 2015 - MTS/IEEE Washington, 2015, pp. 1-5, doi:
https://doi.org/10.23919/OCEANS.2015.7404464.

Volume 11 Issue 3 (2022)

ISSN: 2167-1907 www.JSR.org 12

https://doi.org/10.1109/ICTAI.2017.00016
https://doi.org/10.1109/INAPR.2018.8627007
https://doi.org/10.23919/OCEANS.2015.7404464

