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ABSTRACT 
 
Convolutional Neural Networks (CNNs) are vulnerable to misclassifying images when small perturbations are present. 
With the increasing prevalence of CNNs in self-driving cars, it is vital to ensure these algorithms are robust to prevent 
collisions from occurring due to failure in recognizing a situation. In the Adversarial Self-Driving framework, a Gen-
erative Adversarial Network (GAN) is implemented to generate realistic perturbations in an image that causes a clas-
sifier CNN to misclassify data. This perturbed data is then used to train the classifier CNN further. The Adversarial 
Self-driving framework is applied to an image classification algorithm to improve the classification accuracy on per-
turbed images and is later applied to train a self-driving car to drive in a simulation. A small-scale self-driving car is 
also built to drive around a track and classify signs. The Adversarial Self-driving framework produces perturbed im-
ages through learning a dataset, as a result removing the need to train on significant amounts of data.  Experiments 
demonstrate that the Adversarial Self-driving framework identifies situations where CNNs are vulnerable to pertur-
bations and generates new examples of these situations for the CNN to train on. The additional data generated by the 
Adversarial Self-driving framework provides sufficient data for the CNN to generalize to the environment. Therefore, 
it is a viable tool to increase the resilience of CNNs to perturbations. Particularly, in the real-world self-driving car, 
the application of the Adversarial Self-Driving framework resulted in an 18 % increase in accuracy, and the simulated 
self-driving model had no collisions in 30 minutes of driving. 
 

1 Introduction 
 
Convolutional neural networks (CNNs) have become increasingly prevalent in computer vision algorithms, especially 
regarding Self-Driving cars. However, current CNNs require immense amounts of data to train, and acquiring data is 
both expensive and time-consuming, often requiring immense manual effort to collect and label data representative of 
the real world [2]. This difficulty in obtaining sufficient data is that most CNNs are not trained on datasets representing 
perturbations in the real world. As demonstrated recently [4, 5, 8], CNNs are adversely affected in predicting class 
labels when small magnitude perturbations in the real world are applied to sensory data, such as minor damage to 
signs or changes in colors. To mitigate this vulnerability to perturbations, current Self-Driving implementations use 
methods such as grayscaling and normalizing an image via histogram equalization [2, 6]. However, these networks 
cannot generalize and are vulnerable to perturbations in new data. Regarding Self-Driving cars, where CNNs are 
utilized for classification to make driving decisions, these perturbations can present themselves in misclassifications 
of traffic signs and lead to disastrous consequences.  

This paper aims to design an Adversarial approach to training Self-Driving cars. Generative Adversarial 
Networks (GANs) [4] have been demonstrated to efficiently learn and generate new data representative of the original 
dataset. In the Adversarial Self-Driving framework, a GAN is trained to generate realistic perturbations of data, given 
to a classifier for training. Success is defined as achieving increased accuracy by using both perturbed and unperturbed 
data to train a classifier without requiring additional training data.  
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2 Materials and Methods 
 

 
Figure 1. Adversarial Self-Driving framework 
 
The Adversarial Self-Driving framework shown in figure 1 consists of a GAN to generate perturbations, which is 
trained on the original dataset, and generates perturbations to train the classification model to be more perturbation 
resistant and data efficient.  
 

 
Figure 2. Sample images from the dataset 

 
First, a dataset of 50,000 64 x 64 images of 43 classes of traffic signs is used to train a baseline classifier. 

The dataset shown is split into a 70:10:20 training, validation, and testing split. As shown in figure 2, the dataset 
contains images of traffic signs in varied visibility conditions.  

 
Figure 3. The architecture of the classifier CNN 
 

All training is done using TensorFlow 2.6, python 3.9 on an Nvidia 3090. The CNN classification model, 
shown in figure 3, is a sequential classification model with an input size of 32x32x3. The model layers are two con-
volutional layers with 32 filters and a ReLU activation function, a max-pooling 2D-layer with a 2x2 pool size, two 
convolutional layers with 64 filters, a ReLU activation function, a max-pooling 2D-layer with a 2x2 pool size, a batch 
normalization layer. The output is then flattened, and a fully connected layer with input size 1,600 and output size 612 
with a ReLU activation function is added with a batch normalization layer, a 20% dropout layer, and a fully connected 
layer with input size 512 and output size 43 with a softmax activation function. The classifier model is then trained 
on the processed training set for 50 epochs and evaluated on the testing and validation set for 50 epochs to establish a 
baseline performance. The performance of this baseline classifier is then evaluated using a confusion matrix. 
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Figure 4. Overview of the AdvGAN framework 
 

 
Figure 5. The model architecture of the discriminator network.  
 

Next, an AdvGAN model [8] was trained on the same dataset to generate images with perturbations repre-
sentative of the real world. The AdvGAN framework, shown in figure 4, is as follows, a discriminator model, D, the 
architecture of which, shown in figure 5, is a 2D convolutional layer with 32 filters, a kernel size of four, and 2x2 
strides with a LeakyReLU activation function, a 40% dropout layer, a 2D  convolutional layer with 64 filters, a kernel 
size of four and 2x2 strides with a LeakyReLU activation function, a 40% dropout layer. A flatten layer is then added 
along with a fully connected layer with an input size of 2,304 and an output size of 64 and a Leaky ReLU activation 
function, a batch normalization layer, and a fully connected layer with an input size of 64 and an output size of one 
with a sigmoid activation function. The discriminator network is trained on the dataset of real images and a dataset of 
perturbed images to identify the probability of a given image being from the original dataset. This model is trained 
iteratively with the generator model in batches of 128 images.  
 

 
Figure 6. The model architecture of the generator network  
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The generator model is trained on the same dataset with two objectives. The first objective of the generator 
model is to minimize the accuracy of the classifier model, and the second objective is to maximize the output of the 
discriminator model. The architecture of the generator network shown in figure 6 is a 2D convolutional layer with 
eight filters, a kernel size of three using the ReLU activation function, an instance normalization layer, a 2D convolu-
tional layer with 16 filters, a kernel size of three using the ReLU activation function, an instance normalization layer, 
a 2D convolutional layer with 32 filters a kernel size of three using the ReLU activation function, an instance normal-
ization layer. Additionally, four 2D convolutional layers with 32 filters with kernel size three with the ReLU activation 
function, a 2D convolutional transpose layer with 16 filters, and a kernel size of three with the ReLU activation func-
tion. A 2D convolutional transpose layer with eight filters and a kernel size of three with the ReLU activation function 
is then added to reshape the image into the original size with a 2D convolutional layer with one filter and a kernel size 
of three with a ReLU activation function. The loss of the generator, G can be written as:  
 

𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺  =  𝐸𝐸𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷(𝑥𝑥) + 𝐸𝐸𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝐷𝐷(𝑥𝑥 + 𝐺𝐺(𝑥𝑥))) 
 
This training process is repeated until the classifier model’s accuracy has been sufficiently decreased while ensuring 
that the discriminator model cannot distinguish between perturbed images by the generator and unperturbed images 
from the original dataset. As a result, the optimal discriminator accuracy would be 50%, where the discriminator 
cannot distinguish between real and perturbed images, ensuring that perturbations are representative of the real world. 

After training the AdvGAN model, another confusion matrix is used to evaluate the performance of the base-
line classifier model on the new perturbed data. The classifier model is then trained on a combination of the new 
perturbed data and the original dataset. Its new performance is evaluated using a confusion matrix on unperturbed and 
perturbed testing data. 

To further evaluate the performance of the Adversarial Self-Driving framework, a Self-Driving model is 
trained in the Carla Self-Driving simulator. The model's performance is evaluated by a standardized benchmark of 
driving in the simulator for 30 minutes under different weather and traffic conditions. The benchmark allocates 10 
minutes of clear weather, 10 minutes of rain, and 10 minutes of fog to evaluate each model. The benchmark automat-
ically varies the driving conditions to ensure repeatability, with the primary performance metric of the number of 
collisions in 30 minutes of driving.  
 

 
Figure 7. Sample image of the simulated environment 
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The baseline model is trained on 400 hours of driving shown in figure 7, with image data mapped to optimal 
control throttle, steer, brake, and reverse actions. This data is acquired using a rule-based approach that uses infor-
mation about traffic, lane detection, and visible traffic signs within the simulation. After training on the dataset, the 
benchmark evaluates the model’s performance to establish a baseline. Next, a GAN is trained on the driving dataset 
to generate perturbations in the environment. The benchmark then evaluates the baseline model's performance on the 
new perturbed data. A dataset of both perturbed and unperturbed data trains a new model, and the benchmark re-
evaluates its performance. 
 

 
Figure 8. Small-scale Self-Driving car 

 

 

 
Figure 9. Sensor data on small track 

Finally, to test the performance of the Adversarial Self-Driving framework in the real world, a third model 
is trained to drive a small-scale Self-Driving car, shown in figure 8. The objective of this model is to drive on a small 
track where the primary objective is to follow the directions given to it by digital traffic signs. The camera placed 
above the track uses an arUco icon which can be located using image recognition to track the car. The car's perfor-
mance is based on the number of signs misclassified over 30 minutes. 

The dataset used to train the car is generated based on a rule-based, turning when near a wall, and signs being 
displayed on a digital display. The light level is controlled based on smart lights in the room. Thirty thousand images 
taken in varying light conditions paired with their correct classification are used to train the baseline model over 50 
epochs. The model is evaluated based on the number of missed signs over 30 minutes of driving under varying light 
levels. The AdvGAN model is then trained on the same data set, and performance is evaluated on the new perturbed 
data. The driver model is retrained on the combination of perturbed and original data, and its performance is re-
evaluated.  
 

3 Results 
 
The baseline performance of the classification model archived a 96% training accuracy and a 93% validation accuracy. 
The confusion matrix on the 10,000-image testing dataset shown in figure 10 demonstrates that a majority of the 
predictions are correct except in specific conditions where the model misclassified the image due to variations present 
in the image. The baseline classifier also predicts the classes with high certainty, as seen in figure 11. 
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Figure 10. Confusion matrix of the baseline model on a 

10,000-image testing dataset 

 
Figure 11. Sample predictions made by the baseline 

model 

 
The GAN achieved a 50% discriminator accuracy and generated realistic perturbations that caused the target 

model to have an accuracy of 4%. The perturbed images in figure 12 remain visually indistinguishable from the orig-
inal images, while the confusion matrix in figure 13 demonstrates a drastic decrease in performance, with outputs 
being entirely random and inaccurate.  
 

 
Figure 12. Perturbed images generated by the genera-

tor model 

 
Figure 13. Confusion Matrix of the classifier model on 

perturbed data 

 
The classification model after training on a combination of data perturbed generated by the GAN and unper-

turbed data achieved a significantly higher accuracy of 99.8%, and as shown in figure 14, the normalized confusion 
matrix, the model makes very few misclassifications.  
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Figure 14. Confusion matrix of the classifier model trained on perturbed data 
 

As shown in figures 15 and 16, the baseline Self-Driving car had a total of 6 collisions over 30 minutes of 
driving in varied weather conditions. Coalitions with the baseline Self-Driving car primarily occurred during rain.  

 
 

Figure 15. Baseline driving performance of the Self-
Driving car 

 
Figure 16. The number of collisions over 30 minutes in 

varying weather conditions 
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Figure 17. Collisions occur when sensor data is per-

turbed 

 
Figure 18. The number of collisions over 30 minutes 

on perturbed data in varying weather conditions 
 

The Self-Driving car had repeated collisions after perturbations were applied to the environment as shown in 
figure 17. The driving benchmark logged a total of 56 collisions in 30 minutes of driving, the distributions of which 
are shown in figure 18.  
 

 
Figure 19. Car driving after training on perturbed data 
 

Figure 19 shows the model's performance after training on new data which resulted in 0 collisions in 30 
minutes of driving in varied visibility conditions. 
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Figure 20. Stop sign in bright light 

 
Figure 21. Stop sign in low light 

 
The baseline model was able to classify 83% of signs correctly in varied visibility conditions shown in figures 

20 and 21. After applying perturbations to the data, the baseline model correctly classified 17% off signs, a drastic 
decrease. Then, after training on the combination of perturbed and unperturbed data, the baseline model achieved an 
accuracy of 97% in 30 minutes of driving.  
 

4 Discussion and Conclusions 
 
The objective of this paper was to determine if an Adversarial approach to training Self-Driving cars could improve 
the data efficiency and reliability of CNNs used in Self-Driving cars. The baseline classification model achieved high 
accuracy, but as the confusion matrix in figure 10 shows, the model still resulted in frequent misclassifications and 
was vulnerable to environmental variations, especially when given new data, such as traffic signs that were not in-
cluded in the training dataset. The model accuracy drastically decreased when the data was perturbed. Once the model 
was trained on varied data, the model accuracy was significantly higher, and misclassifications subsequently decreased 
on data not present in the training dataset. This increase in accuracy shows that the Adversarial-Self Driving frame-
work is a viable tool to increase the data efficiency and reliability of CNNs.  

In the simulated environment, the baseline Self-Driving car had six collisions. Four of these collisions oc-
curred during rain, and 2 of them occurred during fog. These collisions primarily occurred due to the significant 
amounts of noise introduced by rain and fog, making it challenging for the baseline model to generalize based on 
limited training data. Applying adversarial perturbations introduced additional variations in all weather conditions and 
resulted in a relatively even distribution of collisions in all weather conditions. Finally, training the model on both 
perturbed and unperturbed data resulted in less susceptibility to variations and, as a result, did not have any collisions 
in 30 minutes of driving as training on a large dataset of possible variations enabled the CNN to generalize.  

The baseline real-world Self-Driving car missed a large number of signs. This likely occurred due to the 
inherent noise present in camera data. This noise in camera data prevented the model from generalizing to the envi-
ronment with the minimal amount of data available. When perturbations were applied to the environment using the 
GAN, the Self-Driving car drastically decreased in performance due to the model's vulnerability to noise. After the 
model was trained on the combination of original and perturbed images, the model was able to generalize to the 
environment and increased in classification accuracy. Training on an increased dataset enabled the model to accurately 
generalize to the environment, contributing to its increase in performance.  

Ultimately, applying the Adversarial Self-Driving framework resulted in a substantial increase in accuracy 
without requiring additional data in the classification, simulation, and real-world scenario. This approach resulted in 
a greater ability to make generalized decisions on more diverse data than the previous works, which applied normali-
zations to images to increase resistance to perturbations. However, this study primarily compared the performance of 
models trained on perturbed data to similar environments to which they were trained.  
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The real-world model only varied in light levels but did not incorporate new roads and turns. More could be 
done to study the performance of the Adversarial Self-Driving framework in new, more varied real-world environ-
ments. Future work could also be done to qualify the increase in efficiency of the Adversarial Self-Driving framework 
on larger datasets.  

With the increase in the prevalence of Self-Driving cars, it is increasingly important to ensure that Self-
Driving cars have high reliability. The Adversarial Self-Driving framework provides numerous opportunities and has 
tremendous potential to eliminate a large portion of the expensive data collection process. The framework can improve 
the reliability of Self-Driving cars by using Generative Adversarial Networks to generate perturbations to train Self-
Driving cars on more varied data. Furthermore, the Adversarial Self-Driving framework can be used to generate per-
turbed data with which to test Self-Driving cars for reliability. 
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