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ABSTRACT 
 
Cooking fires are dangerous. Every year, they are responsible for taking away more than 500 lives in the U.S. 
alone. Existing approaches using sensors usually require expensive retrofitting and are not feasible in real-life 
situations. This research presents Finding-Signals-from-Smoke (FiSS), a robust fire machine learning predic-
tion model that aims to prevent cooking fires from starting using videos captured with a normal camera. FiSS 
is based on a 3-dimensional Convolutional Neural Network, which analyzes the video signals and models the 
complex relationships of the spatial-temporal features of smoke signals with fire ignition. It uses a segment-
based video sampling and modeling framework that is able to generalize to a variety of kitchen/stove settings 
and achieve promising prediction performance. FiSS is trained and evaluated with video data from 30 full-scale 
kitchen fire experiments and can predict potential fire ignitions as early as 60 seconds before the moment of 
ignition. As a result, FiSS can be used in an early warning system to prevent fire ignitions and help to reduce 
casualties and injuries from cooking fires. 
 

Introduction 
 
Cooking fires are the primary cause of home fires in the U.S. A study conducted by the National Fire Protection 
Association (NFPA) (Ahrens, 2020) shows that cooking fires were responsible for an annual average of about 
172,000 home fires, 550 deaths, 4,820 injuries, and more than $1.2 billion in direct property damage between 
2014 to 2018. The same study found that the leading cause of cooking fires is unattended cooking in which 
food is left on hot cooking equipment without any supervision. The National Fire Incident Reporting System 
(USFA 2022) further observes that cooking oil, fat grease, and related substances were responsible for approx-
imately 52% of first-ignited food. Fig. 1, which shows two screenshots from a full-scale cooking fire experiment 
in a mock-up kitchen (Hamins et al., 2018a), illustrates how dangerous cooking fires can be. When cooking oil 
is ignited, nearby combustible materials, such as wood cabinets above the cooktop, are likely to be ignited. Fig. 
1b shows that the fire grows significantly in less than a minute, and such fires are notoriously difficult to sup-
press. A study from NPFA (Ahrens, 2020) reveals that more than 50% of cooking fire injuries were due to 
improper fire suppression. As cooking fires remain the primary cause of home fire injuries and the second 
leading cause of home fire deaths, new approaches are needed to address this problem. 
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a)                                                                 b) 
Figure 1. A screenshot of the video record for a) the moment right after cooking oil ignition and b) the fire 
condition after 1-min ignition. 

Efforts have been made to reduce unattended cooking fires, but these approaches have limitations. The 
standard for the safety of household electric ranges, namely, UL 858 (Underwriters Laboratory, 2014), was 
recently revised and approved. It requires stovetops manufactured after June 2018 in the United States to pass 
an oil pass/fail ignition test. The test criterion is that the average pan temperature cannot exceed 385 °C with 
the stovetop on its highest power setting for at least 30 minutes. The revised standard can effectively prevent 
cooktop fires from unattended cooking. However, the latest UL 858 is only applicable to new stovetops with 
electric heating elements, and there is a lack of standards for older and other types of stovetops. Since the UL 
858 is the only safety standard for cooktops in the U.S., alternative fire prevention systems are needed in order 
to prevent unattended cooking fires from using the older and other types of stovetops. Furthermore, this criterion 
only serves to prevent cooktop fires from igniting when left unattended for the specified duration and does not 
serve to detect fires that have already been ignited in real-life settings. 

The fire research community has made attempts to develop early detection systems for ignited cooktop 
fires, but the existing methods are unreliable and difficult to deploy in regular kitchen settings. For example, 
Mensch et al. (2019) presented a retrofitted device for cooktop ignition prevention. The device was constructed 
using 16 different sensors (i.e., aerosols, hydrocarbon, smoke, carbon monoxide, carbon dioxide, volatile or-
ganic compounds, temperature, and humidity sensors). It was approximately 25 cm long, 7 cm wide, and 3 cm 
tall, and was required to be installed in the exhaust duct above the ceiling. Additional wiring was needed to 
transmit the data. Utilizing a threshold-based algorithm, the device can determine if there is a fire based on the 
streaming sensor signals. However, the prediction performance was significantly diminished when the detection 
system was applied to a different cooking setting (i.e., a turned-off range hood or a gas cooktop instead of an 
electric coil cooktop). In fact, due to the size, the installation requirements, and the use of 16 different sensors, 
the device has not been successfully implemented outside of laboratory environments. Therefore, a practical 
early fire detection system needs to be low-cost, simple to use, reliable, and robust in terms of model perfor-
mance.  

This research presents the Finding-Signals-from-Smoke (FiSS) detection model for unattended cook-
ing fires. FiSS uses 3D Convolutional Neural Networks (CNNs) to analyze video data streamed from a typical 
camera. The following sections will describe our data preprocessing, model development, and discuss our re-
sults. A conclusion is presented at the end. FiSS can provide potentially life-saving early detection of unattended 
cooking fires that reduces civilian casualties. 
 

Fire Data and Fire Dynamics 
 
FiSS is developed based on data from (Mensch et al. 2021). Fig 2 shows the data collection setup, which is a 
mock-up kitchen equipped with a 30-inch-wide cooktop with four different heating elements and a range hood 
located about 35.5 inches away from the cooktop. A pan was placed onto a heating element turned to its maxi-
mum power. Video records were made using a Nikon 500D single-lens reflex digital camera positioned on a 
tripod about 2 ft away from the cooking pan. Video capture commenced when the cooking was started and 
ended when the cooking oil was ignited. Baking soda was manually poured to suppress the fire when the oil 
ignited. 
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The dataset contains multiple scenarios with kitchen setups that mimic different cooking practices, 
which can be used to test the robustness of the detection model. Both electric coil cooktops and gas cooktops 
were considered, with two heating settings: 1.1 kW and 1.8 kW for the electric coil cooktops and 3.4 kW and 
4.0 kW for the gas cooktops.  The experiments mainly use a single pan, with four of them using two pans.  A 
variety of different cooking oils were used based on the testing conditions found in UL 858. Table 1 summarizes 
the 30 different tests. We refer to this as the “Cooking-Practice” dataset. 

 
Figure  2. The schematic of the mock-up kitchen with a) front view and b) side view. 
 
Table 1. The 30 different cooking experiments in the dataset. 
Set of Exp. Oil Type  Amount Heating Type Heating Size Pan Type  

8 Canola Oil 50 mL Electric Small Cast Iron 
1 Canola Oil 100 mL Electric Small Cast Iron 
1 Canola Oil 50 mL Electric Small Aluminum 
1 Canola Oil 50 mL Electric Small Cephalon 
1 Canola Oil 50 mL Electric Small Stainless Steel 
1 Canola Oil 200 mL Electric Small Cast Iron  
1 Canola Oil 50 mL Electric Big Cast Iron  
1 Canola Oil 100 mL Electric Big Cast Iron 
1 Corn Oil 50 mL Electric Small Aluminum 
1 Corn Oil 50 mL Electric Small Cast Iron 
1 Corn Oil 100 mL Electric Big Cast Iron  
1 Soy Oil 50 mL Electric Small Cast Iron  
1 Soy Oil 100 mL Electric Big Cast Iron  
1 Olive Oil 50 mL Electric Small Cast Iron 
1 Olive Oil 100 mL Electric Big Cast Iron 
2 Sunflower Oil 100 mL Electric Big Cast Iron  
1 Butter 45.68 g  Electric Small Cast Iron  
1 Canola Oil 50 mL and 2L water  Electric Small Cast Iron 
2 Canola Oil 50 mL and 100 mL Electric Small & Big Cast Iron 
1 Olive Oil 50 mL and 100 mL Electric Small & Big Cast Iron 
1 Canola Oil 100 mL Gas Big Cast Iron 

 
Figure 3 contains screenshots from an experiment involving a cast iron pan with 50 ml of canola oil 

and a 1.8 kW electric heating element, shows the evolving fire at four different moments: 90 s before ignition, 
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60 s before ignition, 30 s before ignition, and the moment of ignition. It can be easily understood that when the 
heating element is turned on, the cooking oil temperature begins to rise. As described in (Hamins et al., 2018a 
and 2018b), oil temperatures above 200 °C will generate vaporized gases/smoke at a rate correlated to the 
temperature. At approximately 410 °C, the cooking oil will be ignited. These evolving cooking fire processes 
are captured in Fig. 3. Since the flame after ignition provides additional heat to the cooking oil, the fire's size 
and height will grow. If manual suppression is not done in time or not done correctly, a localized fire is likely 
to escalate into a room or house fire that can no longer be extinguished by manual suppression, in a process 
similar to that shown in Fig. 1. In principle, warnings to residents and an interruption to the heating element 
will prevent a fire ignition. This requires a robust fire detection model that can predict if there is potential for 
the ignition of a cooking fire. This paper proposes a model that relies solely on streamed video data that can be 
obtained with easily-accessible equipment 
 

 
Figure 3. Evolving fire for 50 ml canola oil on a cast iron pan using a 1.8 kW electric heating element at four 
different moments: (from left to right) 90 s before ignition, 60 s before ignition, 30 s before ignition, and the 
ignition moment. 
 

Research Questions and Hypotheses 
 
As seen in Fig. 3, smoke behaviors, such as the amount of smoke at a particular moment and the rate of gener-
ation of smoke over a period of time, are indicative of the potential for fire ignitions. It is intuitive that a growing 
amount of smoke from a cooking pan is dangerous. However, it is difficult to determine whether and when 
there will be an ignition. With visual computing and machine learning techniques, algorithms can effectively 
capture and model subtle signals to provide reliable predictions. This research aims to develop a FiSS model to 
encode the smoke signals in videos to predict unattended cooking fires.  
 
Challenges and Research Questions 
 
The major challenge of this task is that smoke has both temporal (i.e., change in time) and spatial (i.e., change 
in position) features and our model needs to model both aspects captured from the videos and correlate them 
for ignition detections. The data being considered in this study is by nature very complex as it is influenced by 
a multitude of environmental factors (e.g., air movement caused by temperature difference). Although an intri-
cate model, which can process and learn as much of the temporal information as possible, is expected to provide 
better performance, the drawbacks are that training such a model requires large amounts of data, which is ex-
pensive for this kind of extreme and dangerous fire events (every experiment requires intentionally setting a 
kitchen fire). The amount of data available to us is limited,. Thus, we must keep the model less complex to 
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avoid over-fitting, in which the model only memorizes the data without learning any useful features. The bal-
ance between training a powerful model and one that is robust (i.e., applicable to other scenarios) is a practical 
challenge for us.   

Given these research challenges, we propose the development of the FiSS model by using a 3D Con-
volutional Neural Network (3D CNN) with a segment-based sampling technique. Our research will address the 
following questions: 

Q1. Can the 3D CNN predict cooking fires from streaming video data? 
Q2. To that end, what is the most effective segment-based sampling framework? 

 
Hypotheses 
 
The following are the hypotheses being made in this study: 

H1. A 3D CNN can encode spatial-temporal smoke signals and predict potential cooking fires effec-
tively. 

H2.  The use of segment-based sampling technique and the proposed modeling framework can con-
tribute to provide an accurate and numerically efficient machine learning-based fire detection model. 
 

Methods 
 
3D Convolutional Neural Networks 
 
Spatial information (e.g., size and shape) of smoke signals is an important indicator of potential ignition. How-
ever, in real applications, a camera can be placed anywhere (e.g., varying angle and distance to the cooktop) in 
a multitude of kitchen settings (e.g., the color of the pan and the decoration of the kitchen), which adds diffi-
culties for extraction and modeling of generalized smoke spatial information. Our first challenge is to yield 
effective location and background invariant detection. Convolutional Neural Networks (CNNs) have demon-
strated their capabilities to learn representative features from complex spatial information in images/videos. We 
thus propose to apply a CNN-based model for FiSS development. 

Our second challenge is to model both spatial and temporal information together, since the smoke's 
temporal information (e.g., moving speed and generation rate) is also crucial to the prediction. 2D CNNs can 
effectively handle spatial information in images, but they are less compelling in modelling temporal information 
in videos. Recent works (Kamnitsas et al., 2017; Lin et al., 2019; Tran et al., 2015; Yuan et al., 2018) have 
successfully applied 3D CNNs to learn spatial-temporal features from videos, achieving promising performance 
in many applications such as action recognition. In this research, we propose to apply a 3D CNN to model the 
spatial-temporal features of smoke signals to predict unattended cooking fires. 

We design and develop our 3D CNN model based on the C3D model proposed in (Tran et al., 2015), 
which has demonstrated its effectiveness in various domains (Lin et al., 2019; Yuan et al., 2018). Given the 
relatively small dataset, we modify the original model to obtain a lightweight version of C3D to avoid over-
fitting. 

Fig. 4 shows our model architecture. Our model comprises five 3D convolutional layers and each 
convolution layer is followed by a max pooling layer. We make use of the optimal kernel setup suggested in 
(Tran et al., 2015): setting the convolution kernels as 3 × 3 × 3 for all the convolutional layers and  adopting 
2 × 2 × 2 kernels for all the max pooling layers except “Pool1”, for which the kernel size is set as 2 × 2 × 1. 
After the convolutional and pooling layers, our model consists of two fully connected layers to further encode 
the feature representations. Finally, a softmax layer is applied for model outputs and final predictions. 
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Figure 4. The architecture of the proposed 3D CNN with five 3D convolutional layers. The number of kernels 
in layer 1 to 5 is 32, 64, 128, 128, and 128, respectively. 
 

Video modeling often adopts sparse frame sampling, which under-samples the video frames. For ex-
ample, using a sampling rate of three frames per second, a 5-second video is represented as a 15-frame stream. 
The idea is to preserve sufficient valid information from the original video while reducing the model capacity 
and complexity by learning the spatial-temporal features from a much smaller number of frames. Our method 
follows the proposed setup in (Tran et al., 2015), in which a given video instance 𝑉𝑉 is sampled into a 16-frame 
stream (𝑉𝑉′ =  {𝑓𝑓′1, . . . , 𝑓𝑓′16}). All the inputted frames will be resized and cropped to the size of 112 × 112. 
Moreover, our model needs to handle images with RGB channels (3 channels: red, green, and blue). For that, 
the input dimensions of the model are  3 × 16 × 112 × 112 (𝑉𝑉′). Given such an input, the output of our 3D 
CNN model is formulated as follows:  

𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝒟𝒟(𝑉𝑉′;  𝑊𝑊)�                 (1) 
𝑦𝑦� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝)                                 (2) 

where function 𝒟𝒟 denotes the 3D CNN model with parameters 𝑊𝑊. The final prediction (𝑦𝑦�, such as “Danger” 
or “Non-Danger”) is made based on the class scores (𝑝𝑝 = (𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , 𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)) output from the model. 
 
Segment-Based Modeling Framework 
 
The second challenge is that smoke generation changes significantly depending on different cooking settings 
(e.g., the amount of oil and the heating power). For example, cooking a large amount of oil with a low heating 
power may result in a smaller amount of generated smokes. This setting also leads to slower smoke movement, 
and it requires more time for the oil to reach ignition conditions. In cases like these, long-range temporal infor-
mation is needed. For long-range video modeling, to ensure a low model complexity, a smaller sample rate (e.g., 
1 frame per second for a 10 s video) is desired to avoid over-fitting the model. However, the reduction of sample 
rate will result in loss of information in temporal direction. Inspired by previous work (Wang et al., 2018), we 
propose to incorporate a segment-based sampling and modeling framework for the development of our FiSS 
(i.e., sampling and modeling on the subsegments of the given video individually and aggregating their learned 
information together for a final prediction). This framework can help us maintain a low complexity model that 
minimizes information loss. 

Fig. 5 (a) illustrates our framework. Specifically, an input video instance 𝑉𝑉 is segmented into K seg-
ments: {𝑆𝑆1, . . . , 𝑆𝑆𝐾𝐾}. Each segment (𝑆𝑆𝑖𝑖) is further down sampled to 16 frames (𝑆𝑆′𝑖𝑖 = {𝑓𝑓′𝑖𝑖1, . . . , 𝑓𝑓′𝑖𝑖16}), and they 
are fed into the 3D CNN. The final prediction is obtained by aggregating the CNN outputs of all K segments. 
Mathematically, the FiSS model is formulated as follows: 

𝑝𝑝 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑉𝑉)  =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(ℋ(𝑔𝑔1, . . . ,𝑔𝑔𝐾𝐾))         (3) 
𝑔𝑔𝑖𝑖  =  𝒟𝒟(𝑆𝑆′𝑖𝑖;  𝑊𝑊)           (4) 

where 𝒟𝒟 is a 3D CNN model with trainable parameters 𝑊𝑊 and ℋ is the aggregation function. All the K seg-
ments are fed into the same 3D CNN with the same parameters 𝑊𝑊. 
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Figure 5. The proposed segment-based sampling and modeling framework (a). The two segmentation meth-
ods used in our evaluations (using 𝐾𝐾 =  3 as an example): (b) equal-length segmentation and (c) scaling-
based segmentation. 
 

Fine-tuning is needed to obtain the optimal settings for the 3D CNN. In this study, we evaluate three 
different components: 1) the aggregation approach, 2) the number of segmentation K, and 3) the segmentation 
method. For the aggregation approach, we evaluate model performance with two different pooling strategies: 
max pooling and average pooling. For the segmentation method, we propose two segmentation methods. In-
spired by (Wang et al., 2018), our first method divides a video into K segments with equal length of duration. 
For example, for a 9-second video where K is equal to 3, the first segment has video data from 0s to 3s, the 
second segment has video data from 3s to 6s, and the third segment has video data from 6s to 9s. There are no 
overlapping temporal segments. We refer to this method as equal-length segmentation. In our second method, 
the video is divided according to a scaling approach, which we denote as scaling-based segmentation. Assuming 
that the spatial-temporal information closer to the moment of interest (i.e., towards  the end of the video when 
the oil is ignited) contains more salient information, overlapping data near the ignition moment is used. The 
length of each segment varies to capture temporal behaviors of smoke in different time scales and the length is 
reduced by a factor of 2.  Fig. 6 (b) and (c) illustrate the two segmentation methods. 
 

Dataset and Model Configuration 
 
Dataset 
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Figure 6. Segmenting each Cooking-Practice video into “Smokeless”, “Non-Danger” and “Danger” clips, 
with (a), and without (b), the prediction buffer. FiSS is trained and evaluated with the video instances (10s 
moving windows) generated by the presented methods (c). 
 
Given an video instance, our task is to predict whether oil ignition is imminent in the near future (e.g., 60s). In 
our experiment, we pre-process the Cooking-Practice dataset to generate video instances for our model training 
and evaluation. As shown in Fig. 3, smoke can hardly be seen 120s before ignition. When the oil temperature 
becomes higher, smoke tends to be generated and as the ignition moment is approaching, we can see in the 
figures that smoke is generated at a faster rate. This kind of smoke behavior usually occurs in between 120s 
before ignition to the moment of ignition, and  immediate action is needed if the oil is going to ignite within the 
next 60s. With this domain knowledge, we split each video in the Cooking-Practice dataset into three sub video 
clips at 120s and 60s prior to the ignition moment as shown in Fig. 6 (a and b). We annotate the sub-clips as 
“Smokeless”, “Non-Danger”, and “Danger”.  As mentioned above, since our study targets to model the smoke 
signals to predict potentially dangerous situations, we discard the “Smokeless” data and our model construction 
and evaluation will only focus on the “Non-Danger” and “Danger” clips. 

To generate our video instances, a 10-second moving window with a stride of 1 second to the “Non-
Danger” and “Danger” video sub-clips is applied (Fig. 6, a). Thus, each sub-clip contributes 60 instances of 
“Non-Danger” and “Danger”, respectively. Since the instances are likely to be very similar, 30 instances from 
each category are then selected to avoid overfitting. Each video in Cooking-Practice dataset thus contributes 
60 instances with two balanced classes. 

Another important aspect of this problem is that we need to develop a model such that it can send 
warning information and, if possible, automatically turn off the stove when danger is detected in real-life con-
texts. However, in real applications, it takes time for the pan temperature to return to a safe range after the stove 
is turned off. During this period, the food and oil are still being heated and there is still a risk of ignition, and 
once a cooking fire is ignited, it is very difficult to suppress. Taking these practical concerns into consideration, 
a model that can make a prediction in advance, such that there is an adequate time buffer to allow the pan 
temperature to reduce to a safe range, is more practical in preventing potential fires. We account for this scenario 
by introducing a “prediction buffer” (Fig. 6 b). Specifically, we further split the “Danger” clip at 30s before 
ignition moment (as suggested by domain experts), and discard all instances after 30s before ignition (after 
which the temperature of the pan is too hot, and ignition will occur even if the stove is cut off). As this reduces 
the length of the “Danger” clip to 30 seconds, only 30 instances can be extracted, which are all included in our 
evaluations.   

Approximately 1800 instances are obtained for each fire test. For evaluation purposes, we randomly 
split our cooking practices into three subsets: training, validation, and testing sets with 70 %, 10 %, and 20 % 
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of the events assigned to training, validation, and testing, respectively. This ensures that instances from the 
same cooking practice will not be split into two different sets (i.e. none of the instances in the test set will have 
been “seen” by the model during training or validation). This yields 1260, 180, and 360 training, validation, 
and testing instances, respectively. We refer to this as “Ignition-Prediction” dataset. These instances are then 
split into K segments for segment-based modeling as described in “Methods: Segment-based Modeling Frame-
work”.  
 
Model 
 
FiSS is trained from scratch on the Ignition-Prediction dataset. The “Adam” optimizer (Kingma & Ba, 2014) 
is adopted in model training with the initial learning rate of 10−5, which is reduced to 10−6 and 10−7 after 10 
and 20 training epochs, respectively. The model is trained for at most 50 epochs with a batch size of 10. Early 
stopping strategy is employed to prevent over-fitting: if the model has not improved the validation set in 5 
epochs, the training process will be terminated regardless of whether the maximum epoch has been reached. A 
dropout rate of 0.5 (Srivastava et al., 2014), which randomly ignores half of the nodes in each training step, 
leading to a similar effect of model capacity reduction in the training process, is adopted to prevent overfitting 
further.  
 

Results and Discussion 
 
Parametric studies are conducted to evaluate the effectiveness of our FiSS models. To systematically explore 
the effect of segment-based sampling framework, we evaluate the framework with different setups,  including 
different segment number (K), segment approaches (equal-length segment (ES), scaling-based segment (SS)), 
and prediction aggregation methods (mean-pooling (Mean), max-pooling (Max)), and compare with a plain 3D 
CNN model (𝐾𝐾 =  1). 

Table 2 shows the model performance without the prediction buffer. Our problem is formulated as a 
binary classification problem (i.e., classifying an instance as “Danger” or “Non-Danger”). We first evaluate 
the classification accuracy. As the “Danger” cases are evidently more critical, we further investigate the preci-
sion, recall, and f1-score of the “Danger” classification. 

Our results show that promising performance can be achieved even with just the plain 3D CNN (~79% 
accuracy), implying that the proposed 3D CNN model is effective in learning representative spatial-temporal 
smoke features to predict potential cooking fires. It is also encouraging to note that segment-based sampling 
framework contributes to performance improvement, especially when 𝐾𝐾 = 2 is adopted. This indicates that the 
segment-based sampling framework is able to capture and model rich temporal information in a more efficient 
way. We also see that the performance does not further improve with more segments, i.e. 𝐾𝐾 = 3. One possible 
reason is that the length of each segment in a 3-segment setting (or the last segment in scaling-based segmen-
tation) is too short to contain sufficient information for modeling, which may be confusing for the model.  
 
Table 2. Model performance without prediction buffer. 

Segment method Accuracy Precision Recall F1-Score 

K = 1  78.89% 78.89% 78.89% 78.89% 

  ES-Mean 80.83% 81.71% 79.44% 80.56% 
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K = 2 ES-Max 82.22% 84.12% 79.44% 81.71% 

SS-Mean 79.72% 74.88% 89.44% 81.52% 

SS-Max 80.83% 93.02% 66.67% 77.67% 

  
K = 3 

ES-Mean 79.72% 80.57% 78.33% 79.44% 

ES-Max 72.78% 71.13% 76.67% 73.80% 

SS-Mean 78.06% 76.17% 81.67% 78.82% 

SS-Max 71.11% 68.45% 78.33% 73.06% 

 
The best accuracy (~82%) is achieved by 2-segment setup with equal-length segmentation and max-

pooling aggregation (K = 2, ES-Max), which also yields the highest precision, i.e., having the smallest false 
alarm rate. The best recall, on the other hand, is obtained by scaling-based segmentation with mean-pooling 
aggregation (K = 2, SS-Mean). The model trained with this framework is more likely to predict fire, but also 
has a higher chance to make false alarms. 

Table 3 shows the performance of our model in the scenario where a prediction buffer is added. This 
is a more difficult task, and as such, a consistent performance drop is observed across the board for all models. 
However, it is noteworthy that promising performance is still achieved by the models – specifically, using 
mean-pooling (SS-Mean) and K = 2 achieves ~77% accuracy and ~75% precision, albeit with a drop in the 
recall. This further demonstrates the effectiveness of the proposed 3D CNN and segment-based framework, 
especially when 𝐾𝐾 =  2. Generally, the model adopting 𝐾𝐾 =  2 with ES-Max sampling and modeling method 
attains the most robust performance across the board. 
 
Table 3. Model performance with prediction buffer. 

Segment method Accuracy Precision Recall F1-Score 

K = 1  73.33% 68.92% 85.00% 76.12% 

  
K = 2 

ES-Mean 75.00% 68.60% 92.22% 78.67% 

ES-Max 76.11% 71.96% 85.56% 78.17% 

SS-Mean 77.22% 75.52% 80.56% 77.96% 

SS-Max 70.83% 67.12% 81.67% 73.68% 

  
K = 3 

ES-Mean 73.06% 72.43% 74.44% 73.42% 

ES-Max 73.06% 68.95% 83.89% 75.69% 

SS-Mean 71.11% 67.59% 81.11% 73.74% 

SS-Max 73.33% 70.00% 81.67% 75.38% 
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Conclusions 
 
This research demonstrates the efficacy of using a 3D CNN model with a segment-based modeling framework 
to predict unattended kitchen fires. Empirical study is conducted to understand the effectiveness of the proposed 
model, and explore the optimal setup. The experimental results show that 3D CNNs can effectively learn rep-
resentative spatial-temporal features which to model smoke signals, yielding promising performance for unat-
tended kitchen fire prediction. Further performance improvement can be achieved by applying segment-based 
modeling. In the future, this research can be expanded by applying different model structures such as combining 
a CNN with a Long Short-Term Memory network. Future work with an expanded dataset could also investigate 
predicting potential other kitchen accidents related to cooking. For example, it is not too difficult to imagine a 
similar model used for detecting water boil-over, which can also be hazardous in gas cooktops. 
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