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ABSTRACT 
 
Ultra-short-period (USP) planets are rare Earth-sized planets with the shortest possible orbital periods  of all 
known planets. The study of this group is important for investigating planet formation and evolution processes. 
To date, only slightly over 100 USPs have been detected in Kepler  photometry data of nearby FGKM dwarfs. 
However, traditional methods used in detecting planets and transit-like events are often biased, inefficient and 
time-consuming. For the first time, we introduce a GPU fast phase folding technique coupled with a Deep 
Convolutional Neural Network (DCNN) specifically used for searching for USP planets. The DCNN is trained 
on a set of 2,000,000 synthetic USP samples and performs exceedingly well in identifying both true and false 
positive transit signals, with a 99.5% validation accuracy over the given training set. With the computational 
power provided by GPU fast phase folding, our method, compared to the traditional Box Least Squares method, 
has shown to be ~1000 times faster in searching for transit signals in a photometric light curve with the same 
or better precision and recall rate. Furthermore, our method can also be applied to other interesting planet pop-
ulations beyond USP planets. We used this method to search through all available KIDs in the Kepler database 
and were able to reproduce all existing USP planets with a 100% recovery rate. We also discuss how further 
adjustments can be made, making this system even more efficient and powerful, as well as how it can be applied 
to broader planet populations. 
 

Introduction 
 
The secular formation theory states that USP planets were initially formed on orbits > 1 day before interaction 
with other planets within their system launched them into eccentric, inclined orbits that eventually tidally shrunk 
to the current orbits of less than a day. Though this is the most popular formation theory, others predicate on 
similar observations of USP planets, specifically their low eccentricity, circular orbits and how tidal interactions 
influence their orbit and consequently period. This led to the “high-eccentricity migration” theory being pro-
posed (Schlaufman et al. 2010). Further formation scenarios have materialized in order to explain the low ec-
centricity and observed mutual inclination of USP planets. Researchers Pu \& Lai (2019) pointed to the low-
eccentricity tidal migration induced by secular planet-planet interactions in their findings that reproduced a USP 
population consistent with the multi-planet systems present in the Kepler mission. 

The most commonly used method of exoplanet detection is transit photometry, with the majority of 
exoplanets discovered using it. Typically, teams of experts have to manually examine possible planet signals 
and vote on their final decisions. This process can be strenuous as it takes examiners up to a few days to elimi-
nate the obvious false positives, on tens of thousands of candidates. Furthermore, human vetters may not always 
maintain a consistent set of criteria when judging potential planetary signals. Even an experienced team of 
vetters may sometimes disagree on the disposition of a possible planet signal, and dispositions given to the 
same object may vary depending on previous context relating to other TCEs viewed recently. Once this process 
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is concluded, to prepare the data for the standard Box Least Squares (BLS) method (Kovács et al. 2002), re-
searchers then need to fit and normalize the time series to fill the gaps in the unevenly spaced time series in 
which there may be a lack of data. The amount of time and effort put into detecting candidates is extremely 
high, and the results aren’t always completely accurate, resulting in possible exoplanets being missed out on. 
Therefore, the process in which planets are detected must be accelerated and be less dependent on direct human 
involvement in order to maximize the output and accuracy of exoplanet detection.   

This is where astronomy and artificial intelligence work well together. Due to the nature of the 
lightcurve data and spectra, astronomy has always produced an abundance of data that will always take very 
long to completely vet and analyze. A machine learning algorithm that can automatically, quickly and accu-
rately analyze hundreds of thousands of light curves is therefore imperative to the study of USP planets, short-
period planets, and exoplanets as a whole, in order to further our understanding of the formation and composi-
tion. With the acceleration of astronomy and observation, more and more lightcurve data will be generated, and 
without a reliable, fast automatic program that can vet hundreds of thousands of images at once, the discovery 
of planets and the path to the exploration of the physical properties and formation theories of planets will be 
significantly deterred by the slow, relatively inaccurate traditional methods that are susceptible to error with an 
outpacing supply.  

Recent advancements in computer science have led to the increasing usage of neural networks in sci-
entific research, a phenomenon brought on by the scientific community’s growing recognition of its powerful 
potential in studying big data. Designed to mimic the neuron structure of the human brain, neural networks are 
at the most basic level a multilayered construction of virtual nodes capable of learning complex pattern recog-
nition and classification (LeCun et al. 2015).  

Past responses to this problem of human vetting using deep learning have included work done by the 
Autovetter project (McCauliff et al. 2015) which used a random forest classifier in order to distinguish TCEs 
based on promising characteristics in line with Kepler pipeline statistics. Furthermore, Mislis et al. (2016). 
Thompson et al. (2015) and Armstrong et al. (2017) all utilized unsupervised machine learning on light curves 
with similar shapes, classifying them using labels from preexisting Kepler TCEs. 

The most recent application of neural networks to exoplanet detection however has been by the Shallue 
\& Vanderburg Google Research team in their 2018 paper, and subsequent follow up research, wherein they 
trained a deep neural network up to 98.8% accuracy on existing TCEs provided by the Kepler database, and 
identified two new exoplanets as a result (Shallue, Vanderburg et al. 2018).  

Our new unique method of transit detection begins with the fundamental lightcurve itself. We first 
normalize and filter the lightcurve according to a specialized spline fit that maintains an even amount of data 
on either side of the fit as well as sigma and end clipping. Given this preprocessed data, generally the next step 
is to fold and bin the data along trial periods, utilizing the typical manual BLS method in which a rectangular 
box fit tries various transit durations and depths in trying to locate the transit for an individual lightcurve. More 
broadly however, we recognize that the key principle in the transit method is to find the period, afterwhich the 
signal itself is strengthened as the noise is averaged out by the square root of n folds. In this approach then, we 
draw on this fundamental idea utilizing GPU Fast Folding to not only vastly accelerate the process, but amplify 
the transit signal as we repeatedly fold on the correct period thousands of times, significantly reducing noise 
and reinforcing the signal. This process is reproduced simultaneously on numerous parallel cores, enabling me 
to initiate this fast folding on thousands of lightcurves in minimal time. This is immensely helpful in generating 
training data for the neural network as the current population of USP planets is not sufficient for a Deep Con-
volutional Neural Network. Therefore, we create our own vast artificial dataset modeled after the existing USP 
planet population of varying parameters and train the neural network comprehensively, to the point that it can 
recover all existing USP planets with ease, in a fraction of the time normally needed. The DCNN itself elimi-
nates the need for manual vetting and allows us to engage in a more accurate and efficient USP candidate search 
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process where each TCE is assigned a confidence score on whether or not it is a true signal based on the patterns 
observed in the vast training set.  
 
 
 
 

 

 
 

 
Figure 1. From left to right, our process for preparing the lightcurve, using KIC9002278 as an example. The 
input is the original lightcurve data. We then mask out all known transits in the planet system, fitting and 
filtering each sectioned off piece of the data for outliers, and apply a spline fit. This gives us a fully normalized 
lightcurve. 
 

Though this method can be tested on any type of exoplanet, we chose to test on USP planets. In inves-
tigating the process of planet formation, the more comprehensive and fleshed out the existing pool of a planet 
population is, the more accurate predictions we can make. This is one reason why the study of USP planets, a 
rare classification of planets, is important and impactful. They enable us to further understand the formation 
and orbital evolution of USP planets, as well as secular and star-planet interactions and atmospheric erosion. 
Additionally, there are practical advantages to studying USP planets as they are easier to detect than planets of 
the same size in wider orbits, provide more useful information in the context of planet formation, and their 
masses and general planetary characteristics, the most basic inputs into the neural network, are easier to meas-
ure. They are sometimes hot enough to emit a detectable glow too, enabling observations to determine their 
surface temperature and reflectivity, which is usually impossible for wider-orbiting planets, endowing us with 
further information on an incomplete yet useful planet population.  

In our paper, we present novel, more efficient, and more accurate methods of exoplanet detection using 
a deep convolutional neural network, which can also be applied to further planet populations beyond USP plan-
ets. In Section 2, we describe the streamlined routine of preprocessing, preparing data and the neural network 
itself that we have used in conjunction with machine learning and GPU parallel processing, which has dramat-
ically sped up the processing and analyzing of hundreds of Kepler light curves. Then in Section 3, through the 
construction of an artificial data set of TCEs, we describe the training and testing of the neural network on our 
own data constructed from scratch. Finally in Section 4, we discuss the results stemming from the neural net-
work search, the confirmation routine, stellar parameters from transit fitting and how the reduction of the total 
processing time from three to four days to only a couple of hours, enables vast advancements in exoplanet 
research and detection. We also discuss how further adjustments can be made, making this system even more 
efficient and powerful, and what further research can be conducted. 
 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 3



Preprocessing 
 
Using data originating from the Kepler mission, each quarter represents approximately 90 days worth of data 
containing roughly 3,900 points evenly spaced in approximately 29.9-minute intervals, and with around 17 or 
fewer quarters of data available for each target. The resulting light curves have approximately 60,000 data 
points representing up to around four years of data. It is essential to further prepare and process the light curves 
to increase the likelihood of successfully recovering any USP planet transits. Even though they may occur often 
in this large sample of data, it is important that the neural network can recognize every variant type conceivable 
(Nikolaou et al 2020). 

Given the input of the Kepler mission data, we must take measures to correct imperfections in the 
lightcurves themselves, which include both time and flux gaps, which means we choose not to use universal 
spline fitting. Rather we estimate both time and flux gap thresholds which allows me to properly identify and 
remedy missing data. We also utilize end clipping in order to clip off data points at the left and right of each 
section of data, removing data that confuses the spline fit, which is then implemented using a piecewise func-
tion. This enables me to create as accurate a fit as possible as the lightcurve is broken into individual sections 
of data and a fit is generated for each respective section.  

First, we search for the KOI in the Kepler directory, a master list of possible stars with exoplanets, 
collecting data for all quarters of the light curve. At this point, we do not bin the lightcurve unless its size is 
over 50,000 data points. If the lightcurve does exceed this threshold however, we bin the data in order to expe-
dite the process and use less memory since binning produces a smaller dataset that is still representative of the 
lightcurve. We then remove the NaNs from the data set and simply plot the raw data output, which includes 
every known planet in the system and serves as a preview of the filtered lightcurve.  

Given this data, measures must be taken to minimize imperfections in the light curves. For example, 
light curves are split in locations where over 1.5 hours of time data is missing. By splitting the light curve at 
these time gaps, we avoid the complications of missing data when attempting to fit the data.  

Our light curves are detrended using a smoothing spline fit. One of the key parameters that must be 
solved in this fitting process is the smoothing parameter. When it is set to its upper bound, the fit is a simple 
spline fit which overfits the data. Conversely, at its lower bound, the fit is a completely linear underfit. Finding 
a balance between the two is essential in producing an adequate fit to the data.  

After this, we estimate the time gap threshold, which allows us to separate the data into distinct sections 
wherever there are time gaps in the data which are periods of time in which data was not taken. For example, if 
the average time between each measurement is 0.1 days, then any data missing for over 0.1 days is a gap. This 
process is required because the fitting routine often has troubles with the edges of data when attempting to 
create a smoothing fit. Therefore, if you don’t split the data into their own respective sections, the smoothing 
spline filter will not properly fit between time spans which causes major issues in preprocessing.   

Once data is properly split based on time gap threshold and end clipped, we then move to estimate a 
flux gap threshold. Although it is relatively easy to find time gaps within the data, oftentimes the gap is so small 
that the time gap threshold filter can’t find it entirely, which is where the flux gap threshold functions. The split 
light curve is then filtered based on its standard deviation, then fitted with an optimally smoothed spline fit.  

In the preprocessing routine the smoothing spline variable is essential. When it is set to its upper limit 
of 1, the fit is a simple spline fit which overfits the data, piercing every data point of the lightcurve. Conversely, 
at its lower limit of 0, the fit is a completely linear underfit. Finding a balance between the two is essential in 
good preprocessed data.  

To find that balance, we check against two criteria. The first criteria entails calculating how many data 
points fall below and above the spline fit. The fit should have approximately equal amounts of data above and 
below the spline fit in every section. The second criteria uses a sigma value, calculated using the distance 
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between each data point, as the approximation for the noise of a section. After each iteration in the fitting 
process, we divide the light curve by the fit. We then take the RMS of that result and compare it to the approx-
imate noise. If they are similar in magnitude, then we know that the preprocessing was comprehensive and that 
we have an accurate spline fit (Dattilo et al. 2019). After detrending is complete, we end clip, removing 30 data 
points at the left and right edges of each section of data. This eliminates data that the spline is unable to fit well. 
We then mask out all known transits in the system and concatenate all detrended sections into one fully nor-
malized light curve.  
 

GPU Folding and Artificial Data 
 
Training a neural network requires a large sample of data containing the desired feature and having the network 
infer patterns for recognizing the feature. The more samples there are to train on, the more the network can 
learn and improve – training sets often contain thousands of samples, if not hundreds of thousands or more. 
However, for USP planets, their small existing population does not provide enough samples to make a training 
set of real data.                                                                                                   

One solution is to simulate transits with a simple shape to closely approximate the properties of real 
USP transits. This would ensure a sufficiently large sample of signals that can be used to train the neural net-
work. We utilize this method in making over 2,000,000 synthetic light curves for training, which is split into 
halves of transits and pure noise in order to ensure that the neural network is not biased to either data set.  
We first load a catalog of Kepler Objects of Interest. This provides targets with exoplanets that were confirmed 
and their parameters of transit duration, transit depth, stellar mass, stellar radius and orbital period (Thompson 
et al. 2018).  

We initially construct positive samples with a transit generated through a trapezoid shape. This transit 
is based on the ranges of transit duration, transit depth, and radius ratio of planet to star of previously discovered 
USP planets (Armstrong et al. 2017). We construct these transits through uniform distributions of these param-
eters to avoid biases in the model (Fig. 5). The transit shape itself is constructed by marking the four vertices 
of a trapezoid. The trapezoid is then injected into a range of times representing the period time window, at a 
random location to account for the fact that a transit could be present anywhere in the window. Gaussian noise 
is applied to the light curves using the user-specified SNR, simulating real noise that plagues real light curves. 
The ratio between the top and bottom of the trapezoidal transit is randomized within a representative range in 
order to guarantee a wide array of possible USP transit shapes.  

In the false samples, the light curve contains only noise and no transit signal. An additional step is 
taken in order to ensure that the transit signal is always 2 standard deviations greater than the noise level of the 
data. As the neural network would eventually have to detect real transit signals, the artificial data generated 
accounts for the entire range of possible properties that a real USP transit could have. 

One quick check for the quality of generated artificial data for the training set is to visually compare 
real and synthetic signals. As shown in Figures 3 and 4, the real and artificial signals are indistinguishable by 
eye, both showing very similar features. Comparing the distributions of transit durations and depths for syn-
thetic and real transits side-by-side, the range of durations and depths in the artificial data fully covers the range 
of durations and depths found in the real data, so it appears to be a fairly representative and accurate simulation, 
ready to input into the neural network.  

We also find that the new procedure of windowed fastfolding utilizing a GPU significantly reduces 
the time needed to prepare light curves for input into a neural network model. The most commonly used method 
for modeling and calculating the parameters of these transits is with the Box Least Squares (BLS) algorithm 
(Kovács et al. 2002). With BLS, an estimate for the period and transit reference time can be determined, but the 
method has its limitations.The major disadvantage of BLS is that it requires searching a huge combination of 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 5



periods and t0s which is extremely time consuming. In contrast, the GPU Folding method only requires a de-
sired period range and period stepping parameter. Another major weakness of the BLS algorithm is that shallow 
or weaker transits often do not  produce enough power in a power spectrum to appear as peaks and thus be 
detected as potential candidates. This eliminates a large population of possible USP planets that may be over-
looked by BLS. (Hinners et al. 2018). 

Our procedure can be deployed in consumer hardware while maintaining its ability to scale to bigger 
datasets. Initially, data is copied over to the GPU for a parallel processing of the light curves. Given a range of 
periods [p1, p2] to attempt, and a period stepping parameter, x, a given light curve will be folded n times. 
Consequently, noise is reduced by the square root of n folds. Folding is done at periods starting at p1 and 
incrementing by p2-p1x each time. 
 

 
 
 
 
 
 
 
 

 
Figure 2. Fastfolding result (left) compared with a manual folding result (right) 

Figure 3. An artificially generated true lightcurve signal side by side with real true lightcurve signals. 
 

The output for each period, p, is a window of fixed size n, where each point represents a binned time 
of width pn. In other words, GPU fastfolding is a method to brute force search a desired range of periods. A 
transit feature is apparent in the folded result, shown in the top plot. Compared to the manually folded result in 
the bottom plot, the folded light curve noise is reduced, despite the same binning being used in both procedures. 
This is because the transits overlapped at the same location multiple times during the folding process resulting 
in a higher SNR (Fig 2).  

GPU fastfolding allows for a large number of folds to be quickly generated and scored by the neural 
network. This improves the chance of discovering transit candidates because we are able to search thousands 
more light curve folds per second than traditional methods.  
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Figure 4. Artificial transit signals generated using the trapezoid method.  
 
 

Deep Convolutional Neural Network 
 
Structure 
 
We utilize a DCNN, a specific type of flexible deep neural network uniquely suited for image and pattern 
recognition. In most neural networks, nodes are organized into “layers” of hundreds or thousands, with each 
individual node connecting to separate nodes in both the previous and next layers in order to receive and send 
data further down the chain of layers. We employ deep learning primarily as a type of representation learning, 
using multiple computational layers to build more and more detailed features, until eventually reaching a final 
feature layer that can differentiate between complex and varied objects (LeCun et al. 1998).  The main distin-
guishing factor of DCNNs is the convolutional layer, which applies a specific matrix operation known as con-
volution in order to superimpose a smaller matrix known as the kernel onto the larger data matrix. Depending 
on the kernel, this convolution can transform the data in many ways, most notably by highlighting edges, points, 
gradients, or other spatial features to form a “feature map” useful for pattern recognition.   

The initial neural network model consisted of eight convolutional layers, eight batch normalization 
layers, ten ReLU activation functions, four max-pooling layers, one flattening layer, three dense or fully con-
nected layers, two dropout layers, and an output. Following standard neural network procedure, we divided the 
data we had compiled into two sets: one for training and one for validation. After we achieve sufficient training 
and validation accuracy, we test the neural network on a testing set to gauge its performance on data it has not 
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yet seen. A low validation score is a very good indication that the neural network is “overfitting,” essentially 
just memorizing the specific characteristics of the training data rather than identifying general patterns which 
could be applicable in categorizing other data. Overfitting constitutes a major challenge in working with neural 
networks, because it renders the network useless when dealing with data which it has not been directly trained 
on, and so it was imperative to eliminate it in our project.  

Individual connections between nodes of the neural network contain unique, learnable parameters 
called weights and biases, which determine the strength of the connection between the nodes and constantly 
adjust as the overall system improves in accuracy. Much like in the human brain, an individual node, or neuron, 
is incapable of performing complex tasks, but when many are connected in a dense, constantly evolving system, 
they gain the capacity to identify complicated patterns, judge their own performance, and effectively “learn” 
from their errors to improve in accuracy, in certain cases much more effectively than their human counterparts. 
The aforementioned layers form the computational power of the neural networks, however differing layers 
provide differing functions and the combination and interplay of these layers is essential in constructing an 
optimal DCNN.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. USP Planet Valley of SNR < 3.0. Y-axis indicates the percent of total USP planet discoveries, X-axis 
represents the SNR level of each USP planet. The number of USP planets drops to 0 once the SNR becomes 
lower than 3.  

A hidden layer can contain multiple convolutional layers, each of which is followed by a batch nor-
malization layer meant to further downscale data and regularize the output from the convolutional layer. The 
normalization layer is then immediately followed by an activation layer, a step critical to convolution because 
the activation introduces non-linearity to the network’s output.   

Pooling layers, typically found in conjunction with convolutional and activation layers, function pri-
marily to incrementally reduce the dimensions of the large amount of raw data which is typically being input. 
Different types of pooling functions serve different secondary purposes on top of the primary function of di-
mensionality reduction. We use the most common pooling method, max-pooling, which is especially useful for 
extracting important features in data such as edges and shapes in an image.  
The neural network also utilizes a flatten layer, which reduces multi-dimensional data down to one dimension 
in preparation for subsequent dense layers. More recently, data scientists have begun pairing dense layers with 
something known as a dropout layer, a type of regularization method which erases a randomly selected subset 
of the nodes in a certain layer as well as all of their connections. This recent innovation has the effect of adding 
noise to the connections, causing individual nodes to carry more weight, and is particularly effective when 
applied in conjunction with dense layers, since they contain the maximum possible number of connections. The 
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primary purpose of introducing noise is to combat the key issue of overfitting, a concept which will be discussed 
in further detail (Shallue & Vanderburg 2018). 

Finally, the output layer of the deep convolutional neural network is mediated with a sigmoid function, 
an activation function particularly useful in predicting the probabilities of binary outputs rather than just giving 
the binary prediction. The S-shaped non linear curve it produces is probabilistic which allows the neural net-
work to output a rational confidence level for each input rather than a binary “yes” or “no”. This allows us to 
better understand which types of light curves the neural network had trouble on and which it was more confident 
in. This feature was useful in leading us to identify that transits with lower Signal to Noise Ratio (SNR) or low 
levels of noise relative to the transit signal, were predicted as positive with significantly less confidence than 
those with higher SNR.  
 
Modifications 
 
Our chosen neural network functions through two fundamental algorithms called feed-forward calculations and 
backward propagation. Feed-forward calculations describe the transformation of the input vector through a non-
linear activation into the output vector. The backward propagation constantly modifies the values of the weights 
in each filter in a way that minimizes the cross-entropy cost function. The weights in each filter are updated 
back to front from the last convolutional layer to the first using the Adam optimization function. Adam has an 
adaptive learning rate that constantly updates itself, and it has been one of the most accurate optimization algo-
rithms since it was developed. (Kingma et al. 2014) The weights are constantly updated until either the cost 
function is optimized or the error stops converging.  

The DCNN architecture relies on input light curves that can be spatially analyzed and described by 
complex features. All hidden layers use the ReLU activation function, and the output layer uses the sigmoid 
activation function. The output of the model is essentially the predicted confidence score that the input is a 
transiting USP planet. The closer the value is to 1, the higher the model confidence is that the input is a real 
USP planet while values closer to 0 indicate high confidence that the input contains no transit. We also used 
the Adam optimization algorithm (Kingma & Ba 2015) to minimize the cross-entropy error function over the 
training set. We applied dropout layers to the fully connected architecture, which helped prevent overfitting by 
randomly “dropping” some of the output neurons from each layer during training to prevent the model from 
becoming overly reliant on any of the data features. 

Fully-connected layers are responsible for the classification process as they can learn the non-linear 
combinations of the high-level features represented by the convolutional layers.  
The neural network utilized a special activation function known as the Rectified Linear Unit (ReLU) (Nair & 
Hinton 2010). ReLU is the most commonly used activation function in deep learning models and serves special 
utility in DCNNs because it reduces nonessential data. The function is also computationally inexpensive, simply 
returning 0 for all negative inputs and the original input for all others. (Frustagli et al. 2001).  

Each individual convolutional layer slides a small filter over each input, sums the result, and adds it to 
the feature map, building a more complex object. The DCNN uses many consecutive convolutional layers and 
in the deeper layers, simpler features learned in previous layers are combined. During training, the parameters 
of the convolutional filters are adjusted to minimize a cost function, a measure of how far the model’s predic-
tions are from the true labels in its training set. The convolution operation also has the secondary utility of 
downscaling the data. (Petrovich et al. 2018). Since the primary method of USP planet detection involves transit 
photometry, we implemented max-pooling layers to highlight transit-like spatial signatures for better detection. 
We tested SGD (Stochastic Gradient Descent), RMSProp (Root Mean Square Propagation) and Adam (Adap-
tive Moment estimation) optimizers with various hyperparameter configurations. After thorough testing we 
chose Adam as the optimizer in our model. For the learning rate we tested various values between 1*10^−3 and 
1*10^−7. In the model itself we chose a very low rate of 1*10^−6.  
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One way in which we combated overfitting was by adjusting the Adam optimization function. Because 
all neural networks must have a mechanism in place to improve themselves, we implemented the Adam opti-
mization function to update the learning parameters (weights and biases) backwards from the last layer to the 
first. Adam optimization is widely recognized as one of the most reliable algorithms for neural network opti-
mization, due in large part to its special adaptivity. Whereas some other optimization functions have fixed 
learning rates, or “updating rates,” Adam optimization is capable of adapting its own learning rate at the same 
time as it is adjusting the actual network’s learning parameters in order to proportionally improve the network 
as it approaches higher accuracy values. During the first couple of iterations of the neural network, the training 
curve indicated that the neural network’s accuracy on the training dataset converged much faster than its vali-
dation, a problem indicating overfitting. However, we were able to remedy this problem by adjusting the Adam 
learning rate, after which the training curves converged successfully (Fig. 6).  
  We also took steps to rearrange the neural network structure, decreasing the number of layers from 8 
convolutional layers to only 6, increasing dropout from 0.2 to 0.3, and adding more max pooling layers. Having 
fewer layers, and thus fewer neurons, and dropping out more neurons decreased the potential for overfitting, 
and increasing pooling allowed us to capture more prominent features faster, both of which contributed to an 
overall increase in validation score. In addition to restructuring the neural network, we adjusted the SNR for 
the artificially generated transits so that the neural network could more clearly identify the transit features. 
Ultimately, we ended up with the most success in both training and testing for transits by increasing the mini-
mum SNR so that the transits had a signal of 5σ or higher, the threshold at which the transit signals became 
strong enough to be clearly distinguished from the noise.  
  After all the described adjustments had been made, each convolution layer has 16 filters and a kernel 
size of 32, and is followed by a batch normalization layer and a ReLU activation function. Every other convo-
lutional layer is followed by a max pooling function with a pool size of 8. The data is then flattened and finally 
fed through two sets of dense layers and corresponding dropout layers before arriving at the sigmoid output 
function, where it is converted into the confidence output. This final model was able to achieve a validation 
accuracy of 99.5%, which is sufficient to begin the search for USP planets.   
 

Results 
 
The DCNN is implemented in Python 3.6.6 using the open-source libraries TensorFlow and Keras. In this work, 
the DCNN was trained exclusively on the artificial light curves because the sample size of the real light curves 
were too small. The Adam optimizer was implemented in this model for computational efficiency and to sim-
plify the number of parameters needed to be trained. (Kingma et al. 2014) The training curves in Figure 7 show 
that the training accuracies are always higher than the testing accuracies. Compared to the time that it took for 
the training accuracy to converge, the testing accuracy took longer to converge. This is likely to be caused by 
the overfitting of the DCNN. 

The training phase involved an Adam optimization algorithm with a learning rate of 0.000001, ensured 
to reduce volatility in training and increase the stability of the model, which was trained for 100 epochs, with a 
batch size of 32, on a dataset composed of 2,000,000 synthetic samples: 1,000,000 positives (has transit signal) 
and 1,000,000 negatives (has no transit signal). 1000 synthetic lightcurves were also set aside for testing. The 
results of this network were excellent as the training and validation accuracy both began to approach 100 per-
cent, with a final and maximum training accuracy of 99.7% and a maximum achieved validation accuracy of 
99.5%. This is the model when validation loss is lowest and the optimal weights are saved. However, there is a 
high level of fluctuation in the validation accuracy: up to 10 percent at times. The most likely explanation for 
this result is that the learning rate was too high, causing the algorithm to prematurely “jump out” of some local 
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minima and resulting in missed solutions. To an extent, fluctuations in the validation accuracy could also orig-
inate from oscillations that occur when the convolutional layers are incapable of recognizing all characteristics 
of the transit signals and consequently will consistently and cyclically change a certain parameter in failed 
attempts to optimize the loss function. Some methods to mitigate this could include adding more convolutional 
layers, or increasing the size of each convolutional layer. Still, the neural network achieved sufficiently high 
training and validation accuracy scores, and as shown in the following section, was able to identify positive 
signals with a high rate of success.   

After training the neural network model on synthetic data, the model was tested with 10,000 artificial 
samples to evaluate its performance. The overall results were promising: the model was able to correctly iden-
tify the samples as either having a transit signal or having no signal 97.18% of the time, at a high precision of 
99.10% as well.  

 
 
Figure 5. Final model of the neural network: accuracy and loss for both the training and validation sets, plotted 
against time. The training curves converge very quickly, with all fluctuations being relatively insignificant. The 
training set reached the final values of  99.7% accuracy and 0.9% loss, and the validation set reached 99.5% 
accuracy and 1.6% loss, both of which indicate that the neural network is performing exceedingly well. 
 

Using the final model of the DCNN, we tested the preprocessed USP data and managed to rediscover 
all 106 existing confirmed USP planets. After the success of this benchmark test, we turned towards the Kepler 
database and searched through the complete archive of manually preprocessed Kepler light curves. We searched 
through all existing planetary systems or KIDs in the Kepler database, totaling over 2500 light curves. 

We were able to comprehensively search through the roughly 2500 preprocessed lightcurves in the 
Kepler database and validate thousands of existing planets. Our model found several promising USP planet 
transits with true scores of over 0.8 and strong transit visibility but through our thorough vetting tests, we were 
able to falsify all of them. This vetting process is composed of various external false positive tests looking for 
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red flags in components such as stellar rotational activity and transit depth. Using these further tests, we 
searched for sine wave patterns indicative of stellar rotational activity, a phenomenon which can cause false 
positive transit-like signals. After subsequent tests, we were able to narrow down the list of possible candidates 
to the strongest ones which showed strong transit features and harmonic metrics. However, in order to further 
certify these discoveries, we used the BLS method, which fit a boxed-shaped transit according to a set range of 
periods, which encompassed the found period and a buffer on either side. The method outputted almost the 
exact same period as that which was GPU folded, further reinforcing the planet candidate. Further certification 
of the candidates was pursued through transit fitting with a Markov Chain Monte Carlo (MCMC) simulation 
(Goodman \& Weare, 2010). With the folded transit and additional stellar parameters as the input, the algorithm 
solves for additional transit parameters. We inputted the parameters of orbital period, t0, stellar mass, and stellar 
radius for the transit fit. Here the candidates failed, as their transit fits were not sufficiently strong and their 
SNR proved to be below the required value for most exoplanets. Further investigation testing for harmonic 
signals, revealed that these transits were harmonics of already existing planets.  

For KID 7294743, we found a planetary radius of 1.885 and a radius ratio of 0.906. For KID 5446285 
we found a planetary radius of 0.002 and a radius ratio of 0.002. Our neural  network was able to predict with 
99.998% and 86.42% certainty, respectively, that the two candidates contained the periods 0.99252 d and 
0.57757 d, and further tests made by masking out the already known planets in the same star system confirmed 
that the transit signals  made by planet-like bodies.  

Though these results don't produce a candidate, they are promising in their rigor, as they represent an 
exhaustively thorough transit detection method capable of revealing the most promising planet candidates.  
 

Conclusion 
 
In our paper, we present a methodology for improving the detection of transit events in Kepler data using a 
deep convolutional neural network and parallel processing. Our unique method of transit detection occurs in 
three primary phases. First, we normalize and filter our lightcurve according to a specialized spline fit as well 
as sigma and end clipping. In the second phase we recognize that the key principle in the transit method is to 
find the period, afterwhich the noise is averaged out by the square root of n folds. We draw on this fundamental 
idea by utilizing GPU Fast Folding to accelerate the process of folding and reduce noise as we repeatedly fold 
on the correct period. Light curves are folded at trial periods using specialized GPU hardware and software 
which can produce binned folds of 100 thousand different orbital periods in roughly 2 seconds.  

The third phase consists of training the CNN. There are currently not enough USP planets to train a 
CNN. Therefore, we create our own vast dataset of 2,000,000 artificial light curves, which is 10-100 times 
larger than other CNNs in exoplanet detection. This dataset is modeled after a uniform distribution of existing 
USP planet parameters and trains our neural network to the point that it can recover all existing USP planets 
with ease, in a fraction of the time normally needed for other CNNs. In the final phase, the CNN itself allows 
us to engage in a more accurate and efficient USP candidate search. After the model is trained on the artificial 
data it is then tested on real data, assigning each TCE a confidence score on whether or not it is a true signal 
based on the patterns observed in our vast training set, reducing time spent on manual vetting. Manual vetting 
of the CNN output is still needed though. 

This method was tested on USP planets specifically and builds on the existing body of research sur-
rounding USP planets. It demonstrates the potential of neural networks as agents in photometric exoplanet 
detection. The overall method of transit detection provides a promising new framework, through which future 
exoplanet research can be conducted, and the scope of the network itself can be extended to search for other 
types of exoplanets such as habitable small planets, Trojan planets, or Super-Earths. From the results in Figure 
7, we have confirmed that compared to BLS, we maintain high accuracy through our GPU folding method. The 
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training set reached the final values of  99.7% accuracy and 0.9% loss, and the validation set reached 99.5% 
accuracy and 1.6% loss, both of which indicate that the neural network is performing exceedingly well. Our 
model has an accuracy above 99% at SNRs of 7 and above. We have also shown that the 2D-DCNN-folding 
model can have accuracy over 90% even when the folding period differs from the transit period by up to 0.2%.  

While these results are encouraging, a neural network approach is still not yet strong enough to be 
broadly used in the field of exoplanet detection. Even if a machine learning model works well in training and 
testing, it has shown to be prone to make mistakes on unseen data. As mentioned before, these methods should 
be used with human supervision. Nonetheless, our current model can provide a uniquely efficient approach to 
rule out a large number of false positives and drastically reduce the number of cases requiring comprehensive 
manual reviews. 

In our future work, taking this reality into account, we could take steps to expand our training set. A 
larger training set would allow for more complex machine learning models that can predict the light curves 
more accurately. However, this method has the disadvantage that the planet signals will need to be removed 
ahead of time. Some undetected planet signals will always remain in the data, though, which means we must 
test if undetected signals average out across the training set. In addition, the different rotation rates, spectral 
types, and inclination angles may be challenging to solve and require significantly more processing time.  

Additionally, our current method for folding light curves also occasionally creates false positive trans-
its in stars with stellar variability. In the future, improving our folding process could cut down on the number 
of signals due to stellar variability that are classified as likely planets.  

Furthermore, our research could be extended to other photometric surveys such as TESS. These sur-
veys provide an abundance of light curve data which could potentially yield greater discoveries when analyzed 
by our model. All new discoveries are valuable contributions to the scarce body of only 120 confirmed USP 
planets and roughly 80 more possible candidates in Kepler data. We conclude that a deep-learning model which 
combines a 2D-DCNN and GPU folding is a promising tool for the future of transit detection.  
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