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ABSTRACT 
 
Optical flow is an effective measurement to gauge motion in a scene, which allows for the computation of pixel-by-
pixel motion in a frame pair. This paper aims to address the ambiguity with determining how to gain optical flow 
results for a given sequence. Due to varying speeds and nuances of a sequence, where it’s set, how fast it’s moving, a 
different amount of blur radius, i.e., the extent to which the image is blurred, may have to be applied to gain realistic 
flow maps. Furthermore, this paper touches on the many variables that can impact the efficacy of the flow outputted 
by an optical flow algorithm. Thus, we aim to determine whether the composition of results obtained through different 
blur values provides for more ground-truth flow outputs.  
 

1. Introduction 
 

 
Figure 1. A diagram of the primary types of motion that are described through optical flow visualizations (from left 
to right: forward-backward, rotational, translational). 
 
A necessity in being able to understand, and consequently compute optical flow, is a foundational understanding of 
how perspective works, as well as how perspective shifts impact motion in a scene. Computation on sequences can 
provide for a plethora of information as to what is happening in a scene without even seeing it. Optical flow has been 
one of these methods that provides insights into the movement in a sequence, what things are moving, and to what 
extent are they moving. Optical flow is similarly useful in determining specific objects in a sequence, like edge, or 
object detection. A simple camera shake can be enough to highlight each of the objects in a scene and provide infor-
mation in that way. However, traditional methods of computing optical flow are fairly unilateral and don’t account 
for nuances in sequences such as the speed of objects. The motivation of this paper was to look into the usage of blurs 
and see whether implementations could bolster optical flow measurements.  
       The computation of the movement that occurs in  a sequence of events refers to the process of determining the 
optical flow in a frame. The algorithm determines patterns of surface movement in the given frame that depends on 
the perspective of the viewer of the scene, whether that be a shift in the perspective or a shift in the position of surfaces 
themselves [1, 2, 3, 23, 27]. As the object or perspective shifts, flow vectors are computed to replicate movement on 
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screen. An optical flow estimation is provided through the sequencing of various points in the scene to determine 
holistic surface movement. When implementing optical flow, there are three main types of movement that can be 
accurately described. How far or close an object is getting from the viewer, the direction of rotation, and the x-y 
translation. Depending on the output flow field, one can determine the motion of the object [1, 2, 23].  
 
1.1. Optical Flow 
        
This paper primarily uses optical flow algorithms to calculate flow vectors at each frame in each sequence. Optical 
flow is the determination of movement through the gamma values, or brightness levels, at each pixel in the frame [1, 
3, 23, 27]. An important distinction when considering optical flow is that the optical flow field outputted is the apparent 
motion in the scene. Because optical flow relies on the motion described by the viewer of the scene, these flow values 
may not always directly coincide with true motion. If the perspective of the viewer is shifting while objects in the 
scene remain motionless, the flow field that is outputted will still display motion in the surfaces as the perspective of 
the person shifts. However, this is useful for determining relative movement. The flow vectors will differ based on the 
distance from the viewer, allowing optical flow to be used for determining how close or far an object or surface is. 
Optical flow provides the 3-dimensional motion as it is projected onto an image plane [1, 27]. 
 

 
Figure 2. The diagram represents the outputted flow field if the user itself is viewing a stagnant scene while rotating. 
The magnitude and direction of the vectors represents the perception of motion of surfaces as well as the main point 
of reference, in this case, the center of the scene [28]. 
 

 
Figure 3. Gamma corrected sRGB color space visualization that represents luminance of a frame in the Sintel dataset.  
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Figure 4. Visualization of the change in luminance between a frame pair in the Sintel Dataset.  
 

 
Figure 5. Chart representing the luminance of a single slice of a frame at each color channel. The higher spikes 
represent higher brightness at that pixel. 
 
1.1.1. Explanation 
 
Optical Flow relies on the relative movement of surfaces in a sequence, computed through the aforementioned lumi-
nance values at each pixel. Consequently, this means that, when computing optical flow, it must be assumed that the 
brightness is constant in the scene. If such is not true, optical flow will not succeed [2, 23]. Optical flow computation, 
in popular algorithms like the Lucas-Kanade method is done with two primary calculations: the spatial and temporal 
derivatives. Each pixel is given the location (𝒙𝒙,𝒚𝒚, 𝒕𝒕), where 𝒙𝒙 and 𝒚𝒚 represents the x and y-position s, respectively, 
and 𝒕𝒕 represents the time, or frame of the image. The intensity, or brightness of the pixel can similarly be modeled 
with 𝑰𝑰(𝒙𝒙,𝒚𝒚, 𝒕𝒕). As the pixel moves between frames, the intensity can be equated to the change in both x, y, and t 
positions: 
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𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =  𝐼𝐼(𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 +  ∆𝑦𝑦, 𝑡𝑡 +  ∆𝑡𝑡) 
 
when expanded via a Taylor series expansion: 
 
𝐼𝐼(𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦, 𝑡𝑡 +  ∆𝑡𝑡) =  𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∆𝑥𝑥 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∆𝑦𝑦 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∆𝑡𝑡 

 
meaning that: 

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

∆𝑥𝑥 +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

∆𝑦𝑦 +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑡𝑡
∆𝑡𝑡 = 0 

 
similarly, the equation can also be stated as: 

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑉𝑉𝜕𝜕 +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑉𝑉𝜕𝜕 +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑡𝑡

= 0 

     
   Where 𝑉𝑉𝜕𝜕  and 𝑉𝑉𝜕𝜕 are the components of the flow vector of the pixel (𝑥𝑥,𝑦𝑦, 𝑡𝑡). If we call the flow components 𝑢𝑢 and 𝑣𝑣 
respectively we can derive the equation:        

𝐼𝐼𝜕𝜕𝑢𝑢 + 𝐼𝐼𝜕𝜕𝑣𝑣 =  −𝐼𝐼𝜕𝜕 
or similarly: 

∇𝐼𝐼 ∙ 𝑉𝑉�⃑ =  −𝐼𝐼𝜕𝜕  
       
 Where 𝑉𝑉�⃑  is our unknown. The issue with traditional optical flow stems from this presence of two unknowns, a phe-
nomenon known as the aperture problem which presents ambiguity in the motion of an object in a sequence [23]. To 
work around this, we can implement various methods to compute optical flow. In the case of this paper, the Lucas-
Kanade method is implemented, which makes some assumptions when determining flow vectors. 
 

 
Figure 6. The images above refer to a series of luminance derivatives computed on a pair of images in a sequence. 
The top three images refer to a sequence which has been blurred then had the derivatives extracted, while the bottom 
three are computations of the original sequence, without any blur.  

 
For both, the first image represents the horizontal spatial derivative, the second represents the vertical spatial 

direction, and the third represents the temporal derivative. As is evidenced by comparing the two, blurring can majorly 
impact the amount of motion that is discernable to both a viewer as well as the algorithm. Because the motion is less 
precise as a result of the blurring, it is much easier to make out the amount of movement in the first set of images than 
the second. We can also analyze specific frame pairs for specific, directional movement. In the second set of images, 
because there is more visible in the visualization for the horizontal derivative than the vertical one, the assumption 
can be made that in the pair of frames, there was more horizontal motion than there was vertical. This analysis is very 
important in being able to understand the sequence and how objects move in it. 
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1.1.2. Application 
 

 
 
Figure 7. An optical flow field visualization of soccer players walking. The field describes the motion of each player, 
and the individual vectors correlate to the motion of each of the pixels in the scene.  
 

Optical flow has presented itself as a fundamental concept in a variety of fields. At a very base level, optical 
flow can be used to reflect movements of a computer mouse onto a screen. By using a very low quality, very high 
frame-rate camera, optical flow can be run on the input stream and determine the motion of the mouse on its surface. 
This motion can then correspond to mouse movements on the screen, along with assumptions about rigidity, lighting, 
and object segmentation.         
      Optical flow can be used for more large-scale tasks such as both object detection, as well as object velocity detec-
tion. By running optical flow on a sequence, because the entirety of the surface of an object moves in unison, the 
individual objects can be segmented and then extracted. If one knows the dimensions of a scene as well as a cameras 
relative distance from the scene, optical flow measurements can be converted into 3-dimensional movement, and the 
speed of an object can be calculated. This can be useful for applications such as monitoring traffic on a street, where 
optical flow can determine the speed of vehicles [25.27].  
        A perhaps more involved application, optical flow can be applied to provide “missing” frames in a video se-
quence. Optical flow algorithms can produce interpolated frames between the given frames in the sequence of a finite 
frame-rate camera. By providing these intermediate frames, the number of frames of a high-speed camera can be 
emulated without having to use the intensive hardware that is conventionally required to obtain similar results. This 
can be used to smooth out choppy videos, or to simulate slow-motion videos of these high-frame rate cameras. Optical 
flow can be used for the stabilization of videos by looking for the “dominant flow” in the sequence. By focusing on 
this flow and eliminating any unnecessary flow that results from shaking, the video sequence can be made much more 
stable [25, 27]. 
 
1.2. Motion Fields 
 
Motion fields are the 2D representation of an object with a free range of three dimensions in the real world. The motion 
of the point is reflected based on the movement in the real world. Motion fields can effectively replicate both transla-
tion and transformation onto the 2D plane, although not exactly a true representation of actual events due to dimen-
sional constraints. Both vertical and horizontal translation are quite easily discernable as the size of the object stays 
constant and the motion field can easily reflect such movement. All vectors that relate to the movement of the surface 
will maintain both direction and magnitude as all of the pixels that represent the surface essentially move with it. The 
other case would be the transformation of the object relative to the focal point (i.e., the object getting bigger or smaller 
based on the perspective of the camera). Rotational motion similarly outputs both vectors tangent to the edges of the 
surface, as well as internal vectors with slightly less degrees of magnitude in order to distinguish the motion from 
simply translational movement [14, 17, 20]. 
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Figure 8. A representation of a motion field in which points (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1) in 3D are projected to corresponding (𝑥𝑥2, 𝑦𝑦2)  
coordinates on a 2D plane. 
 
       The motion field can be defined through the equation: 

v = 𝑓𝑓
𝑍𝑍V - V𝑧𝑧𝑷𝑷

𝑍𝑍2
 

given that: 
  V = − 𝑻𝑻 − 𝜔𝜔 × 𝑷𝑷 
       Where 𝑷𝑷 represents a point in the scene being described, 𝒁𝒁 is the distance from the camera to the point, V is the 
relative motion of the point, T is the translational motion, and 𝝎𝝎 represents the angular velocity []. 
       Optical flow and motion fields both represent movement in a 2D plane, and while the apparent extracted motion 
(in this case optical flow) can coincide directly with true motion (i.e., motion field representations), there are several 
use cases that present themselves in  which optical flow and motion field results fail to be the same. While optical 
flow and motion fields both yield similar intentions and results, the difference lies in true versus the perceived motion 
[14, 17]. 

 
 
Figure 9. In this example, the optical flow results and motion field results are not the same. In the first case, although 
the ball is moving, since such movement is not evident through the appearance of the ball, there is a zero optical flow 
field. In the second instance, while there is no true motion of the ball, since the light source moves and changes its 
appearance, optical flow produces flow vectors. 
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1.3. Parallax 
 
Parallax refers to the perceived motion of objects in a scene as perspective shifts. A common phenomenon in space 
sciences, a shift in viewer position leads to apparent motion of objects in a scene. It can also be determined that the 
closer an object is, the faster it will move as the position changes. Since closer objects are larger as a result of depth 
perception, it is easier for them to cross a viewer’s entire of field of motion than a farther object which would appear 
smaller and consequently take longer to move across the field of view [20]. This idea can be implemented in optical 
flow result extrapolation to determine close and far objects.  
       Parallax is extremely important regarding optical flow as it shifts the definition of movement in a scene slightly. 
If a camera were to be pointed at a scene and then shaken around, the sequences would show that the objects moved 
from the frame of reference of the camera, when in reality, it was the camera that moved. This is both useful and 
hindering in the calculation process. While it can be useful to determine where objects are in a scene, the optical flow 
measurements may not truly reflect whether an object is moving or not.  
 

 
Figure 10. As the viewer moves from Viewpoint A to Viewpoint B, the displayed image shifts. At point A, the yellow 
star appears to be in front of the blue square in the background, yet changes to the red square when the perspective 
shifts to position B. 
 
1.4. The Aperture Problem 
 
The aperture problem presents the idea that object motion is not always completely discernable without being able to 
see the whole scene that the object is moving in [33]. An example of this is enclosed rectangles with the ends covered 
up. Because the viewer is not able to see the entirety of the rectangles, thus the entire scene, true motion is not able to 
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be extrapolated. A real-life example of this phenomenon is barber poles which appear to have a vertical up-and-down 
motion, while true motion is horizontal, derived from rotation. 
 

 
 
Figure 11. A barber pole rotates along the z-axis and creates the illusion that the stripes are moving up to a bystander. 
This is reflected in the optical flow field which describes the motion as upward due to the luminance values being 
perceived to have moved in such a matter. In truth, the pole is rotated and thus the motion field is horizontal [33]. 
 
1.5. MPI-Sintel Dataset 
 
The MPI-Sintel dataset is a dataset created to evaluate optical flow algorithms. The dataset provides naturalistic video 
sequences that are challenging for current methods and is designed to encourage research on long-range motion, mo-
tion blur, multi-frame analysis, non-rigid motion. Traditional evaluation methods were largely one-dimensional and 
were easy to perform well in. The Sintel dataset addresses this issue through sequences that include a wide range of 
textures and motions. The dataset was used to evaluate regression models and determine error in this paper [21]. The 
dataset is particularly useful as well because it is completely synthetic, therefore the true optical flow measurements 
are accessible for developers and researchers. The dataset consists of sequences in the open-source film Sintel, which 
is completely 3D animated.  
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Figure 12.  Demonstration of different sigma values (left to right: 1, 3, 5, 9, 15) for the blur radius of the gaussian 
blur function.
 

2. Necessary Tools 
 
In order to successfully understand how the process of blurring works, there are a few fundamental theorems that are 
needed to provide the basis of implementation.  
 
2.1. Central Limit Theorem 
 
The central limit theorem (CLT) states that for any distribution, the mean of various samples of the set will be distrib-
uted following a normal distribution, or more commonly a bell curve. As either the number of samples increases, or 
the size of the samples themselves increase, the closer the sample means will be to a normal distribution [28]. Via a 
mathematical representation, if 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, . . . , 𝑥𝑥𝑛𝑛 is a given set with 𝑛𝑛 random samples with mean 𝜇𝜇, variance 

𝜎𝜎2, and a sample mean 𝑋𝑋𝑛𝑛����, then 𝑍𝑍 =  lim
𝑛𝑛→∞

√𝑛𝑛 �𝑋𝑋𝑛𝑛
����−𝜇𝜇
𝜎𝜎
�
𝑛𝑛

  is a standard normal distribution.  

 

 
Figure 13. A representation of a normal distribution through plotting random sample means. 
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Figure 14. Varying textures with a computation of Lucas-Kanade. The smoothed and edged patches perform signifi-
cantly worse than the textured patch. 
 
2.2. Gaussian Blur 
 
Gaussian blur is a method that utilizes a Gaussian function to blur, or smooth, an image. A key advantage of applying 
a gaussian filter to images is to reduce the noise that may be present [4, 8]. This noise can make computation inefficient 
and produce unclear flow results when passed through an optical flow algorithm. By denoising the frames, we can 
extrapolate much more ground-truth flow results that corroborate with the motion in the scene. Furthermore, blurring 
is also useful when down sampling an image as it can avoid the aliasing of the image. The filter runs a weighted kernel 
(i.e., a convolutional matrix) that multiplies each pixel in the window by the value that corresponds to the pixel position 
in the kernel [4]. A weighted average is taken of all of the weighted values and applied to the pixel at the center of the 
kernel. This process is repeated for each pixel and a new matrix is created that outputs these modifiefsd values [4, 8]. 
In one dimension, the Gaussian function can be mathematically defined as: 

𝐺𝐺(𝑥𝑥) =  
1

√2𝜋𝜋𝜎𝜎2
𝑒𝑒−

𝜕𝜕2
2𝜎𝜎2 

and in two dimensions, the function is just the product of two single-dimension functions: 

𝐺𝐺(𝑥𝑥,𝑦𝑦) =  
1

√2𝜋𝜋𝜎𝜎2
𝑒𝑒−

𝜕𝜕2+𝜕𝜕2
2𝜎𝜎2  

       𝑥𝑥 being the horizontal distance from the origin, 𝑦𝑦 being the vertical distance, and 𝜎𝜎 being the standard deviation 
of the Gaussian distribution. 
 

3. Lucas-Kanade Optical Flow 
 
The Lucas-Kanade method [5] of computing optical flow addresses the issue of an under constrained optical flow by 
implementing a primary assumption. The algorithm assumes that the neighboring pixels around a single pixel in a 
scene will have the same optical flow values as each other, albeit a very small set of neighboring pixels [5, 10, 12, 13, 
24]. We can call this “patch” of pixels 𝑾𝑾 and use such to solve for the optical flow. The Lucas-Kanade method also 
relies on two separate assumptions. One, the base optical flow assumption that the brightness constancy is satisfied, 
and two, that the motion displayed in the path/sequence is relatively small. The Lucas-Kanade method is an example 
of sparse optical flow, in which only the flow at select pixels in the frame are calculated [10, 12, 24]. Other optical 
flow algorithms, which implement a denser method of optical flow in which the flow at all points in the frame, or a 
majority of pixels, is computed. Sparse optical flow is beneficial in that it provides for quick computations and allows 
for a much faster generation of training data. Lucas-Kanade can also be used to compute dense optical flow, however. 
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Figure 15. The red square is a representation of a patch 𝑊𝑊 used for the Lucas-Kanade method. 
 
3.1. History 
 
The Lucas-Kanade method was determined by researchers Bruce D. Lucas and Takeo Kanade in 1981. Although 
almost 40 years have gone by since that point, the algorithms is still widely referenced and subsequently built upon 
by newer proposals. Dr. Takeo Kanade currently remains a professor at Carnegie Melon University and continues 
work in computer vision and its applications [31]. 
 
3.2. Explanation 
 
According to the Lucas-Kanade method, for all pixels (𝑙𝑙, 𝑘𝑘) ∈ 𝑊𝑊: 𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘)𝑢𝑢 + 𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘)𝑣𝑣 =  −𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘) 

represented through a matrix, assuming the size of 𝑊𝑊 is 𝑛𝑛 × 𝑛𝑛: 

⎣
⎢
⎢
⎡
𝐼𝐼𝜕𝜕(1, 1) 𝐼𝐼𝜕𝜕(1, 1)
𝐼𝐼𝜕𝜕(1, 2) 𝐼𝐼𝜕𝜕(1, 2)

⋮ ⋮
𝐼𝐼𝜕𝜕(𝑛𝑛,𝑛𝑛) 𝐼𝐼𝜕𝜕(𝑛𝑛,𝑛𝑛)⎦

⎥
⎥
⎤
�𝑢𝑢𝑣𝑣� =  �

−𝐼𝐼𝜕𝜕(1, 1)
−𝐼𝐼𝜕𝜕(1, 1)

⋮
−𝐼𝐼𝜕𝜕(𝑛𝑛,𝑛𝑛)

� 

giving us a set of 𝑛𝑛 × 𝑛𝑛 equations, or simply if: 

𝐴𝐴 =  

⎣
⎢
⎢
⎡𝐼𝐼𝜕𝜕

(1, 1) 𝐼𝐼𝜕𝜕(1, 1)
𝐼𝐼𝜕𝜕(1, 2) 𝐼𝐼𝜕𝜕(1, 2)

⋮ ⋮
𝐼𝐼𝜕𝜕(𝑛𝑛,𝑛𝑛) 𝐼𝐼𝜕𝜕(𝑛𝑛,𝑛𝑛)⎦

⎥
⎥
⎤

,𝑉𝑉 =  �𝑢𝑢𝑣𝑣� ,𝐵𝐵 =  �

−𝐼𝐼𝜕𝜕(1, 1)
−𝐼𝐼𝜕𝜕(1, 1)

⋮
−𝐼𝐼𝜕𝜕(𝑛𝑛,𝑛𝑛)

� 

the matrix equation can be written as: 
𝐴𝐴𝑉𝑉 = 𝐵𝐵 

to solve the linear system, we can implement the least squares principle, which allows for determination of 
the best way to fit a regressive curve to data points. The method aims to minimize the square of the residuals: 

𝐴𝐴𝑇𝑇𝐴𝐴𝑉𝑉 = 𝐴𝐴𝑇𝑇𝐵𝐵 
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in matrix form: 

�
� 𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘)2

𝑊𝑊
� 𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘)𝐼𝐼𝜕𝜕(𝑙𝑙,𝑘𝑘)

𝑊𝑊

� 𝐼𝐼𝜕𝜕(𝑙𝑙,𝑘𝑘)𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘)
𝑊𝑊

� 𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘)2
𝑊𝑊

� �𝑢𝑢𝑣𝑣� =  �
−� 𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘)𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘)

𝑊𝑊

−� 𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘)𝐼𝐼𝜕𝜕(𝑙𝑙, 𝑘𝑘)
𝑊𝑊

� 

or simply: 
𝑉𝑉 = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝐵𝐵 

       This estimation only holds when the following arguments are true: 
• 𝐴𝐴𝑇𝑇𝐴𝐴 must be invertible (i.e., det(𝐴𝐴𝑇𝑇𝐴𝐴) ≠ 0) 
• The eigenvalues of 𝐴𝐴𝑇𝑇𝐴𝐴 must follow the conditions: 

o 𝜆𝜆1 > 𝜖𝜖 and 𝜆𝜆2 > 𝜖𝜖  
o 𝜆𝜆1 > 𝜆𝜆2 but not 𝜆𝜆1 ≫ 𝜖𝜖 

 
3.3. Analysis 
 
The reason that the Lucas-Kanade algorithm works well is because all the equations derived at each pixel in the patch 
are not linearly dependent on each other. This statement works when the algorithm is presented with a patch of dis-
tinctive texture that allows for 𝐼𝐼𝜕𝜕  and 𝐼𝐼𝜕𝜕 to differ between each pixel [21]. In a smoothly textured patch, the equations 
at each pixel are the same, meaning that the spatial derivatives will be close to 0, as displayed in Figure 10.  Both 
eigenvalues are fairly small and thus it is difficult to reliably compute the optical flow. An edged patch presents a 
sharp gradient in one direction and a weak gradient in the other. This means that the algorithm may not be able to 
successfully determine the true motion of the surface, much like the aperture problem. Because of this, edges are also 
quite unreliable when implementing Lucas-Kanade. A more well-conditioned scenario is when the patch is textured 
(e.g., Figure 10). Texture allows for much more diverse, and larger gradients at each pixel, addressing the fallbacks 
of the other two scenarios [21]. 
 
4. Machine Learning Integration 
 
The basis of evaluation was determining whether a simple regression model would be able to determine the best blur 
radius, and thus extrapolate the most accurate flow results. Optical flow is estimated at each sequence in the Sintel 
dataset, iterating through each frame in every sequence. This process is repeated another four times with the sigma 
value inputted into the Gaussian blur function being the only modified variable. With this, we can compare the flow 
of the exact same sequence, with only the blur being changed. After obtaining the flow fields of each frame, the flow 
fields are extracted to compare the efficacy of the results, as well as to train and consequently evaluate a linear regres-
sion model that compounds all the optical flow estimations.  
       While the graph in (Figure 17) does convey that too much blur is detrimental to optical flow measurements, 
blurring a sequence can be very useful in calculations. With a sequence that has minimal movement, the optical flow 
measurements may come out extremely small, or may not be conducive at all. By blurring the sequence, the move-
ments are exaggerated and thus it is easer to compute optical flow measurements. 
       To obtain a wide variety of data that allows for a much more holistic regression model, we can pick a random 
pixel from random sequences in the dataset. The various sequences that are provided by the dataset are iterated over 
and one is randomly chosen. Next, a random frame in the chosen sequenced is picked, and a random pixel from the 
random frame. The consolidated generated flow and true flow obtained by the Sintel dataset are sent to the regression 
function that trains on 80% of the data and evaluates on the remaining 20%. The mean squared error (MSE) is com-
puted to determine how much more accurate flow results the model was able to produce through an amassment of 
varying pixels and blur radii. 
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4.1. Results 

 
Figure 16. A representation of how the blur radius impacts the outputted flow field. In the case of this frame, the blur 
radius of two performed fairly poorly while the blur radii of four, five, and 15 performed well, with the radius of five 
outputting the clearest results.
 
The main goal of the research was to determine the answer to the question of how exactly the blur radii of a gaussian 
blur impact flow results as well as whether the composition of various blur values would allow for better, more accu-
rate flow results through a regression model. As for blur radii, it was found that on average pixel pairs with a higher 
variance in r, g, and b values saw that a higher blur value produced better flow results. There were some cases in 
which the distribution of most optimal blur and variation either did not coincide, or completely contradicted this claim, 
but a majority maintained such distribution. The regression model on average performed very well compared to orig-
inal calculations. When taking the average of 50 iterations of the regression function running on 1000 datapoints, the 
regression model performed 17.23 times better than individual calculations with varying blur radii (determined by 
calculating the root mean squared error [RMSE] of the original calculations with the true flow from Sintel and com-
paring those to the RMSE of the output of the compiled regression model and the true flow that corresponded in 
Sintel). 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 13



4.2. Conclusions 
 
Not surprisingly, the regression model outperformed most any single calcula-
tions. Because varying blur radii have varying levels of efficiency, a pseudo-
average of these results in the form of a linear model was able to produce more 
robust results. There were several cases in which the calculated flow did out-
perform of the regression model. This is most likely because the regression is 
simply the line of best fit. Although on average it will do better than a single 
calculated flow due to the convergence of various results, there may be times 
when a calculation with the most optimal blur radius may outperform, or even 
severely underperform. A fallback that may have impacted the regression fit-
ting is that some of the calculated flows did not coincide with the true flow in 
the Sintel dataset. These outliers may have made it so that the fitting of the 
regression line would be off from the optimal fitting as it would have to con-
sider these skewed datapoints.  

The relationship between the speed of the sequence as well as the blur 
radius also produced fairly clear results. If a linear regression line were to be 
fit to the data, it would describe an equation with positive slope and y-intercept.

This interpretation of how blur coincides with the computation of op-
tical flow is significant in that it gives an idea about how to tackle various 
sequences. There is no single type of motion in both the real world, as well as 
computer-generated sequences or animations. Being able to determine that the 
more variance in pixel values, and therefore faster motion is computed better 
after blurred allows us to apply a close-to-optimal blur value in order to pro-
duce robust flow results that more directly model the actual motion in the 
scene.  

 
 
 
 

 
Figure 17. Table of the root mean 
squared error (RMSE) of both the 
original flow results as well as the 
prediction outputs. 

Volume 11 Issue 3 (2022) 

ISSN: 2167-1907 www.JSR.org 14



 
Figure 18. A scatterplot representation that shows the distribution of the relationship between the total r, g, and b 
difference between two pixel pairs and their optimal blur. We see that when the difference is lower, the optimal blur 
is generally closer to 0 while, conversely when it is high, the optimal blur tends to be higher.
 

5. Prospective Implementations 
 
Aside from the variables focused on in this paper, there are many that can be isolated and modified to determine their 
impact on better flow results such as different forms of regression, different optical flow algorithms, or other sequence 
manipulations. Furthermore, more robust flow results can be extrapolated by combining results from various methods 
of computing optical flow. Because each may have its drawbacks, having a wider range of results may allow for higher 
accuracy in estimation. 
 
5.1. Related Algorithms 
 
While Lucas-Kanade is an extremely useful method of computing optical flow, it is not the sole algorithm, or one that 
produces the most effective results. Because the algorithm computes sparse optical flow, exact flow for each pixel 
may not be able to be extrapolated. Algorithms like the Horn-Schunck method [9] describe the flow field in a different 
manner. Horn-Schunck is a method of dense optical flow, rather than the sparse one of Lucas-Kanade. The algorithm 
assigns a displacement vector to each pixel describing motion, like Lucas-Kanade. However, a key difference in the 
two algorithms is that Horn-Schunk assumes smoothness over an image [6, 9, 26], rather than the neighboring con-
straint of Lucas-Kanade (on top of the base optical flow constraint of brightness). The method has a key objective 
function which is manipulated to gain optical flow results: 

𝐸𝐸(𝑢𝑢, 𝑣𝑣) =  �|𝐼𝐼2(𝑝𝑝 + 𝑤𝑤) − 𝐼𝐼1(𝑝𝑝)|2 +  𝜆𝜆(|∇𝑢𝑢|2 + |∇𝑣𝑣|2)𝑑𝑑𝑝𝑝 
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5.2. FlowNet 
 

 
Figure 19. Diagram of the FlowNet CNN architecture. The top represents the simple CNN, and the bottom represents 
the CNN with an additional correlation layer [7]. 
 
FlowNet is a convolutional neural network (CNN) that computes optical flow in an end-to-end training manner. 
FlowNet works similarly to normal optical flow computation in that it takes in a frame pair and outputs a flow field. 
However, the architecture to do this is achieved through deep learning. In the use case of a CNN for optical flow, the 
neural net essentially has to identify the object or feature that is moving in the first frame and locate that same feature 
in the next frame [7, 30]. The FlowNet model has two architectures to compute the optical flow of a scene, a standard 
CNN as well as one with a correlation layer that matches the features between the two input images. FlowNet segments 
the process into two primary parts: the contracting and refining processes [7, 31]. The contracting part of the model 
represents the features in the image and matches the information from the inputted image. The refinement section 
converts each pixel of the inputs into an optical flow field representation, i.e., the optical flow prediction. More spe-
cifically, the features maps are  scaled to their original resolutions and both convolutional and unpooling layers deter-
mine pixel-by-pixel flow predictions [7]. The standard CNN version of FlowNet stacks the two frame inputs together 
and passes it through the convolutional layers. The model with a correlation layer splits the two frames and performs 
feature extraction on both. These features are combined and looked at together to then determine the flow through 
further convolutional layers [7, 30]. This combination is preformed through the correlation layer which matches the 
feature information from the two frames. The neural network was trained through the Middlebury, KITTI, Sintel, and 
Flying Chairs dataset. The model performs extremely well on these datasets, namely the Flying Chairs set, although 
struggles in others [7]. 
       FlowNet is a powerful means of predicting optical flow for a sequence. Its dense flow field predictions are able 
to generalize very well on datasets like Sintel and generally provide very ground-truth flow results. However, the 
downside to FlowNet, as with any neural architecture, is that it is very specialized. FlowNet will almost certainly 
outperform most optical flow algorithms on datasets that it has been trained on e.g., Flying Chairs. However, because 
of this specialization, it does not perform as well in other scenarios. Algorithms like Lucas-Kanade don’t learn, and 
therefore have a general method in computing optical flow. Although when compared to trained models like FlowNet, 
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the neural models will perform better in specific scenarios, the general application of more basic algorithms may 
provide for better flow fields in others. 
       FlowNet could be implemented alongside algorithms like Lucas-Kanade in order to gain more robust, well-
rounded flow results. Similar to the implementation in this paper of stitching together various optical flow estimations 
to produce better flow estimations, a combination of both neural model predictions as well as basic algorithmic pre-
dictions may account for disparities in either FlowNet or Lucas-Kanade. 
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7. Resources 
 
Data Availability 
 
Website of the MPI-Sintel dataset used for optical flow algorithm evaluation: http://sintel.is.tue.mpg.de/ 
Download page: http://sintel.is.tue.mpg.de/downloads 
 
Code Availability 
 
GitHub repository maintained by the author of the paper for the code developed as part of this research: 
https://github.com/vedantgaur/lucas_kanade-optical-flow 
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