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ABSTRACT 
 
Accuracy of peptide identification is crucial for LC-MS analysis to reveal information regarding many different 
aspects of proteins that aid in the discovery of biomarkers and profiling of complex proteomes. Preprocessing 
steps such as feature detection are crucial yet challenging; current feature detection tools are not robust enough 
to detect low-abundance, low-peak fragments of peptides found in MS2 data from tandem mass spectrometry. 
In this study, we developed a deep learning-based model with an innovative sliding window process that enables 
high-resolution processing of quantitative MS/MS data to conduct accurate feature detection on MS2 data. Ex-
perimental results show that our model is able to produce more accurate values and identifications than existing 
feature detection tools. Therefore, we believe that our model can realize the full potential of neural networks in 
the field of bioinformatics and yield long-term benefits in the advancement of proteomic inquiry. 
 

Introduction 
 
Peptides, as the fundamental structures of proteins, are increasingly crucial for aspects of bioinformatics, such 
as biomarker discovery and drug identification research. Liquid chromatography with tandem mass spectrom-
etry (LC-MS/MS) based proteomics is the most common research field on this subject. Recent advancements 
in the development of mass spectrometry hardware and the subsequently increased amounts of analytical data 
make LC-MS maps difficult to interpret manually or through existing commercial feature detection tools. Deep 
learning neural networks have been identified as an adaptable and compelling structure to tackle the complexity 
of this new data and hence have become an increasingly popular tool for new LC-MS/MS software. For example, 
DeepNovo uses sequencing steps and an LSTM network for de novo peptide sequencing [10]. DeepSig uses a 
DCNN and probabilistic methods to detect signal peptides and locate sequences’ cleavage sites [9]. DeepRT 
combines a CNN and RNN to predict peptide retention times [26]. As seen through the multitudes of recent 
software, deep learning’s outstanding performance on LC-MS/MS analysis is making significant breakthroughs 
in the field of proteomics and bioinformatics. 

Data-independent acquisition (DIA) proteomics is a recently developed mass spectrometry (MS)-
based proteomics strategy. In the DIA method [3], enzymatically broken peptides must first be identified and 
quantified by analysis instruments in order to be further investigated. Through tandem mass spectrometry, an 
extension of the MS procedure that places two mass spectrometers in tandem to further fragment peptides. This 
is commonly used for product-ion or precursor-ion scans and high-level analysis of trace components found in 
complex mixtures. Through the first mass spectrometer one obtains MS1 data for the precursor peptides, and 
from the second, MS2 data for the peptide fragments or product ions; thus, the peptide fragments found in MS2 
data are physically smaller [22]. A feature is a pattern formed by multiple isotopes of a peptide fragment that 
have distinctly high signals, forming “peaks” in the retention time dimension. Feature detection is especially 
challenging due to the possibility of overlapped peptide fragments (which create difficulties for object detection 
methods) and rigid mathematical assumptions for distinguishing between true peaks and noise. Furthermore, 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 1



due to the aforementioned hardware developments, LC-MS/MS maps can be exceedingly large, making manual 
quantification nearly impossible and requiring considerable computational power for the efficiency of analysis.  

The peptide identification process begins with low-level analysis problems such as feature detection 
through detection and intensity calculation from the LC-MS map, which can be visualized as an image that 
plots mass-to-charge ratio (m/z), retention time (RT), and intensity of peaks on a 3D map [5]. Mass to charge 
ratio is equal to the mass of an ion divided by its charge. The retention time of a peptide is defined as the time 
spent between the point at which the peptide is injected into the mass spectrometer and the point at which a 
solute emerges. This endpoint is shown by a peak in the signal created by the peptide. Lastly, the intensity factor 
indicates the abundance of an ion, i.e., greater repetition of a particular ion results in greater intensity.  

Recently, deep learning has been used for feature detection. For instance, DeepIso incorporates both a 
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) to predict peptides [2]. However, 
these existing tools are created and tested primarily for MS1 features. Feature detection at the MS2 level be-
comes exponentially more challenging due to the weak signals and low abundance of product ions found. Fur-
thermore, the challenge of distinguishing features from noise is augmented by the low intensities of these MS2 
peptide fragments combined with the extensive size of the LC-MS/MS map. Our novel deep learning tool tar-
gets this issue by using a process of sliding windows to break an LC-MS/MS map into smaller frames, which 
are used individually to train the model. In our study, the use of Faster-RCNN [1] combined with the optimiza-
tion of our training dataset allows for the full realization of the potential of deep learning applications for feature 
detection. 
 

Methods 
 
The workflow of our method is shown in Fig. 1. We rendered LC-MS/MS benchmark data into a 3D map with 
m/z on the x-axis, retention time on the y-axis, and intensity as a whiteness value. We then developed an auto-
mated process of sliding windows that cut through the image in a sequential fashion to generate a series of small 
subframes from the original image. This step allowed for more efficient training due to the higher resolution of 
the windows in comparison to the original image as well as the ease of training because the model is able to 
process smaller frames with higher throughput. We then used the union of MaxQuant [6] and Dinosaur’s [7] 
outputs to annotate the images generated with bounding boxes as the ground truth of the features.  

After loading the training images, we incorporated the Faster-RCNN model, which is composed of a 
Region Proposal Network (RPN), a classifier, and a regressor. By proposing sets of anchor boxes, filtering them 
through objectiveness score, and updating the weights based on the error in output confidence and bounding 
box coordinates, the model can identify and localize features accurately. Afterward, we use Soft Non-Maximum 
Suppression to filter out repeated detections by comparing detection confidence and calculating IoU. To fine-
tune the hyperparameters, we take the loss value as an indication of training progress to adjust the number of 
epochs and the learning rate to achieve a minimal stable loss. Finally, we ran the model on an independent 
dataset to evaluate its performance in terms of the number of features detected and the bounding box area.  
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Figure 1. Workflow of our experimental process. The blue denotes existing procedures/tools while the green 
denotes our original contributions. 
 
Data Acquisition 
 
We extracted data from ProteomeXchange (PXD006096, PXD010357, PXD004684), all of which are either 
lung, breast, or prostate cancer samples measured in the DIA mode. [13, 17, 18]. In order to prevent overfitting 
towards a single type of protein and minimize repetition across the training data, we selected data from different 
sources spanning multiple different projects. We utilized ProteoWizard’s [15] tool msConvert [16] to convert 
raw LC-MS/MS data into mzML format. Raw data was also sent to MaxQuant, while the files after conversion 
to mzML were fed through Dinosaur. These existing tools provide annotations for start and end retention times, 
m/z midpoint, and the number of isotopes, the union of which we consider the ground truth of the features. We 
use the values produced by MaxQuant and Dinosaur to annotate the map with bounding boxes around the fea-
tures manually.  
 
Image Generation 
 
In tandem mass spectrometry, precursor ions are further broken into product ions before going through the mass 
detector; thus, these peptide fragments have lower signal intensities and are more difficult to detect. We chose 
here to generate LC-MS maps as an image for object detection to address this issue. Figure 2 shows this com-
parison of MS1 and MS2.  
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Figure 2. MS2 data differs from MS1 in that MS2 signals are less intense and therefore more difficult to detect. 
We wrote an in-house script to generate an LC-MS map and convert it to a grayscale image. Each peak 

is defined by three dimensions: m/z (mass over charge), retention time (in seconds), and intensity. For each 
peak, we begin by converting the m/z to integer values scaled along the x-axis, with each integer value repre-
senting the index of the pixel along the width of the image. The equation for this process is as follows: 

Equation 1. Normalization of m/z values. 

𝑖𝑖𝑛𝑛 = ⌊
(𝑘𝑘𝑛𝑛 − 𝑘𝑘𝑚𝑚𝑚𝑚𝑛𝑛) 
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑘𝑘𝑚𝑚𝑚𝑚𝑛𝑛

× (𝑤𝑤 − 1)⌋ 

 
Where w is the width of the image, k is the m/z charge of a given peak, n is the desired peak, kmax and 

kmin respectively represent the highest and lowest m/z values in the dataset, and in is the x-axis index of the peak. 
Through this process, the minimum normalized m/z value is 0 and the maximum value is (width - 1). The same 
process is repeated for the retention times to calculate the y-axis indices with respect to the height of the image. 
Intensity, which is given in the mzML format as a double value, is converted to an integer between 0 and 255 
and represents the whiteness of the pixel in a similar process as follows: 

Equation 2. Normalization of intensity values. 

𝑎𝑎𝑛𝑛 = ⌊
(𝑘𝑘𝑛𝑛 − 𝑘𝑘𝑚𝑚𝑚𝑚𝑛𝑛) 
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑘𝑘𝑚𝑚𝑚𝑚𝑛𝑛

× 255⌋ 

 
Sliding Window Procedure 
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Figure 3. The sliding window process along the retention time axis is used to separate the generated image into 
smaller frames for model training and prediction. 
 
We developed a sliding window procedure that builds upon DeepIso’s IsoDetecting module by using static 
images instead of dynamic motion from FC-RNN [11]. By doing this, we removed the dependency of the data 
to optimize the size of the training dataset. With a height of 240px and width of 270px as the base size, we used 
the following loop to cut each image into separate frames: 

Equation 3. Loop to create window frames. 
𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑚𝑚,𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎[120𝑖𝑖 ∶ 120𝑖𝑖 + 240, 270𝑗𝑗 ∶ 270𝑗𝑗 + 270]  

This created a 120px overlap in the frames. As most features are less than 240px in height, there are 
virtually no features not encompassed by any singular subwindow. Furthermore, even if a feature is partially 
cut off by the end of a window, as long as a majority of the feature is included, the model will recognize the 
pattern as a feature. 
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Faster-RCNN Training 

Figure 4. Faster-RCNN’s process, including Region Proposal Network, on our image. 
 
We used Faster-RCNN with ResNet-50 to train our model. Faster-RCNN is the state-of-the-art object detection 
tool that combines a Region Proposal Network and a classification model in order to utilize full-image convo-
lutional features [1]. From the input image, a feature map, which outlines the image’s features such as edges 
and shapes while retaining the original image’s structure, is generated from the first few convolutional layers.  
 
Region Proposal Network 
The RPN takes the feature map as input and provides a list of about two thousand regions where an object could 
potentially be located. The RPN proposes regions in the form of anchor boxes around the pixels on the feature 
map, known as anchors. Nine anchor boxes, which are combinations of three different scales and three different 
aspect ratios, are proposed for each anchor. The RPN, a convolutional neural network itself in nature, allows it 
to be combined into a single CNN with the classifier, which makes Faster-RCNN a single-step process [1]. In 
our case, it is implemented using a ResNet-50 model. The tight integration of Faster-RCNN allows it to be 
trained end-to-end and reduces the model complexity as well as run time.  
 
Classifier & Regressor 
Additionally, RPN contains a classifier and a regressor, which outputs the probability of the region containing 
an object and which regresses the coordinates of the proposals, respectively [1]. Each anchor box is converted 
to a feature vector using RoI pooling and fed into the classifier and the regressor, which then filters the anchor 
boxes to produce a final list of detections. The anchor boxes are filtered through an objectiveness score, which 
is dependent on the box’s IoU (intersection over union) with the ground truth. The box with IoU over 0.7 or the 
highest IoU among a subset of anchor boxes is assigned a positive objectiveness score, which indicates a higher 
probability of it containing an object [1]. On the other hand, a box with a low IoU is assigned a negative objec-
tiveness score indicating that it is unlikely to contain an object.  
 
Loss Functions 
During the training of Faster-RCNN, the weights of the ResNet-50 CNN are updated in accordance with the 
loss function, which is defined as follows: 

Equation 4. The loss function. 

𝐿𝐿({𝑝𝑝𝑚𝑚}, {𝑡𝑡𝑚𝑚}) =
1

𝑁𝑁𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐
�  

 

𝑚𝑚

𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐(𝑝𝑝𝑚𝑚  , 𝑝𝑝𝑚𝑚∗) +
𝜆𝜆

𝑁𝑁𝑏𝑏𝑏𝑏𝑚𝑚
𝑝𝑝𝑚𝑚∗�  

 

𝑚𝑚

𝐿𝐿𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡𝑚𝑚 , 𝑡𝑡𝑚𝑚∗) 
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The loss function L takes in the probability, or confidence, of the detection, denoted as pi, and the 
bounding box coordinates, denoted as ti. The final loss is the sum of the losses from the classifier and the 
bounding box, each with a constant in front. The normalizing terms N are set to the mini-batch size for the 
classifier and the number of anchor locations for the box. 𝜆𝜆 serves as a balancing term so that the losses from 
the classifier and the bounding box are weighted equally. The classifier loss compares the confidence of the 
output against the ground truth, denoted as p*

i, and in a binary form (1 indicating that the object of the class 
exists and vice versa) as follows:  

Equation 5. Classifier loss formula. 
𝐿𝐿𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐(𝑝𝑝𝑚𝑚  , 𝑝𝑝𝑚𝑚∗) = −𝑝𝑝𝑚𝑚∗𝑙𝑙𝑤𝑤𝑙𝑙(𝑝𝑝𝑚𝑚) − (1 − 𝑝𝑝𝑚𝑚)𝑙𝑙𝑤𝑤𝑙𝑙(1 − 𝑝𝑝𝑚𝑚) 

 
Additionally, the loss of the bounding box is restricted by the ground-truth term 𝑝𝑝𝑚𝑚∗ in which the entire 

term is 0 when the object of 𝐿𝐿1 loss between the predicted bounding box coordinates and the ground-truth box. 
Equation 6. Bounding box loss formula 

𝐿𝐿𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡𝑚𝑚  , 𝑡𝑡𝑚𝑚∗) = 𝐿𝐿1𝑐𝑐𝑚𝑚𝑏𝑏𝑏𝑏𝑠𝑠ℎ(𝑡𝑡𝑚𝑚  , 𝑡𝑡𝑚𝑚∗) = �  
 

𝑗𝑗∈{𝑚𝑚,𝑦𝑦,𝑤𝑤,ℎ}

𝑦𝑦 

 

𝑤𝑤ℎ𝑒𝑒𝑎𝑎𝑒𝑒 𝑦𝑦 = { |𝑠𝑠𝑖𝑖𝑖𝑖−𝑠𝑠𝑖𝑖𝑖𝑖∗ |−0.5  𝑚𝑚𝑐𝑐 |𝑠𝑠𝑖𝑖𝑖𝑖−𝑠𝑠𝑖𝑖𝑖𝑖
∗ |≥1

0.5(𝑠𝑠𝑖𝑖𝑖𝑖−𝑠𝑠𝑖𝑖𝑖𝑖
∗ )2   𝑚𝑚𝑐𝑐 |𝑠𝑠𝑖𝑖𝑖𝑖−𝑠𝑠𝑖𝑖𝑖𝑖

∗ |<1
 

 
Soft Non-Maximum Suppression 
As we evaluated the output by our model while filtering out detections with low confidence (<0.1), we noticed 
several repeated detections of the same features. To increase the accuracy of our detections, we utilized Soft 
Non-Maximum Suppression [24] to filter out the duplicate detections and reduce redundancy. Soft-NMS, in-
stead of removing the low-confidence detections as in its predecessor NMS, simply reduces the confidence of 
the repeated detection. The detailed algorithm is as follows: 

Let 𝑆𝑆 = a set of initial detections; 𝐾𝐾 = an empty set to hold the list of detections to keep; 𝑢𝑢 = NMS 
threshold 

While 𝑆𝑆 ≠ ∅: 
𝑤𝑤 = detection with the highest confidence in S 
Add 𝑤𝑤 to 𝐾𝐾 
For 𝑠𝑠𝑚𝑚 in 𝑆𝑆: 

If 𝐼𝐼𝑤𝑤𝐼𝐼(𝑠𝑠𝑚𝑚  ,𝑤𝑤) > 𝑢𝑢: Multiply the confidence of 𝑠𝑠𝑚𝑚  by (1 − 𝐼𝐼𝑤𝑤𝐼𝐼(𝑠𝑠𝑚𝑚  ,𝑤𝑤)) 
When encountering two overlapping true positive detections, NMS has a chance of mistakenly remov-

ing one of them, but since soft-NMS removes the repeated detections by reducing its confidence to below the 
threshold (0.1), it leaves a chance of keeping both true positive detections by allowing high confidence detec-
tions to stay above the threshold even after the soft-NMS process. Thus, soft-NMS provides a balance between 
reducing false positives and false negatives. 
 

Experiment and Results 
 
Window Size Optimization 
 
As mentioned in the introduction, the LC-MS map is far too large to be efficiently processed; thus, we use an 
overlapped cropping mechanism to create smaller frames from the original image. Compared to the dynamic 
DeepIso IsoDetecting module, our process employs a 240 x 270 pixel window that slides across the retention 
time axis with 120 pixel overlap between frames, applied on a static image to eliminate dependency from pre-
vious frames. Optimization of this process is shown in Figure 5; with larger window sizes, though the runtime 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 7



is significantly lowered, the number of features the model is able to detect accurately after training is inade-
quately low. This is because there are fewer frames generated to train with and each frame has a lower resolution. 
Additionally, with such a large height, many features are captured by multiple windows for each scan, produc-
ing duplicate images in the training dataset and increasing the likelihood of overfitting even with a low number 
of epochs. However, as the window height decreases to 120px, there comes a point where the window is no 
longer tall enough to encompass a full feature; larger features are no longer accounted for in the model’s training, 
and thus the model is unable to recognize these particularly complex peptides. Furthermore, even with GPU 
hardware, the runtime for the smallest size is exceedingly high and not offset by an increased number of features. 
Hence, we choose an intermediate height of 240px to split the windows by, thus creating optimally sized frames 
to train the model with and producing a sufficient number of features detected after training while minimizing 
both repetition and runtime. 

 
Figure 5. As the size of the sliding window decreases, both the number of features detected and the runtime 
increase until the window reaches 120px, at which point the number of features decreases. 
 
Training 
 
Since the features in the LC-MS map are relatively sparse, there occur situations where a window is empty and 
thus useless for training the model. We removed these windows for the efficiency of training. After removing 
these empty frames, the remaining frames each contain between 1 and 10 features. Table 1 shows the number 
of windows in each step of our screening process to ensure only images containing features are used for training. 
 
Table 1. Number of windows in each step of the pre-training process 
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File Initial windows generated Empty windows Final windows used 

PXD006096-1 14949 13845 1104 

PXD006096-2 16053 13814 2239 

PXD006096-3 17188 13994 3194 

PXD010357-19 12428 8945 3483 

PXD010357-20 12717 8165 4552 

PXD004684-H 13867 8142 5725 

PXD004684-L 17551 10852 6699 

Total 104753 77757 26996 

The empty windows made up nearly 75% of the frames generated by our sliding window process. The 
elimination of these frames from the training data resulted in an estimated 36-hour reduction in training time, 
contributing to our model’s efficiency. About twenty percent of the remaining data is first set aside for testing. 
We then randomly and independently split the windows into training and validation subsets. 

Figure 6. The relative performance of the model after different numbers of epochs are used for training. There 
occur 1000 iterations for every epoch.  
 

Since the model uses the loss to tune its weights during training, the rate at which the loss decreases 
indicates the model’s rate of improvement. After testing various learning rates, we found that the loss for nearly 
all of them approached the same satisfactory result, simply at different speeds. Thus, we settled on a learning 
rate of 0.0001. As we trained on the 12 epochs, the loss is recorded and thus the relative performance of the 
model is shown. As depicted in Figure 6, the model in epochs 1 and 2 produced largely erroneous results. After 
beginning to stabilize at around 5 epochs, no improvements in performance were seen in the validation subset 
after 7 epochs. As we continued training for the next 5 epochs afterward, the loss was relatively unchanged. 
Thus, we concluded that the model’s performance was relatively stable, and no further progress was made. We 
stopped the model’s training at 12 epochs to impede overfitting. 
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Performance Evaluation 

 
Figure 7. Our model is able to accurately detect more features than MaxQuant. Testing samples are acquired 
from PXD006096, PXD010357, and PXD004684 [13, 17, 18]. 
On average, our model is able to detect 35% more high-confidence MS2 features than the conventional feature 
detection tool MaxQuant. The samples we tested on are small sections of images, again generated with our 
script and processed with the sliding window procedure. Due to the nature of MS2 spectra, it is difficult to 
designate high-confidence MS2 features using a 100% accuracy metric. Thus, we cannot evaluate our model 
based on a percentage accuracy; we instead manually analyze the predictions made by our model in regard to 
the likelihood of false-positive detection. Furthermore, our model is able to localize the bounding boxes around 
each detected feature, giving more accurate values for both the m/z ratio and retention times. There is, on aver-
age, a 16% decrease in the area of a bounding box for any given feature identified by both our model and 
MaxQuant. Figure 8 gives a side-by-side comparison and overlaid output as a comparison of our model’s per-
formance against that of MaxQuant. 

Figure 8. Side-by-side and overlaid comparison of our model against MaxQuant. The red boxes are from our 
model, while the purple and green are generated by MaxQuant. 
 

In the side-by-side comparison, our bounding boxes are clearly shorter in length and width than those 
generated by MaxQuant. This is also shown in the overlay, as well as a feature detected by our model that is 
omitted by MaxQuant’s detection. With human observation, it is evident that the start and end retention time of 
the features shown in the images is closer in value to the lines dictated by our model, thus proving that our 
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model is able to provide more accurate values and provide ease of subsequent analysis in the LC-MS/MS iden-
tification process. Our model also outputs a table of values (Table 2) indicating the position of the features on 
the image, allowing for easy calculations for feature area and m/z and retention time values.  
 
Table 2. Sample output of our model’s table of values.  

File xmin ymin xmax ymax 

15-14 77 130 97 308 

35-17+ 144 357 170 468 

25-17+ 50 131 74 249 

26-11 214 194 238 302 

26-11+ 84 284 107 377 

27-13 210 162 242 324 

19-14 237 278 256 383 

 
The file names, shortened for simplification purposes, indicate the position of the window within the 

image. For instance, 15-14 refers to the 15th window along the m/z axis and the 14th window along the retention 
time axis. The files with a + refer to the overlapped windows, i.e., 35-17+ indicates the window found in the 
overlap between scans 17 and 18. With this output, one can easily calculate the original m/z and retention time 
endpoints through the reversal of our normalization equation. 
 

Discussion and Conclusion 
 
In this paper, we developed a deep learning-based model that can accurately conduct MS2 feature detection. 
Among other properties learned by the neural network, the model is trained to recognize the general character-
istics of a peptide feature. This includes the general bell shape of a feature, the equidistance on the m/z axis 
between isotopes, and their overlapping nature. Our model performs at an average 35% increase in the number 
of features detected in comparison to MaxQuant and a 16% reduction in bounding box area, showing that it is 
both more sensitive and accurate than conventional feature detection tools and proving its superior capabilities 
in relative performance and localization despite the complexities of feature detection and extra challenges pre-
sented by MS2 data.   

We would like to explain the significance of using comparisons against MaxQuant and Dinosaur as a 
metric of our model’s performance. Since a 100% accurate feature detection tool does not exist, it is impossible 
to know the full truth of the features. However, our model’s training and performance evaluations are not in-
tended to mimic the output of MaxQuant and Dinosaur simply because their annotations’ union is used as the 
ground truth for training. Instead, this union replaces manual annotations. 

We would also like to note that although different RAW files from cancer samples were used for 
testing, the scope of our results is not limited to applications related to cancer proteins. Regardless of the protein 
species used to generate the raw data, the features, once processed by our script, appear nearly identical, so our 
model should be able to process the MS2 data generated from different proteins without the need for ad-hoc 
training. Our results suggest that our model will be applicable to a multitude of situations regarding proteomic 
analysis. 

In future work, we would like to perform more testing on larger datasets to measure the model’s per-
formance on different types of proteins, as well as increase confidence in its capabilities for detecting cancer 
proteins. Furthermore, as our current output only gives values for the m/z endpoints and retention time start and 
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end, we plan to incorporate a module to identify the number of isotopes in a feature by using its width. Lastly, 
we would like to implement the sliding window procedure to scan across the m/z axis in addition to the retention 
time axis in order to capture any feature that may be cut off by windows. This would also contribute to the 
isotope detecting module while again increasing the number of features detected. 

We also plan on adding several functionalities to the model, such as allowing it to convert back from 
pixel indices to m/z and retention time, i.e., perform a reversal of the normalization process used to generate 
the image. In our current normalization process, as the pixel value must be an integer, there is a minor source 
of error as the equation must round the normalized m/z or retention time value down to the nearest whole 
number in order to assign a pixel value to the peak. Thus, a reversal of this process would result in m/z and 
retention times slightly lower than the original input values. However, as the size of the original image increases, 
this error on either end approaches negligible values. We plan on addressing this issue by improving the model’s 
sensitivity and ability to process larger images in order to make predictions on these increasingly large files to 
enhance its accuracy. This will also be applicable to the surplus of increasingly complex data generated by the 
rapid improvements in mass spectrometry hardware. 
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