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ABSTRACT 
 
The true nature of dark matter is an extremely important and fundamental problem in the study of astrophysics, particle 
physics, cosmology and many other areas within the study of physics. This paper presents experimental evidence for 
the existence of dark matter through discussing the experimental results of mass profiling a galaxy and gravitational 
lensing. The fundamental properties of dark matter are then discussed, and evidence for these properties is presented. 
This allows further discussion of one of the most promising models of dark matter - the axion. The purpose of this 
paper is to present the evidence for the axion model, describe the nature of the theoretical axion particle, and to high-
light the effects this model would have on other theories in physics such as solving the Strong CP Problem in the 
theory of quantum chromodynamics.  
 

Introduction 
 
The nature of dark matter is an extremely prominent and fundamental problem in many fields within physics such as 
astrophysics, particle physics and cosmology. According to studies, dark matter takes up 27% of the universe, signif-
icantly more than normal, observable matter, which takes up a mere 5% of the universe (Saleh, Alizadeh, & Dalili, 
2020). This fact alone already makes ascertaining the true nature of dark matter extremely important. Furthermore, 
depending on the nature of dark matter, previously established fundamental physics theories such as the Standard 
Model and Quantum Chromodynamics may need to be altered leading to a greater understanding of cosmology as a 
whole. As such, researchers have been working to establish models for dark matter and testing them experimentally. 

The biggest problem in building a working model for dark matter is how difficult it is to observe. The influ-
ence of its mass has been detected from experiments such as mass profiling and gravitational lensing. However, it 
doesn’t interact with light, it cannot be visually observed, and it’s very hard to detect its interactions with normal matter 
as it is almost collision-less. Despite these limitations, there are promising models for dark matter such as axions, 
WIMPs (Weakly Interacting Massive Particles), and primordial black holes (Bertone & Hooper, 2016). This paper 
will be discussing the axion dark matter model. 

Axions are very small and very light bosonic particles that can be described as a classical field, similar to 
how photons can be described via an electromagnetic field. Axions have a few properties that make it a strong dark 
matter candidate (Garcia Irastorza, 2022). 

First, they have a clear production mechanism. At the start of the universe, the axion field was frozen. As the 
universe began to cool, the graph of the potential of axions changed such that there were multiple potential minima. 
Oscillations around these potential minima are also known as particles. 

Second, the existence of the axion solves the Strong CP Problem. It has been noted that both the strong and 
weak forces should violate CP symmetry. However, this violation has not been observed in the strong force. The axion 
field provides a clear the strong force to preserver CP symmetry. 

The purpose of this paper is to describe the axion model, present the evidence for the axion particle being 
dark matter, and highlight the significance of this on other theories in the study of physics. 
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Evidence for Dark Matter 
 
The existence of dark matter is widely accepted by the physics community due to overwhelming evidence for it. This 
section will discuss some of this evidence, and how it was discovered. One of these important pieces of evidence came 
from mass profiling a galaxy. 
 
Measuring the mass enclosed by an orbit 
 
In order to get the mass profile of a galaxy, we must first obtain an expression for the mass enclosed within a certain 
radius from the center of a galaxy. Using the formula for Newton’s law of gravitation, and the formula for the cen-
tripetal force on an object in a circular motion, the following equation can be obtained. 
 

𝑚𝑚𝑣𝑣2

𝑟𝑟
=
𝐺𝐺𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟)𝑚𝑚

𝑟𝑟2
 

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) =
𝑣𝑣2𝑟𝑟

𝐺𝐺
 

Where 𝑚𝑚 is the mass of a test particle, 𝑣𝑣 is its circular velocity, 𝑟𝑟 is the radius from the center of the galaxy, 𝐺𝐺 is the 
gravitational constant, and 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) is the mass enclosed within 𝑟𝑟. Therefore, if the velocity and radius of an object 
orbiting the center of the galaxy can be obtained, the galaxy’s mass profile can also be discerned (Zwicky, 2009). 
 
Measuring the velocity of an object in orbit 
 
The velocity of an object in orbit can be obtained via examining and comparing spectral lines. Atoms of specific 
elements will have distinct absorption and emission spectra resulting from the discrete energy drops between electron 
shells only allowing specific wavelengths of light to be absorbed/emitted. Using this knowledge, we can compare the 
spectral lines of an element such as hydrogen from a distant galaxy to the spectral lines of hydrogen in a lab. There 
will be a difference known as a red-shift/blue-shift, that can be used to calculate the velocity of the object that emitted 
the spectral line. This shift in the spectral lines arises due to the Doppler Effect. 
The Doppler Effect affects the observed frequency of light. As the vast majority of galaxies are moving away from 
us, light observed from a distant galaxy will likely be red-shifted. This is because the relative speed of the distant 
galaxy causes an observed decrease in the frequency of light coming from it. The following formula allows the calcu-
lation of velocity from red-shift. 
 

𝑣𝑣 =
𝑒𝑒𝑓𝑓observer

𝑓𝑓emitter − 𝑓𝑓observer
 

 
Where 𝑒𝑒 is the speed of light in a vacuum, 𝑓𝑓

observer
 is the frequency of light as seen by an observer on earth, and 𝑓𝑓

emitter
 

is the frequency of light from the perspective of the galaxy that emitted the light (Zwicky, 2009). 
 
The results from mass profiling a Galaxy 
 
Before physicists used the mass enclosed within orbits of different radii to get the mass profile of a galaxy, the general 
consensus was that galaxies contained most of their mass in their center, where the vast majority of stars and planets 
lie as well as dilute interstellar gas composed mainly of hydrogen. There was expected to be a small amount of mass 
on the outer rims of the galaxy due to outlier stars and planets as well as smaller quantities of dilute interstellar gas 
but nothing significant. Hence, a graph of 𝑣𝑣2 against 𝑟𝑟 was plotted. From equation 1, if 𝑀𝑀 is constant, then 𝑣𝑣2 should 
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decrease with radius until 0. However, as 𝑀𝑀 is changing depending on 𝑟𝑟, physicists expected 𝑣𝑣2 to rapidly increase 
near the center of the galaxy, to a maximum, then decrease to 0 as the 1

𝑟𝑟
 term dominates the 𝑀𝑀 term. This is because 

the mass was expected to increase rapidly at the center of the galaxy, then increase at a slower rate as 𝑟𝑟 increased such 
that 𝑑𝑑𝑑𝑑

𝑑𝑑𝑟𝑟
 approaches 0 (Bertone & Hooper, 2016). 

These experiments were first performed in 1970 (Rubin & Ford, 1970), by Vera Rubin, who took measure-
ments from the Andromeda Galaxy, and plotted this graph of 𝑣𝑣2 against r. Upon doing so, she found that 𝑣𝑣2 did not 
decrease significantly as expected but instead stayed significant even with large values of r. She repeated this experi-
ment in 1978 (Rubin, Ford & Thonnard, 1978) with more galaxies and obtained the same result. These surprising 
results were also supported by Fritz Zwicky’s experiment in 1933 (Zwicky, 2009), who did the same experiment with 
galaxy clusters as opposed to singular galaxies. As such, this implies that the 𝑀𝑀 term was still quite dominant and was 
increasing at a significant rate far out in the galaxy. The only explanation for this is that there is some matter with a 
significant mass in the outer regions of galaxies - dark matter. 

 
Figure 1. Rotation Curve of the Andromeda Galaxy as done by Vera Rubin (1970) (Rubin & Ford, 1970) 
 

Properties of Dark Matter 
 
Empirically, we know that dark matter has 4 important properties. 
1. It is dark, meaning that it does not interact with electromagnetic radiation. 
2. It behaves like matter (as demonstrated from the results of mass profiling a galaxy). 
3. It is cold, meaning that dark matter particles have kinetic energies much smaller than their mass energies. 
4. It is collision-less, meaning that it doesn’t interact very strongly with normal matter or itself. 
 
The fact that dark matter is dark is fairly obvious. If it wasn’t dark, then we would be able to see it. The fact that dark 
matter behaves like matter is also obvious, as it is for this reason that physicists postulated the existence of dark matter 
to begin with. However, the other two properties are more difficult to discern. 
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How we know that Dark Matter is cold 
 
One piece of evidence for dark matter being cold is that if it were hot, it would have enough energy to escape the 
galaxy in which it resides. The escape velocity for a galaxy is given by the following formula: 
 

𝑣𝑣escape
2 =

2𝐺𝐺𝑀𝑀

𝑟𝑟
 

 
Upon substituting the values of mass and radii for a variety of galaxies, it was found that the average escape velocity 
for a galaxy is significantly less than the speed of light. Because there is still a large amount of dark matter within 
galaxies, the speed of dark matter should also be much less than the speed of light. As such, on a natural scale, dark 
matter is cold. 

Another piece of evidence for dark matter being cold is that it had to be cold in order to collapse and form 
structures like galaxies and galaxy clusters. If we assume that dark matter has a spherical distribution and consider the 
force on an object with mass m that lies at the edge of said sphere, the following equation can be obtained. 
 
 

𝐹𝐹 =
−𝐺𝐺𝑀𝑀𝑚𝑚
𝑟𝑟2

= 𝑚𝑚𝑚𝑚 

 
Where 𝐹𝐹 is the force experience by mass 𝑚𝑚. 
 

𝑚𝑚 =
−𝐺𝐺𝑀𝑀
𝑟𝑟2

=
−𝐺𝐺𝜌𝜌dark matter𝑉𝑉

𝑟𝑟2
≈
−𝐺𝐺𝜌𝜌dark matter𝑟𝑟3

𝑟𝑟2
= 𝐺𝐺𝜌𝜌𝑟𝑟 =

𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑

≈
𝛥𝛥𝑣𝑣m

𝛥𝛥𝑑𝑑free fall
 

 
Where 𝑑𝑑free fall is the time taken for mass m to reach the center of the spherical distribution of mass and 𝑣𝑣m is the 
velocity of mass m 

𝐺𝐺𝜌𝜌𝑟𝑟𝑑𝑑free fall = 𝑣𝑣m 
 
𝐺𝐺𝜌𝜌𝑟𝑟𝑑𝑑free fall

2 ≈ 𝑟𝑟sphere 
 

𝑑𝑑free fall ≈
1

√𝐺𝐺𝜌𝜌
 

Since we know that dark matter collapses and forms structures, 𝑣𝑣initial ⪅ 𝑟𝑟√𝐺𝐺𝜌𝜌. 
 
By substituting values of density and radius of galaxies into the inequality above, it is found that the velocity of dark 
matter is much less than the speed of light, meaning that dark matter must be cold. It should be noted that the expansion 
of the universe was not taken into account. However, even when taking this into account, the same conclusion is 
reached (Spergel, & Steinhardt, 2000). 
 
How we know that Dark Matter is collision-less 
 
From Einstein’s Theory of General Relativity, we know that gravity can cause light to bend, hence a large enough 
mass in space can act as a lens for light, bending it and making it appear as if it came from somewhere else. As such, 
we can use this phenomenon to determine the mass distribution of a large object such as a galaxy cluster by comparing 
the strength of gravitational lensing it causes in different regions. 
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When observing the Bullet Cluster, a galaxy cluster that consists of 2 colliding galaxies, examining the be-
havior of the galaxies’ constituents gives interesting results. The planets and stars in the galaxies almost never collide 
with each other due to their small size relative to the distance between them. Conversely, the large amount of hydrogen 
gas in the galaxies does collide with itself, as the distance between hydrogen atoms is very small. The mass of hydro-
gen gas in a galaxy is greater than the mass of its planets and suns, hence without taking dark matter into account, 
gravitational lensing should be strongest in the center of the galaxy cluster due to the collisions between the hydrogen 
atoms. However, gravitational lensing is actually strongest at the edges of the cluster, where the planets and stars lie. 
This suggests that something of a very significant mass lies on the edges of the bullet cluster - dark matter. This implies 
that dark matter is collision-less, because if it collided with itself, then the gravitational lensing would still be strongest 
in the center of the galaxy cluster, with both hydrogen gas as well as dark matter being there (Clowe et al., 2006). 
 

Axions 
 
Now that the properties of dark matter and the evidence for them have been discussed, we can now discuss the possible 
models for dark matter. Although we currently are uncertain of what exactly dark matter is, there are some very strong 
models for it, one of them being the axion. An axion is a theoretical particle that has a very small mass (much less 
than 1eV), 0 charge, and 0 spin, making it a boson. Axions also are pseudo-scalars, which means that they act as 
scalars that flip sign under a parity inversion. A parity inversion refers to the flip in the sign of a spatial coordinate 
and is effectively a reflection. 
 
Mass range for bosonic dark matter 
 
Because axions are a bosonic model of dark matter, we can find its mass range. Bosons have a special property, they 
do not have to obey Pauli’s exclusion principle. This means that they can “stack on top of each other". In other words, 
it is possible for there to be more than 1 boson per de Broglie Volume. 
 
Every particle has a wavelength associated with it known as the de Broglie wavelength. 
 

𝜆𝜆de Brogile ≈
1

𝑚𝑚𝑣𝑣
 

 
Consider a volume of 𝜆𝜆de Broglie

3 . This is known as the de Broglie Volume. 
 
The maximum possible density of a non-relativistic fermion field is one particle per de Broglie Volume. We can use 
this to define a mass range for which a particle must be a boson if it is dark matter. 
Consider a scenario in which there is one particle per de Broglie Volume. To model this scenario, we can use the 
following expression. 
 

𝜌𝜌dark matter ≈ 𝑚𝑚dark matter𝑒𝑒dark matter 
 
where 𝑒𝑒dark matter is the number of dark matter particles within a given volume, 𝑚𝑚dark matter is the mass of said dark 
matter, and 𝜌𝜌dark matter is its density. This expression can be rearranged to obtain:  

 
𝑒𝑒dark matter ≈

𝜌𝜌dark matter

𝑚𝑚dark matter
. 
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The following series of expressions can now be written to postulate the mass range for bosonic dark matter. 
 

𝑒𝑒𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒 𝑠𝑠𝑎𝑎𝑒𝑒 𝑑𝑑𝑒𝑒𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑉𝑉𝑎𝑎𝑒𝑒𝑙𝑙𝑚𝑚𝑒𝑒 ≈ 𝑒𝑒𝑑𝑑𝑚𝑚𝑟𝑟𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟𝜆𝜆𝑑𝑑𝑒𝑒𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒
3 ≈

𝜌𝜌darkmatter

𝑚𝑚darkmatter
4 𝑣𝑣3 < 1 

Where 𝑒𝑒axions in de Broglie Volume is the number of axions in the de Broglie Volume, 𝑣𝑣 is the velocity of dark matter, and 
𝜆𝜆de Broglie is the de Broglie wavelength. 
 

𝑚𝑚dark matter > (
𝜌𝜌dark matter

𝑣𝑣3 )
1
4 

𝜌𝜌𝑑𝑑𝑚𝑚𝑟𝑟𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟 ≈
0.3𝐺𝐺𝑒𝑒𝑉𝑉

𝑒𝑒𝑚𝑚3  

 
(Note: this is the local dark matter density in the milky way (Brézin, 2021))  
Using the mass of the milky way of approximately 1012 solar masses, and the radius of the milky way of approxi-
mately 105 light years, we find that the virial velocity of local dark matter ≈ 10-3𝑒𝑒 
 

𝑣𝑣dark matter ≈ 10-3 
 
Where 𝑣𝑣dark matter is the velocity of a dark matter particle 
 

∴ 𝑚𝑚fermionic dark matter ≥ 7eV 
 
Where 𝑚𝑚fermionic dark matter is the mass of a fermionic dark matter particle 
 

∴ 𝑚𝑚bosonic dark matter < 7eV 
A more sophisticated calculation was performed in 1979 by Scott Tremaine, and James E. Gunn (Tremaine & Gunn, 
1979). In their paper they calculated that mass range for which dark matter must be bosonic is: 
 

∴ 𝑚𝑚bosonic dark matter < 101eV 
 
As such, any particle with mass more than 7eV can either be a boson or fermion, but any particle with mass less than 
approximately 7eV must be a boson. For this reason, we can describe axions as a classical field (Peccei & Quinn, 
1977). 
 
Scalar Field Dark Matter 
 
In order to better describe the axion, we should first consider an expression for the Newtonian behavior of normal 
matter. Newton’s second law states that 𝐹𝐹 = 𝑚𝑚𝑚𝑚 where 𝐹𝐹 is force, 𝑚𝑚 is the mass of the object that experiences this 
force, and 𝑚𝑚 is the acceleration of mass 𝑚𝑚 as a result of this force. Since 𝑚𝑚 is the second time derivative of displace-

ment, we can rewrite 𝑚𝑚 as 𝑎𝑎
¨
, where 𝑎𝑎 is the degree of freedom of mass 𝑚𝑚. We can further consider the potential of 

this Newtonian object. It is known that 𝐹𝐹 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, where 𝑉𝑉 is the potential of the object with mass 𝑚𝑚. With this 
knowledge, the following expression can be obtained. 
 

𝑚𝑚𝑎𝑎
¨

+
𝑑𝑑𝑉𝑉
𝑑𝑑𝑎𝑎

= 0 
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𝑎𝑎
¨

+
𝑑𝑑𝑉𝑉
𝑑𝑑𝑎𝑎

1
𝑚𝑚

= 0 

 
This is a second order differential equation. Because Newtonian physics works in this way, a reasonable place to begin 
creating a theory for the axion would also be with a second order differential equation. 
Consider the following second order differential equation model for an axion. 
 

𝜕𝜕t
2𝜙𝜙 +

𝜕𝜕𝑉𝑉(𝜙𝜙)
𝜕𝜕𝜙𝜙

= 0 

 
Where 𝜙𝜙 is the degree of freedom of the axion, 𝜕𝜕t

2 is the second time derivative of 𝜙𝜙, and 𝑉𝑉(𝜙𝜙) is some function of 
𝜙𝜙 that gives the value of potential. 
 
This is the simplest possible description of the axion. However, there is a clear problem with this expression - it is not 
Lorentz invariant. Einstein’s famous mass energy equation states that 𝐸𝐸2 = 𝑚𝑚2 + 𝑝𝑝2, where 𝐸𝐸 is energy, 𝑚𝑚 is mass, 
and 𝑝𝑝 is momentum. We know that mass is Lorentz invariant, hence 𝐸𝐸2 − 𝑝𝑝2 must also be Lorentz invariant. 
Hence, in order to make the previous expression Lorentz invariant, another term must be added. 
 

𝜕𝜕t
2𝜙𝜙 − 𝜕𝜕x

2𝜙𝜙 +
𝜕𝜕𝑉𝑉(𝜙𝜙)
𝜕𝜕𝜙𝜙

= 0 

 
Where 𝜕𝜕x

2𝜙𝜙 is the second space derivative of 𝜙𝜙. This term is added because energy is closely related to changes in 
time, while momentum is closely related to changes in space. For simplicity’s sake, 𝜕𝜕x will be expressed as 𝛻𝛻. 
Using this to rewrite the previous expression gives: 
 
 

𝜕𝜕t
2𝜙𝜙 − 𝛻𝛻2𝜙𝜙 +

𝜕𝜕𝑉𝑉(𝜙𝜙)
𝜕𝜕𝜙𝜙

= 0 

 
It turns out that the above expression in a flat space-time is very accurate. However, we know from Einstein’s theory 
of General Relativity that this is not the case. In an expanding spacetime, the above expression becomes: 
 
Equation 1: Scalar field dark matter equation 

𝜕𝜕t
2𝜙𝜙 + 3𝐻𝐻(𝑑𝑑)𝜕𝜕t𝜙𝜙 −

𝛻𝛻2

𝑚𝑚2 𝜙𝜙 +
𝜕𝜕𝑉𝑉(𝜙𝜙)

𝜕𝜕𝜙𝜙
= 0  

 
Where 𝑚𝑚 is the scale factor of the universe, and H is the Hubble parameter, defined as 𝑎𝑎

·

𝑎𝑎
 (De Jesus, Pereira, Malatrasi 

& Oliveira, 2016). 
 
Proof checking the scalar field equation for an axion 
 
The expression found in the previous section seems to describe axions quite accurately. However some checks must 
be performed before it can be certain that this scalar field behaves like dark matter. The most important thing to check 
is whether this expression allows axions to behave like matter - an important property of dark matter. To verify this, 
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we can check whether the energy density of axions that behave as described by the previous expression dilutes cor-
rectly as the universe expands. 

Consider an arbitrary amount of axions within a box of finite space. The energy density of this box can be 
written as 𝜌𝜌 = 𝐸𝐸box

𝑑𝑑box
. Consider a scenario in which this box expands such that each of its dimensions increases with 

scale factor 𝑚𝑚. In this scenario, matter dilutes as 𝜌𝜌 ∝ 1
𝑎𝑎3

. Hence, because dark matter behaves like normal matter, an 

expression for the energy density of dark matter should be found in order to check if it also dilutes as 𝜌𝜌 ∝ 1
𝑎𝑎3

. 
The energy density of 𝜙𝜙 is equal to its kinetic energy plus its potential energy. 
 

Kinetic Energy ∼
1
2
𝑚𝑚𝑣𝑣2 ∼

1
2
𝜙𝜙
˙
2 +

1
2

(𝛻𝛻𝜙𝜙)2 

 
Potential Energy ∼ 𝑉𝑉(𝜙𝜙) 
 

𝜌𝜌𝜙𝜙 ∼
1
2
𝑚𝑚𝑣𝑣2 ∼

1
2
𝜙𝜙
˙ 2

+
1
2

(𝛻𝛻𝜙𝜙)2 + 𝑉𝑉(𝜙𝜙) 

 
Where 𝜌𝜌𝜙𝜙 is the energy density of dark matter. 

 
Consider the homogeneous part of Equation 1 where there is no spatial derivative term. 
 
Equation 2: Homogenous part of Equation 1 
 

𝜕𝜕t
2𝜙𝜙 + 3𝐻𝐻(𝑑𝑑)𝜕𝜕t𝜙𝜙 +

𝜕𝜕𝑉𝑉(𝜙𝜙)
𝜕𝜕𝜙𝜙

= 0 

 
Let 𝑉𝑉(𝜙𝜙) be some arbitrary function of 𝜙𝜙 that can be Taylor expanded to form some polynomial with arbitrary 
coefficients. 
 
Equation 3: Equation for the potential of 𝜙𝜙 
 

𝑉𝑉(𝜙𝜙) ∼ 𝑒𝑒0 + 𝑒𝑒1𝜙𝜙 + 𝑒𝑒2𝜙𝜙2 + 𝑒𝑒3𝜙𝜙3. .. 
 
At small values of 𝜙𝜙, the higher order polynomial terms are negligible. Furthermore, if we consider the potential at a 
minimum, there is a stationary point. As such, the first derivative of the potential is 0, hence 𝑒𝑒1 is also 0. Hence we 
only have to consider the order 2 term. 
 
Equation 4: Order 2 term for the potential of 𝜙𝜙 
 

𝜕𝜕𝑉𝑉(𝜙𝜙)
𝜕𝜕𝜙𝜙

∼ 𝑚𝑚2𝜙𝜙 

 
Later, it will become evident that the equation for 𝑉𝑉(𝜙𝜙) is very similar to the simple harmonic oscillator equation, 
where 𝑒𝑒2 is the coefficient that represents the natural oscillation frequency of the 𝜙𝜙 degree of freedom. As oscillation 
frequency is closely related to energy, and most of an axion’s energy comes from its mass, let 𝑒𝑒2 be 1

2
𝑚𝑚2, where 1

2
 is an 

arbitrary coefficient used to remove the factor of 2 on the right-hand side of Equation 4. Substituting Equation 4 into 
Equation 2 gives: 
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Equation 5: Equation obtained from substituting Equation 4 into Equation 2 
 

𝜕𝜕t
2𝜙𝜙 + 3𝐻𝐻(𝑑𝑑)𝜕𝜕t𝜙𝜙 + 𝑚𝑚2𝜙𝜙 = 0 

 
Because this expression looks similar to the expression for a simple harmonic oscillator, a sensible guess for a solution 
for 𝜙𝜙 is in the form 𝜎𝜎𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖. Where 𝜔𝜔 is an angular velocity, and 𝜎𝜎 is some coefficient. Substituting this form into 
Expression 5 and evaluating respective time derivatives gives the following: 
 

(−𝜔𝜔2 + 3𝜔𝜔𝑎𝑎𝐻𝐻(𝑑𝑑) + 𝑚𝑚2)(𝜎𝜎𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖) = 0 
 
Upon using the quadratic formula on the left-hand term, the following expression can be obtained 
 

𝜔𝜔 = 𝑎𝑎
3𝐻𝐻(𝑑𝑑)

2
± �𝑚𝑚2 −

9𝐻𝐻(𝑑𝑑)
4

 

 
When 𝐻𝐻 ≪ 𝑚𝑚 in late times in the universe, 𝜔𝜔 ≈ ±𝑚𝑚 + 𝑎𝑎 3𝐻𝐻(𝑖𝑖)

2
. Substituting this into the original guess for the solution of 𝜙𝜙, 

𝜎𝜎𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 gives the following: 
 

𝜎𝜎 ∼ 𝜎𝜎0𝑒𝑒
−∫

3𝐻𝐻(𝑖𝑖)
2

𝑡𝑡
𝑡𝑡0

𝑑𝑑𝑖𝑖 

𝐻𝐻(𝑑𝑑) must be written in integral form as it is a function of time. Since H(t) is defined as 𝑎𝑎
˙

𝑎𝑎
: 

𝜎𝜎 ∼ 𝜎𝜎0exp[�
3

2𝑚𝑚

𝑖𝑖

𝑖𝑖0

𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑] 

𝜎𝜎 ∼ 𝜎𝜎0exp[�
3

2𝑚𝑚

𝑎𝑎

𝑎𝑎0

𝑑𝑑𝑚𝑚] 

𝜎𝜎 ∼ 𝜎𝜎0exp[
−3
2
𝑒𝑒𝑒𝑒(

𝑚𝑚
𝑚𝑚0

)] 

𝜎𝜎 ∼ 𝜎𝜎0(
𝑚𝑚
𝑚𝑚0

)−
3
2 

𝑉𝑉(𝜙𝜙) ∼
1
2
𝑚𝑚2𝜙𝜙2 ∼

1
2
𝑚𝑚2𝜎𝜎2 

𝑉𝑉(𝜙𝜙) ∼
1
2
𝑚𝑚2𝜎𝜎2(

𝑚𝑚
𝑚𝑚0

)−3 

From the above expression it can be seen that 𝑉𝑉(𝜙𝜙) ∝ 1
𝑎𝑎3

. Hence 𝜌𝜌𝜙𝜙 ∝
1

𝑚𝑚3. 

 
It should be noted that the reason that kinetic term was not discussed is because the oscillation of the degree 𝜙𝜙 term 
was at its amplitude. At this point, there is no kinetic energy, only potential. 
 
Scalar Field Dark Matter Initial Conditions 
 
For axions to exist, there must be some sort of excitation of a quantum field. We can describe an axion as an excitation 
around its ground state, where its potential 𝑉𝑉(𝜙𝜙) is a minima. Due to this excitation, the field should oscillate around 
a ground state. These oscillations are axions. However, for an axion field to have any sort of oscillatory motion, there 
must have been an initial displacement, otherwise the potential would have stayed at zero and never moved, hence 
never resulting in the creation of axions. This initial excitation can be explained due to the state of the axion field at 
early times. 
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In the beginning of the universe, physicists believe that there was a period of accelerated expansion known as inflation. 
At this time, the Hubble rate behaved as a constant, hence the Hubble rate at this time will be referred to as 𝐻𝐻I. 
 

𝐻𝐻I =
𝑚𝑚
˙

𝑚𝑚
 

𝑚𝑚
˙

= 𝐻𝐻I𝑚𝑚 
 
Because the derivative of 𝑚𝑚 is a multiple of 𝑚𝑚, 𝑚𝑚 = 𝑒𝑒𝐻𝐻I𝑖𝑖. 
 
As the Hubble rate is associated with the magnitude of damping in the scalar field equation for an axion, and since 𝑚𝑚 
is increasing exponentially, any motion in an axion’s degree of freedom, 𝜙𝜙 is quickly damped away. 
Consider the angular frequency of the Scalar Dark Matter field. Solving Equation 5 gives: 
 

𝜔𝜔 = 𝑎𝑎
3𝐻𝐻I

2
± �𝑚𝑚2 −

9𝐻𝐻I
2

4
 

Consider the case where 𝐻𝐻I ≫ 𝑚𝑚. In this case the two solutions will be: 
 

𝜔𝜔 = 𝑎𝑎3𝐻𝐻I 

𝜔𝜔 ≈
𝑎𝑎𝑚𝑚2

3𝐻𝐻I
+ Higher order terms of Taylor Expansion 

 
Both of these solutions only contain an imaginary component, meaning that there is no oscillatory motion, only damp-
ing. The first solution - 𝑎𝑎3𝐻𝐻I is large, hence almost all energy will be damped away very quickly. The second solution 

- 𝑖𝑖𝑚𝑚
2

3𝐻𝐻I
 is very small, hence damping is very slow, meaning that the axion field is “frozen". As such, there is 

no reason to believe that the axion initial position must have been at its minimum. This explains how there could have 
been some initial displacement that caused the axion field to start oscillating (Garcia Irastorza, 2022). 
 
Spontaneous Symmetry Breaking 
 
The potential of an axion, 𝑉𝑉(𝜙𝜙), is determined by its interactions with other particles, so it heavily depends on its 
background. At the start of the universe, there were a lot of very hot particles. Hence consider an equation for the 
potential of a field taking into account a thermal bath. 
 

𝑉𝑉(𝜙𝜙) = −𝜇𝜇2𝜙𝜙2 + 𝜆𝜆𝜙𝜙4 + 𝑚𝑚thermal bath
2 𝜙𝜙2 + Higher order even polynomial terms 

 
Where 𝜇𝜇 and 𝜆𝜆 are arbitrary coefficients in the expression for 𝑉𝑉(𝜙𝜙) without a thermal bath, and 𝑚𝑚thermal bath is the 
mass of the particles in the thermal bath. In this case, because the potential function is symmetric, 𝑉𝑉(𝜙𝜙) must be an 
even function, so there can only even polynomial terms. 
 
This equation assumes that 𝑚𝑚thermal bath

2  must be positive to avoid an infinite potential runoff. 
 
Typical thermal field calculations give 𝑚𝑚thermal bath

2 ∼ 𝑒𝑒4𝑇𝑇2, where 𝑒𝑒 is some coupling constant and 𝑇𝑇 is the average 
temperature of the thermal bath. This is because in terms of energy, 𝑉𝑉(𝜙𝜙) is order 4, which means all its terms must 
also be order 4. The first two terms with coefficients of 𝜇𝜇 and 𝜆𝜆 can’t be associated with the temperature of the thermal 
bath as they remain in the expression without the thermal bath. We also know that coefficients of polynomial terms 
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of order 4 or above cannot represent the temperature of the thermal bath, because in order to remain as an order 4 
term, they must be constants or negative polynomial terms. While these constants and negative polynomial terms may 
vary with temperature, and may even be significant at very high energies, at lower energies they will be far less 
significant than the 𝑚𝑚thermal bath term, as it increases linearly with temperature. As such, the 𝑚𝑚thermal bath

2  is the only 
term that should be associated with temperature. In this case, 𝑚𝑚thermal bath

2  can be any arbitrarily named coefficient, but 
it is being represented as a mass because we know that mass and temperature are both order 1 in terms of energy. 
 
At high temperatures, 𝑚𝑚thermal bath

2 𝜙𝜙2 will be dominating term. Since this is order 2 in terms of 𝜙𝜙, the function 𝑉𝑉(𝜙𝜙) 
will resemble a quadratic. 
 
In this scenario, the axion only has one degree of freedom, hence 𝑉𝑉(𝜙𝜙) only has one minima. However once the 
temperature of the surrounding particles decreased past a certain temperature, 𝑉𝑉(𝜙𝜙) starts to resemble a higher order 
even polynomial which has more than one minima. As axions initially used to be at rest at the original minima, after 
𝑉𝑉(𝜙𝜙) changes, axions will spontaneously fall into one of the new minima. 
 

 
Figure 2. Diagram of the potential of an axion (Brézin, 2021) 
 
Now consider a two-dimensional example, where there are 2 degrees of freedom. To visualize this, consider the axion 
to be at rest at the bottom of a "bowl" shaped object. In this case, when the temperature of the thermal bath decreases 
past a certain critical temperature, the axion will now lie at the top of a "hill", or "Mexican Hat", that slopes downwards 
in all directions, with a ring of minima below it (See Figure 2). Once an axion falls into one of these minima, its 
position can now be described by some angle 𝜃𝜃 along the circle (Garcia Irastorza, 2022). 
 
The Strong CP Problem 
 
One reason why axions are favoured as one of the most plausible dark matter models is that it conveniently solves 
another persistent problem in the world of physics - the Strong CP Problem 
 
When discussing the interactions of a particle, we can write in the form of 𝑉𝑉(𝜙𝜙1,𝜙𝜙2,𝜙𝜙3. . . ), where 𝜙𝜙1, 𝜙𝜙2, 𝜙𝜙3 etc. 
are parameters. Another way to do this via a Lagrangian. In Newtonian mechanics this is expressed simply as kinetic 
energy minus potential energy. One example of this is the QCD (Quantum Chromodynamics) Lagrangian. This La-
grangian contains all the interactions due to the strong force between quarks and gluons.  
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One of the terms in this Lagrangian is: 
 

𝐿𝐿 ⊃ 𝜃𝜃
𝑒𝑒2

32𝜋𝜋2
𝐺𝐺𝜇𝜇𝜇𝜇𝐺𝐺

~
𝜇𝜇𝜇𝜇  

 
The interesting thing about this term in the Lagrangian is that it violates CP symmetry (Bertone & Hooper, 2016). 
There are 3 fundamental discrete things that a particle can conserve: Charge, Parity, and Time. This means when one 
of these properties is inverted, the particle should stay the same. Under an inversion of all 3 at the same time, the 
particle should stay the same. In some interactions, some of these symmetries are allowed to violated. For example, 
in both the strong and weak forces, a violation of CP symmetry is allowed (asymmetric upon both a charge and party 
inversion) as seen from the term in the QCD Lagrangian. However, while this violation has been observed in the weak 
force, it has not been meaningfully observed in the strong force. Experiments to detect it found that the 𝜃𝜃 parameter 
in the term in the QCD Lagrangian that violates CP symmetry must be of order magnitude less than  
10-9 (Bertone & Hooper, 2016).  

The fact that this parameter is so close to zero, where it could have been any number makes it seem like a 
“tuning", as if it was somehow forced into being closed to zero. The probability that happens to be so close to zero as 
opposed to any other higher order of magnitude number makes it seems like its value isn’t a coincidence. The small 
value of 𝜃𝜃 would make sense if it was a function that could be minimized, as it would naturally tend towards zero. 
However, 𝜃𝜃 in the QCD Lagrangian is simply a constant and cannot change (Wilczek, 1978). 
 
The Axion Field 
 
In 1977, Roberto Peccei and Helen Quinn (Peccei & Quinn, 1977) proposed a solution to this “tuning" problem - a 

new pseudo scalar field 𝜃𝜃
~

 to couple to gluons. With this new field added to the QCD Lagrangian, the previous 𝜃𝜃 term 

becomes 𝜃𝜃+< 𝜃𝜃
~

>. This now provides an elegant solution to the CP problem. 𝜃𝜃 can now be any number, and doesn’t 

necessarily have to be close to zero because the new 𝜃𝜃
~

, when minimized, will cancel the 𝜃𝜃 term out, resulting in a 

close to zero term. This new 𝜃𝜃
~

 field represents the axion’s position along a circle of potential minima as discussed in 
the previous section (Garcia Irastorza, 2022). 
 

Conclusions 
 
In this work, we discussed how mass profiling a galaxy provided strong evidence for the existence of dark matter. We 
also discussed its properties and how they were discerned in order to explain one of the most promising models for 
dark matter: axion. This work discussed the mass range for axions, and hence explained why axions can be described 
as a classical field. An expression for scalar dark matter was then postulated, then subsequently checked to see if the 
behaviour it describes aligns with the properties of dark matter. Furthermore, the production mechanism of axion 
particles via spontaneous symmetry breaking of the graph of the potential of the axion was discussed. Finally, the 
possibility of the Peccei–Quinn axion field was discussed to solve the Strong CP Problem. 
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