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ABSTRACT 
 
Over a decade ago, NASA launched the Kepler Space Telescope in order to find earth-like planets revolving 
around sun-like stars in the hopes of finding habitable exoplanets. The Kepler pipeline picked up data for over 
9000 astronomical bodies, out of which 52% were determined to be false positives, while the remaining 48% 
were candidates to be classified as exoplanets. The data collected from this mission can be used to assess and 
automatically classify Kepler Objects of Interest (KOIs) as exoplanets or false positives. Our goal in this work 
is to determine if some data features are more important than others in classifying an object as an exoplanet. To 
this end, we built 5 Machine Learning classification models (namely, logistic regression, support vector classi-
fier, gradient boosting classifier, random forest classifier, and multilayer perceptron) and used 15 features to 
train and test them. We have included Machine Learning models that are explainable to help attain our goal, 
Our best predictor (random forests) achieved a prediction accuracy of 99% when evaluated with k-fold cross-
validation. We evaluated the feature importances of our model and found that 5 of the features (Not Transit-
like Flag, Centroid Offset Flag, Stellar Eclipse Flag, Ephemeris Match Indicate Contamination Flag, and Plan-
etary Radius) out of the 15 selected ones make up roughly 75% of the overall feature importances. We hope 
that our findings can guide the selection of appropriate data to accurately predict exoplanet candidacy for future 
missions.  
 

Introduction 
 
Many theories exist surrounding the possibility of life on other planets. The hunt for knowledge in these areas 
has inspired many space missions in the pursuit of answering difficult scientific questions. For instance, on 
March 7th, 2009, NASA launched the Kepler Space Telescope to find Earth-sized planets in the goldilocks 
zone (habitable zone) orbiting other stars [1][2]. Kepler recorded data for more than 9000 such exoplanets. Of 
these, roughly 52% have been confirmed to be false positives, while the remaining 48% remain candidates. 
Data about the Kepler Objects of Interest (KOIs) collected in the mission are available on the NASA Exoplanet 
Archive as well as on Kaggle [3][4]. The 52% false-positive statistic is a testament to the knowledge gap that 
exists in accurately vetting out these exoplanets. With the substantial amount of data available, Machine Learn-
ing is a natural field to resort to in order to perform statistical analysis and answer some of the open questions 
in this field. 

There have been many attempts by scientists to solve similar problems in the past. In the paper ‘Ex-
oplanet validation with machine learning: 50 new validated Kepler planets’ [5], a similar dataset of Threshold 
Crossing Events (TCEs) [6] is used to identify TCEs that are not Astrophysical False-Positives (AFPs) or Non-
Transiting Phenomena (NTPs) using a Gaussian Process Classifier, Random forests, Extra trees, and a Multi-
layer Perceptron.  

Moreover, the paper ‘Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain 
around Kepler-80 and an Eighth Planet around Kepler-90’ [7], shows the use of a one-dimensional Convolutional 
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Neural Network (CNN) with max-pooling to determine whether a planet is a candidate or false positive based 
on light curves produced by the Kepler pipeline available on the Mikulski Archive for Space Telescopes [8].  

Another paper, ‘A Machine Learning Technique To Identify Transit Shaped Signals’ [9], uses the Q1 - 
Q17 DR24 catalog [10] to remove non-transiting signals while retaining known planet candidates. It uses dimen-
sionality reduction and the k-nearest neighbors model to condense data and create a metric that will enable 
future missions to easily find the best planetary candidates. 

The paper ‘Exoplanet Detection using Machine Learning’ [11] makes use of Kepler light curves data by 
using the analysis library TFresh to extract features from the curves. It uses a gradient-boosting classifier to 
then classify exoplanets. Similarly, the paper ‘Automatic Classification of Kepler Planetary Transit Candidates’ 
[12] also uses light curve data and classifies exoplanets using a random forest algorithm. 
In order to help better understand the use of photometry, the paper ‘Kepler Mission Design, Realized Photo-
metric Performance, and Early Science’ [13], provides more extensive insight into the use of transit photometry 
methods to classify exoplanets.  

Many scientists are still tackling the problem of classifying planets as candidates or false positives. 
Our goal in this work is different: we aim to evaluate the most important features required to classify exoplanets 
and the performance of different Machine Learning models on the unique chosen dataset to find the most ef-
fective method to classify KOIs. 
 

Methods 
 
Data  
 
The master dataset we base our work on is from NASA’s Exoplanet Archive [4], which is a comprehensive 
database consisting of data regarding various KOIs. We used a subset of the archive posted as a dataset on 
Kaggle [3]. The features in this dataset include project disposition columns (comprising of important flags such 
as the centroid offset and stellar eclipse flags), planet transit properties (including the orbital periods, transit 
epochs, etc.), and stellar parameters (such as the stellar effective temperatures and stellar surface gravities). 
After dropping all missing values, the data we use consists of 9201 instances of KOIs each represented by 15 
features.   

We used 5- and 10-fold cross-validation to assess our models’ performance and shuffled the data be-
fore splitting it into batches.  
 
Models  
 
We trained several machine learning algorithms using the Python module scikit-learn (sklearn) [14]. 
All hyperparameters reported below were found by applying Sklearn’s GridSearchCV algorithm with 10-fold 
cross-validation to maximize model performance. 

The first model we trained was a regular Logistic Regression model [15]. This is a simple model that 
uses a sigmoid function to classify data into their respective groups. It uses a gradient descent algorithm to 
minimize the cost function and reduce the error in the model. We set the maximum number of iterations to 
10,000 (to ensure that the model converges) and set the inverse of the regularization strength to 8.5. The re-
mainder of the hyperparameters were left as their default values. 

The second model we trained was an SVM (support vector machine) classifier. A support vector ma-
chine is an algorithm that attempts to find a hyperplane to separate data into two different sets. The position of 
the best possible hyperplane is determined by finding the hyperplane that has the greatest margin (distance) 
from the nearest data points from both sets [16]. We specified the kernel to be an rbf kernel which performed 
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better compared to the sigmoid kernel. We also set the inverse of the regularization strength to 100. All other 
hyperparameters were set as the default values.   

The third model we trained was a gradient-boosting classifier model. This algorithm sets target out-
comes for the next model to minimize the error of the model. These target outcomes are calculated based on 
how much changing the prediction impacts the total error of the model [17]. We set the learning rate to 0.05 and 
left the remaining hyperparameters as their default values.  

The fourth model we trained was a random forest classifier. A decision tree model is one in which an 
output is generated based on a series of comparisons of the inputs of the model against threshold values. A 
random forest essentially builds several decision trees and combines them to get a more accurate prediction [18]. 
We set the number of trees in the forest to 1000, and all remaining hyperparameters were left as their default 
values.  

The fifth and final model we trained was a multilayer perceptron (MLP) classifier. This is a neural 
network model that consists of several hidden layers each with a specific number of neurons. Input neurons 
feed inputs into the network. Every neuron is connected to every neuron in the subsequent layer, and each 
connection is assigned a weight (which represents the strength of the connection between two neurons) [19]. Our 
model used a logistic activation function with a maximum number of iterations set to 2000. We also set the 
learning rate to 0.00005 and had a total number of 800 neurons each in 6 hidden layers. All other hyperparam-
eters were left as their default values.  
 

Results 
 
Each of the models performed differently, showing us which algorithm was the most effective at classifying 
KOIs. Using K-fold cross-validation [20], data was split into 5 and 10 batches, and the average score from each 
of the splits was calculated. Table 1 shows the 5-fold and 10-fold average accuracies of each of the machine 
learning models. 
 
Table 1. The average accuracy for 5 Machine Learning models using 5- and 10-fold cross-validation. 

Machine Learning Model 5-fold CV accu-
racy 

10-fold CV accu-
racy 

Logistic Regression 78.4% 78.2% 

Support Vector Classifier 66.8% 66.8% 

Gradient Boosting Classifier 98.9% 99.0% 

Random Forest Classifier 99.0% 99.0% 

Multilayer Perceptron Classi-
fier 

98.4% 98.4% 

 
Overall, the random forest classifier and gradient boosting classifier models had the best performances 

with roughly 99.0% accuracy. The advantage of a random forest classifier is that it is highly intuitive in under-
standing the importance of features used to train the algorithm, creating greater scope for explainable Artificial 
Intelligence [21]. In order to better understand how the models worked, we looked into the feature importance’s 
for the random forest classifier to see which features were of the greatest significance when accurately classi-
fying KOIs. Figure 1 shows the percentage of importance each feature had. 
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Figure 1. A breakdown of the feature importance’s of the model expressed by the percentage importance of 
each feature 

Conclusion 
 
We experimented with 5 machine learning models and identified the most important features to collect in order 
to effectively predict whether or not a KOI is an exoplanet candidate, in the hopes that this can guide future 
data collection for similar missions. 

While the Kepler space telescope was deactivated on November 15th, 2018, NASA’s quest to find 
habitable exoplanets has not ended. On April 18th, 2018, NASA launched the Transiting Exoplanet Surveying 
Satellite (TESS) mission to search for exoplanets in an area 400 times larger than that surveyed by Kepler [23]. 
In the future, our models could be modified to classify and accurately vet out false positives for the TESS 
mission and could be used to extend our search for habitable exoplanets. 
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