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ABSTRACT 
 
As our society grows, the potential of certain people affecting the masses has increased dramatically with the 
presence of media, virality, and celebrities. Therefore, it is essential to know which persons might be influenc-
ing, swaying, or manipulating the public the most in a social network. Similarly, finding the most important 
webpage can impact advertisement spending for corporations. I propose and determine a better method to find 
the most significant "influencer" and other real-world applications using graph theory in discrete mathematics. 
There are many methods of node centrality, and some have more advantages than others. As measuring this 
score becomes more complex, accuracy is guaranteed, but time complexity increases simultaneously. In partic-
ular, when the score is a case where the relationship between nodes is important, the time complexity shows an 
extreme increase. Graphs representing the real world have a lot of nodes and edges in many cases, and experi-
ments have found that if applied as they are, the time efficiency will be extremely low. To compensate for this 
point, bridge detection and community detection, a method of dividing a large graph into several subgraphs at 
a low level, were applied to change the nested loop operation to a simple sum of operations in series. Further-
more, a model, which is the most appropriate combination, was proposed and experimentally proved in consid-
eration of trade-offs. The reason for selecting the ratio of node and edge numbers to increase the experiment's 
credibility was also described. 
 

Introduction 
 
With the development of communication and convenience, public accessibility to the internet has increased 
significantly. Modern individuals spend most of their time on the internet. Therefore, it is instrumental for many 
businesses to know which web pages are most "influential.". This can be due to advertisements, efficiency, 
resource usage, and popularity. 
  We can utilize a method called "node centrality" that is prominent in graph theory. 

 

 

< Figure 1>  
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Figure 1. Small internet network. The nodes in the graph symbolize pages (websites). The arrows serve as paths 
to get to certain websites from other ones. Together, nodes and arrows create a graph that can be analyzed. For 
example, in-degree centrality, the node that has the most edges directed towards it can be said to be the most 
influential page. In Figure 1, this would be node 4. We can also say that the page with the most edges directed 
from it is a starting page on the internet (think Google). In this graph, this would be node 0. 
 
  There are many methods of node centrality, and some have more advantages than others. However, as 
we attempt to approach more accurate scores of certain nodes, the time taken to reach these points rises expo-
nentially.  Therefore, it is necessary to use a method to reduce the time duration and complexity by splitting the 
entire graph. This paper compares the time complexity for each node centrality of splitting a graph through 
bridge detection and the method of dividing the entire graph into clustered community units through community 
detection. 
 We first introduce centrality, bridge detection, and community detection as related methods. We then 
establish a proposed model in which we will try to limit the time complexity of bridge detection and community 
detection because they increase by a significant amount currently. Thereafter, we conduct an evaluation in 
which the time complexities of the centralities, bridge detection, community detection, and the proposed model 
are all compared. We conclude with our analysis and suggest future work that might be done with our proposed 
model and information. 
 

Methods 
 
Node Centrality 
 
Degree Centrality 
A degree is the number of edges attached to a node. A degree centrality can be calculated based on degree 
information. If the degree of a node is higher, then the node is considered more influential. A degree centrality 
can be written as: 
 

𝐶𝐶𝑑𝑑(𝑣𝑣𝑖𝑖)  =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑣𝑣𝑖𝑖  =  𝐷𝐷(𝑣𝑣𝑖𝑖)  
 

We can normalize 𝐶𝐶𝑑𝑑 in 2 ways,  
 
1) First, you can divide the number of edges in a graph by the degree of a node: 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒 𝑖𝑖𝑛𝑛 𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔ℎ 

=
𝐷𝐷(𝑣𝑣𝑖𝑖)

|𝐸𝐸|
 

 
2) Or by the maximum degree: 
 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑛𝑛𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

=
𝐷𝐷(𝑣𝑣𝑖𝑖)

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖)
 

 
In this case, the following must be true: 0 ≤  𝐶𝐶𝑑𝑑  ≤  1 
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< Figure 2>  < Figure 3>  

 
Example 1: Consider Figure 2. The basic degree centralities are: 
 

𝐶𝐶𝑑𝑑(𝑣𝑣1) = 3 
𝐶𝐶𝑑𝑑(𝑣𝑣2) = 5 
𝐶𝐶𝑑𝑑(𝑣𝑣3) = 1 

𝐶𝐶𝑑𝑑(𝑣𝑣4) = 4 
𝐶𝐶𝑑𝑑(𝑣𝑣5) = 3 
𝐶𝐶𝑑𝑑(𝑣𝑣6) = 3 

 
 Therefore, using degree centralities, the most influential node is 𝑣𝑣2. 
 
Example 2: Consider Figure 2 and Figure 3. The normalized degree centralities of the figures are shown in 
Table 1. 
Table 1. 

Divide by |𝐸𝐸| in Figure 2. 
|𝐸𝐸|= 6 

Divide by |𝐸𝐸| in Figure 3.  
|𝐸𝐸| = 15 

𝐶𝐶𝑑𝑑(𝑣𝑣1)−>
3
6

 

𝐶𝐶𝑑𝑑(𝑣𝑣2)−>
5
6

 

𝐶𝐶𝑑𝑑(𝑣𝑣3)−>
1
6

 

𝐶𝐶𝑑𝑑(𝑣𝑣4)−>
4
6

 

𝐶𝐶𝑑𝑑(𝑣𝑣5)−>
4
6

 

𝐶𝐶𝑑𝑑(𝑣𝑣1)−>
3

15
 

𝐶𝐶𝑑𝑑(𝑣𝑣2)−>
3

15
 

𝐶𝐶𝑑𝑑(𝑣𝑣3)−>
3

15
 

𝐶𝐶𝑑𝑑(𝑣𝑣4)−>
3

15
 

𝐶𝐶𝑑𝑑(𝑣𝑣5)−>
2

15
 

𝐶𝐶𝑑𝑑(𝑣𝑣6)−>
3

15
 

𝐶𝐶𝑑𝑑(𝑣𝑣7)−>
4

15
 

𝐶𝐶𝑑𝑑(𝑣𝑣8)−>
3

15
 

𝐶𝐶𝑑𝑑(𝑣𝑣9)−>
3

15
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𝐶𝐶𝑑𝑑(𝑣𝑣10)−>
3

15
 

Divide by 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 in Figure 2. 
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 5 

Divide by 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 in Figure 3. 
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚= 4 

𝐶𝐶𝑑𝑑(𝑣𝑣1)−>
3
5

 

𝐶𝐶𝑑𝑑(𝑣𝑣2)−>
5
5

 

𝐶𝐶𝑑𝑑(𝑣𝑣3)−>
1
5

 

𝐶𝐶𝑑𝑑(𝑣𝑣4)−>
4
5

 

𝐶𝐶𝑑𝑑(𝑣𝑣5)−>
4
5

 

 

𝐶𝐶𝑑𝑑(𝑣𝑣1)−>
3
4

 

𝐶𝐶𝑑𝑑(𝑣𝑣2)−>
3
4

 

𝐶𝐶𝑑𝑑(𝑣𝑣3)−>
3
4

 

𝐶𝐶𝑑𝑑(𝑣𝑣4)−>
3
4

 

𝐶𝐶𝑑𝑑(𝑣𝑣5)−>
2
4

 

𝐶𝐶𝑑𝑑(𝑣𝑣6)−>
3
4

 

𝐶𝐶𝑑𝑑(𝑣𝑣7)−>
4
4

 

𝐶𝐶𝑑𝑑(𝑣𝑣8)−>
3
4

 

𝐶𝐶𝑑𝑑(𝑣𝑣9)−>
3
4

 

𝐶𝐶𝑑𝑑(𝑣𝑣10)−>
3
4

 

< Table 1>  

 

 
In small graphs, both methods provide accurate and understandable results; however, when looking at 

a large graph with many nodes, dividing by |𝐸𝐸| yields more accurate results as we can better see how the nodes 
compare to the graph as a whole. A denominator of 15 is much different than a denominator of 4, so we can 
understand this data in two different ways based on the method used. 
 
Betweenness Centrality 
Betweenness centrality is measured by dividing the number of shortest paths from Node S to Node T by the 
number of shortest paths from Node S to Node T that includes 𝑣𝑣𝑖𝑖. 
 

The betweenness centrality of 𝑣𝑣𝑖𝑖 can be written as: 
 

𝐶𝐶𝑏𝑏 = �
𝑠𝑠 ≠ 𝑡𝑡 ≠ 𝑣𝑣𝑖𝑖

(
𝛾𝛾𝑠𝑠𝑡𝑡(𝑣𝑣𝑖𝑖)
𝛾𝛾𝑠𝑠𝑡𝑡

) 

 
Multiplying the sum of the centralities by 2 is necessary because s and t can be interchanged. 
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Using these values without a common base can result in difficulty when comparing node efficiency 
and importance. Therefore, it is important to normalize these values. We can do this by using this equation 
representation: 
 

𝐶𝐶𝑏𝑏 = ∑𝑠𝑠 ≠ 𝑡𝑡 ≠ 𝑣𝑣𝑖𝑖 (𝛾𝛾𝑠𝑠𝑠𝑠(𝑣𝑣𝑖𝑖)
𝛾𝛾𝑠𝑠𝑠𝑠

) [𝑈𝑈𝑒𝑒𝑑𝑑 𝑡𝑡ℎ𝑑𝑑 𝑛𝑛𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑔𝑔𝑣𝑣𝑛𝑛𝑑𝑑] = ∑𝑠𝑠 ≠ 𝑡𝑡 ≠ 𝑣𝑣𝑖𝑖 (1) = 2 ×   

= (𝑛𝑛−1)!
(𝑛𝑛−3)! 2!

× 2=(𝑛𝑛 − 1)(𝑛𝑛 − 2) 

 
where n is the number of nodes in the graph. 
 

To normalize 𝐶𝐶𝑏𝑏, divide its result by (𝑛𝑛 − 1)(𝑛𝑛 − 2).  
 
Example 3: Take the graph in Figure 2 as an example. Let us find 𝐶𝐶𝑏𝑏(𝑣𝑣2) through calculations of the starting 
and ending nodes. This data is shown in Table 2. 
Table 2.  

𝑒𝑒 𝑡𝑡 Centrality 

1 3 1 

1 4 0 

1 5 0 

1 6 1
3

 

3 4 1 

3 5 1 

3 6 1 

4 5 0 

4 6 0 

5 6 0 

< Table 2>  

 
The sum of the centralities is 1 + 1

3
+ 1 + 1 + 1 = 13

3
. Multiply by 2 to get 26

3
. 

 
We can now normalize by dividing 26

3
 by (6 - 1)(6 - 2). Therefore, 𝐶𝐶𝑏𝑏(𝑣𝑣2) = 13

30
(normalized). 

 
Example 4: Here are all the normalized betweenness centralities of Figure 2 shown in Table 3. 
Table 3.  
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𝐶𝐶𝑏𝑏(𝑣𝑣2) normalized 𝐶𝐶𝑏𝑏(𝑣𝑣2) 

1 0 

2 13
30

 

3 0 

4 0 

5 2
45

 

6 0 

< Table 3>  

 
It is pretty easy to see, in some graphs, which points are most influential. Clearly, the node with the 

largest centrality, 𝑣𝑣2, is the most influential. Betweenness centrality is useful when many of a graph's between-
ness centralities are 0, making it easy to identify better nodes.  
 
Closeness Centrality 
The closeness centrality of a node is the reciprocal of the product of 1

𝑛𝑛−1
 and the sum of the distances of the 

node to all other nodes (if n is the number of nodes) 
 It can be calculated by using the formula: 
 

𝐶𝐶𝑐𝑐 =
1
𝑣𝑣𝑣𝑣𝑖𝑖

;  𝑣𝑣𝑣𝑣𝑖𝑖 =
1

𝑛𝑛 − 1
�
𝑣𝑣𝑖𝑖≠𝑣𝑣𝑗𝑗

𝑣𝑣𝑖𝑖,𝑗𝑗 

 
This looks complicated, but it is actually very straightforward.  
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< Figure 4>  

 
Let's calculate 𝐶𝐶𝑐𝑐 (𝑣𝑣𝑖𝑖) as seen in Table 4. 
 
 
 
 
Table 4.  

Node 𝑣𝑣𝑣𝑣𝑖𝑖 Centrality 

V1 7 4
7

 

V2 6 4
6

 

V3 6 4
6

 

V4 5 4
5

 

V5 8 4
8

 

< Table 4>  

 
Eigenvector Centrality 
It is first important to know what an identity element is. Suppose a number (say number1) is operated upon by 
an operation using a certain number (say number2); if the result is number1, then number2 is an identity ele-
ment. For example, if a is a constant, a + 0 = a. This means that for addition, 0 is its identity element.  
 Identity elements are also important in matrix transformations. We can transform a line y to y' using a 
matrix A. This can be represented by Ay = y'. There are several changes that we can make, specifically, the 
angle (direction) and magnitude (length) of the line. A change that alters only the length of y is called a scalar, 
and a change that alters the length and direction of y is called a vector. 

For example, Let matrix A = , and y = 3x + 2. 

𝑦𝑦′ = 𝐴𝐴𝑦𝑦 = 𝑦𝑦 

𝑦𝑦′ = −𝑚𝑚′ −
6
5
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< Figure 5>  

 Figure 5, let the blue line be y and the red line be y'. As you can see, y has undergone a transformation 
that alters both the direction and magnitude in y's (vector change). Consider matrix transformations as opera-
tions. If the transformed blue line becomes a straight line that continues in the same direction as the blue line 
after matrix operation A, then A can be viewed as an identity element. 
 Being aware that size doesn't matter much in the case of vectors, we can use the constant lambda (𝜆𝜆) 
as an "eigenvalue." The transformation of the case, therefore, can be like this: 

𝐴𝐴𝑚𝑚 = 𝜆𝜆𝑚𝑚 
(x is the eigenvector, and 𝜆𝜆 is the eigenvalue) 

 
Here is a good example of finding the eigenvalues of a 2x2 matrix. 

 

A =  

A - 𝜆𝜆𝐼𝐼=  

det(A -𝜆𝜆𝐼𝐼) = |  | = (4 - 𝜆𝜆)(26 - 𝜆𝜆) - (8)(6) = 0 

104 -  30𝜆𝜆 + 𝜆𝜆2- 48 = 0 
𝜆𝜆2- 30𝜆𝜆 + 56 = 0 
(𝜆𝜆 - 28)(𝜆𝜆 - 2) = 0 
Eigenvalues of matrix A: 𝜆𝜆1 = 28, 𝜆𝜆2 = 2 

 
Basically, for every matrix 𝐴𝐴, there are vectors whose directions are unchanged by A. These are the 

eigenvectors, and their lengths are scaled by the eigenvalue. 
 

To calculate eigenvector centrality, use the following formula: 

𝐶𝐶𝑒𝑒(𝑣𝑣𝑖𝑖) =
1
𝜆𝜆
�
𝑛𝑛

𝑗𝑗=1

𝐴𝐴𝑖𝑖𝑗𝑗𝐶𝐶𝑒𝑒(𝑣𝑣𝑗𝑗) 

𝐴𝐴𝑖𝑖𝑗𝑗 is called an "adjacency matrix." It is a matrix that represents a graph. 
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< Figure 6>  

 
Figure 6. We can see how to create an adjacency matrix. For every node connected to another one, we add a 1. 
𝐶𝐶𝑒𝑒can be represented by (𝐶𝐶𝑒𝑒(𝑣𝑣1),𝐶𝐶𝑒𝑒(𝑣𝑣2),𝐶𝐶𝑒𝑒(𝑣𝑣3), . . . ,𝐶𝐶𝑒𝑒(𝑣𝑣𝑖𝑖)) 𝑇𝑇 . The exponent T means to switch the rows and 
columns.  
 

This is the equation we use to find eigenvectors, where 𝜆𝜆and𝐴𝐴𝑇𝑇are matrices and 𝐶𝐶𝑒𝑒is an eigenvector. 
𝜆𝜆 ⋅ 𝐶𝐶𝑒𝑒 = 𝐴𝐴𝑇𝑇 ⋅ 𝐶𝐶𝑒𝑒 

 
Example 6: Finding Eigenvector centrality of Figure 4. 
First, A (the adjacency matrix) of the figure is: 
 

 
 

Organizing the equation above: 
 

1) First of all, 𝐴𝐴𝑇𝑇 is equal to 𝐴𝐴 because all adjacency matrices are symmetrical. 
𝜆𝜆 ⋅ 𝐶𝐶𝑒𝑒 = 𝐴𝐴 ⋅ 𝐶𝐶𝑒𝑒 

2) Move everything to one side. 
𝜆𝜆 ⋅ 𝐶𝐶𝑒𝑒 − 𝐴𝐴 ⋅ 𝐶𝐶𝑒𝑒 = 0 

3) Multiply the 𝜆𝜆matrix by an identity matrix, and factor out 𝐶𝐶𝑒𝑒. 
(𝜆𝜆𝐼𝐼 − 𝐴𝐴) ⋅ 𝐶𝐶𝑒𝑒 = 0 

4) From this point on, multiplying 𝜆𝜆𝐼𝐼 − 𝐴𝐴 by 𝐶𝐶𝑒𝑒can be said to have the same effect as finding the deter-
minant of matrix 𝜆𝜆𝐼𝐼 − 𝐴𝐴 . 

 
We now will find the eigenvalues of the adjacency matrix A. 

 
det (𝜆𝜆𝐼𝐼 − 𝐴𝐴 ) = 0 

 -  =  
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det ( ) = 0 
 −𝜆𝜆5 + 5𝜆𝜆3 − 2𝜆𝜆 = 0 

 
The solutions to this equation are: 

𝜆𝜆 =  −�
5
2
−
√17

2
,�

5
2
−
√17

2
,−�√17

2
+

5
2

,�
√17

2
+

5
2

,  0 

For simplicity, we will be using the largest value, which is �√17
2

+ 5
2
. This value is approximately 2.14. 

 
 

Multiplying this matrix by 𝐶𝐶𝑒𝑒 (the matrix with the eigenvector scores of each node) will result in 0.  
 

 x = 0 
The eigenvector centrality scores for each of the 5 nodes are, respectively: 

 

=  
 
Katz Centrality 
Katz centrality is very similar to eigenvector centrality because they utilize nearly identical equations. Katz 
centrality is used when eigenvector centrality returns an error or reports a very generalized score, which are 
common issues when using eigenvectors. The equation for Katz centrality is: 
 

𝐶𝐶𝐾𝐾𝑚𝑚𝑡𝑡𝐾𝐾(𝑣𝑣𝑖𝑖) = 𝛼𝛼�
𝑛𝑛

𝑗𝑗=1

𝐴𝐴𝑖𝑖𝑗𝑗𝐶𝐶𝐾𝐾𝑚𝑚𝑡𝑡𝐾𝐾(𝑣𝑣𝑗𝑗) + 𝛽𝛽 

 
𝛼𝛼 and 𝛽𝛽 are constants. Every graph has a different optimal pair of these two constants, which is why they are 
not fixed. In this case, optimal means that the constants should most accurately show the centralities and should 
most accurately show differences in scores. 
 
Page Rank Centrality 
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Page Rank centrality is unique because, unlike other centralities, it can be infinitely done for more accurate 
results. Instead of providing a score by counting, Page Rank instead calculates the probability of landing on a 
node. The equation for Page Rank centrality is: 
 

𝐶𝐶𝑝𝑝(𝑣𝑣𝑖𝑖) = 𝛼𝛼∑𝑛𝑛𝑗𝑗=1 𝐴𝐴𝑗𝑗,𝑖𝑖
𝐶𝐶𝑝𝑝(𝑣𝑣𝑗𝑗)
𝑑𝑑𝑗𝑗
𝑜𝑜𝑜𝑜𝑠𝑠 +𝛽𝛽 

 
 This equation may look complicated, but the calculations are reasonably straightforward. When iter-
ating the calculations repeatedly (to be more accurate), as the number of iterations approaches infinity, the score 
of the does will also approach a certain number. This constant is modeled by the equation: 

𝑃𝑃𝑃𝑃(𝐾𝐾; 𝑡𝑡 + 1) =
1 − 𝑑𝑑
𝑁𝑁

+ 𝑑𝑑 �
𝑃𝑃∈𝛤𝛤𝐾𝐾

𝑃𝑃𝑃𝑃(𝑃𝑃; 𝑡𝑡)
|𝛤𝛤𝑃𝑃|  

 

 

< Figure 7>  

 
Example 7: Calculations of the PageRank Centrality of Figure 7: 
 First, we can initialize the centralities: 𝐶𝐶(𝐴𝐴),𝐶𝐶(𝐵𝐵),𝐶𝐶(𝐶𝐶),𝐶𝐶(𝐷𝐷),𝐶𝐶(𝐸𝐸) = 1

5
 

In Iteration 1: 
 

- 𝐶𝐶(𝐴𝐴) = 1 ⋅ 𝐶𝐶(𝐵𝐵) + 1
2
⋅ 𝐶𝐶(𝐶𝐶) + 1

3
⋅ 𝐶𝐶(𝐷𝐷) + 0 ⋅ 𝐶𝐶(𝐸𝐸) = 11

30
 

- 𝐶𝐶(𝐵𝐵) = 1
2
⋅ 𝐶𝐶(𝐴𝐴) + 0 ⋅ 𝐶𝐶(𝐶𝐶) + 1

3
⋅ 𝐶𝐶(𝐷𝐷) + 0 ⋅ 𝐶𝐶(𝐸𝐸) = 1

6
 

- 𝐶𝐶(𝐶𝐶) = 0 ⋅ 𝐶𝐶(𝐴𝐴) + 0 ⋅ 𝐶𝐶(𝐵𝐵) + 1
3
⋅ 𝐶𝐶(𝐷𝐷) + 0 ⋅ 𝐶𝐶(𝐸𝐸) = 1

15
 

- 𝐶𝐶(𝐷𝐷) = 1
2
⋅ 𝐶𝐶(𝐴𝐴) + 0 ⋅ 𝐶𝐶(𝐵𝐵) + 0 ⋅ 𝐶𝐶(𝐶𝐶) + 0 ⋅ 𝐶𝐶(𝐸𝐸) = 1

10
 

- 𝐶𝐶(𝐸𝐸) = 0 ⋅ 𝐶𝐶(𝐴𝐴) + 0 ⋅ 𝐶𝐶(𝐵𝐵) + 1
2
⋅ 𝐶𝐶(𝐶𝐶) + 0 ⋅ 𝐶𝐶(𝐷𝐷) = 1

10
 

 
We can start Iteration 2 with 𝐶𝐶(𝐴𝐴) = 11

30
,𝐶𝐶(𝐵𝐵) = 1

6
,𝐶𝐶(𝐶𝐶) = 1

15
,𝐶𝐶(𝐷𝐷) = 1

10
,𝐶𝐶(𝐸𝐸) = 1

10
: 

 
- 𝐶𝐶(𝐴𝐴) = 1 ⋅ 𝐶𝐶(𝐵𝐵) + 1

2
⋅ 𝐶𝐶(𝐶𝐶) + 1

3
⋅ 𝐶𝐶(𝐷𝐷) + 0 ⋅ 𝐶𝐶(𝐸𝐸) = 7

30
 

- 𝐶𝐶(𝐵𝐵) = 1
2
⋅ 𝐶𝐶(𝐴𝐴) + 0 ⋅ 𝐶𝐶(𝐶𝐶) + 1

3
⋅ 𝐶𝐶(𝐷𝐷) + 0 ⋅ 𝐶𝐶(𝐸𝐸) = 13

60
 

- 𝐶𝐶(𝐶𝐶) = 0 ⋅ 𝐶𝐶(𝐴𝐴) + 0 ⋅ 𝐶𝐶(𝐵𝐵) + 1
3
⋅ 𝐶𝐶(𝐷𝐷) + 0 ⋅ 𝐶𝐶(𝐸𝐸) = 1

30
 

- 𝐶𝐶(𝐷𝐷) = 1
2
⋅ 𝐶𝐶(𝐴𝐴) + 0 ⋅ 𝐶𝐶(𝐵𝐵) + 0 ⋅ 𝐶𝐶(𝐶𝐶) + 0 ⋅ 𝐶𝐶(𝐸𝐸) = 11

60
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- 𝐶𝐶(𝐸𝐸) = 0 ⋅ 𝐶𝐶(𝐴𝐴) + 0 ⋅ 𝐶𝐶(𝐵𝐵) + 1
2
⋅ 𝐶𝐶(𝐶𝐶) + 0 ⋅ 𝐶𝐶(𝐷𝐷) = 1

30
 

 
 When comparing the scores of iteration 1 and iteration 2, one can see that each centrality score has 
changed by a small amount. In this way, by continuing these iterations, these scores will continue to increase/de-
crease in infinitely smaller amounts until a specific constant is met.  
 
Centrality Score Comparison 

 

< Figure 8>  

 

Centrality Top 1 Top 2 Top 3 

degree B - 0.714 C - 0.429 G - 0.286 

closeness G - 0.446 F - 0.381 C - 0.286 

betweenness B - 0.131 C - 0.036 G - 0.000 

Katz G - 0.389 F - 0.383  C - 0.376 

eigenvector G - 0.816 F - 0.409 H - 0.408 

PageRank G - 0.229 B - 0.162 F - 0.147 

< Table 5>  

 
Table 5 shows the top 3 node scores of each centrality of the graph in Figure 8. Only nodes B, C, G, F, and H 
were in the top 1, 2, or 3; specifically, G was either the top 1 node or the top 3 node, and B was either the top 1 
node or the top 2 node. Most centralities reported G as the most efficient/most influential node, while C and F 
were either the top 2 nodes or the top 3 nodes. The closeness and Katz centralities reported identical scores – 
the eigenvector centrality also did, except the top 3 was node H, not node C. For disparity, the Katz centralities 
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had little disparity in the top 3; on the other hand, the degree centralities had lots of disparity in the top 3. An 
interesting finding is that node C in the closeness centrality, and node G in the degree centrality had the same 
score. Similarly, there was only a 0.001 difference in Nodes F and H scores in the eigenvector centrality. 
 
Bridge Detection 
 
Bridges are important connections between certain clusters of nodes in a graph. When two graphs have no 
elements in common, they are called subsets. If the removal of a certain edge causes a graph to split into sub-
sets, then that edge is considered a bridge.  
 

 

< Figure 9>  

 
Example 8: In Figure 9, edge 1-4 is considered a bridge because splitting it results in two subgraphs: 0-1-2-3 
and 4-5-6-7-8. 
  

It is essential to identify bridges to prevent the time complexity of a graph from growing to high 
amounts as the graph complexity of a graph rises exponentially. Depth-first search (DFS) is an algorithm used 
to find tree-like structures in graphs and find as many nodes along certain branches (as deep as possible) before 
backtracking is required. 
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< Figure 10> 

 
Example 9: Table 6 shows the discovery order of the 15 nodes of Figure 10 using DFS. 
 
Table 6. 

Node Score 

1 6/1 

2 5/1 

3 4/1 

4 (Source Node) 1/1 

5 7/1 

6 2/1 

7 3/1 

8 8/8 

9 9/8 

10 12/8 

11 10/8 

12 11/8 

13 13/13 

14 14/13 

15 15/13 

< Table 6>  

 
 As seen, there are only three different upper bounds. Namely, these are 1, 8, and 13. Therefore we can 
conclude that the nodes with certain upper bounds fit into subsets: a subset of nodes 1 to 7, a subset of nodes 8 
to 12, and a subset of nodes 13-15. Now, we know that the edges connecting these subsets are bridges. There-
fore, the bridges are the 3-8 edge and the 11-13 edge. 
 
Community Detection 
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Communities are sets of dense groups of nodes with strong connections with other nodes in their communities 
but weak connections with other nodes. For example, many groups of friends exist on social media platforms 
that have strong bonds with one another in the friend group. These communities can also overlap, similar to 
how someone may be in multiple social circles. 
 Community detection is essential when analyzing a network or a graph. In graphs of immense scales, 
there may be millions of nodes and edges. Therefore, we try to identify significant communities to aid us in 
deciding which nodes are more influential than others. There are two primary community detection methods: 
agglomerative methods and divisive methods. 
 Agglomerative methods begin with a graph of nodes and without edges. Then, edges are gradually 
added to the graph from strongest to weakest. In divisive methods, the opposite is done. Edges are removed 
from a complete graph with the highest weight starting first. 
 
Modularity 
One issue with community detection is that there is no guaranteed way to find the most optimized partition of 
a graph into communities. Numerous algorithms have been developed that attempt to balance both accuracy 
and efficiency of graph splitting. The effectiveness of a partition is calculated in a measurement called modu-
larity (also called a "score"), which is a constant ranging from -1 to 1. The formula of modularity (in a graph 
with weighted paths) is given by: 
 

𝑄𝑄 =
1

2𝑛𝑛
 �
𝑖𝑖,𝑗𝑗

[𝐴𝐴𝑖𝑖𝑗𝑗 −
𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑛𝑛

] 𝛿𝛿(𝑐𝑐𝑖𝑖  , 𝑐𝑐𝑗𝑗)  

𝐴𝐴𝑛𝑛𝑚𝑚 →  𝑤𝑤𝑑𝑑𝑖𝑖𝑑𝑑ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛𝑑𝑑𝑡𝑡𝑤𝑤𝑑𝑑𝑑𝑑𝑛𝑛 𝑛𝑛𝑜𝑜𝑑𝑑𝑑𝑑 𝑛𝑛 𝑔𝑔𝑛𝑛𝑑𝑑 𝑛𝑛𝑜𝑜𝑑𝑑𝑑𝑑 𝑛𝑛 
𝑘𝑘𝑛𝑛 → 𝑒𝑒𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑤𝑤𝑑𝑑𝑖𝑖𝑑𝑑ℎ𝑡𝑡𝑒𝑒 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒 𝑔𝑔𝑡𝑡𝑡𝑡𝑔𝑔𝑐𝑐ℎ𝑑𝑑𝑑𝑑 𝑡𝑡𝑜𝑜 𝑛𝑛𝑜𝑜𝑑𝑑𝑑𝑑 𝑛𝑛 

𝑐𝑐𝑛𝑛 →  𝑐𝑐𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑡𝑡𝑦𝑦 𝑡𝑡ℎ𝑔𝑔𝑡𝑡 𝑛𝑛𝑜𝑜𝑑𝑑𝑑𝑑 𝑛𝑛 𝑖𝑖𝑒𝑒 𝑖𝑖𝑛𝑛 
𝛿𝛿(𝑐𝑐𝑖𝑖  , 𝑐𝑐𝑗𝑗) 𝑑𝑑𝑑𝑑𝑡𝑡𝑛𝑛𝑑𝑑𝑛𝑛𝑒𝑒 1 𝑖𝑖𝑜𝑜 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗 , 𝑔𝑔𝑛𝑛𝑑𝑑 0 𝑖𝑖𝑛𝑛 𝑔𝑔𝑛𝑛𝑦𝑦 𝑜𝑜𝑡𝑡ℎ𝑑𝑑𝑑𝑑 𝑐𝑐𝑔𝑔𝑒𝑒𝑑𝑑 

 
Finding Communities 
The modularity function above can be utilized to create a graph with optimal partitions. There are three phases 
to detect community: 
 
 
 
 
 
 
 
 
 
Phase 1: Partition  
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< Figure 11> < Figure 12> 

In Figure 11, a source node is chosen to begin the partitioning process. The communities partitioned using the 
score function are shown in Figure 12. 
  
Phase 2: Aggregation 
 

 

< Figure 13> 

   
 In Figure 13, the communities are aggregated, and each community is represented by one node. Node 
and edge weights are given by the number of connections within a community and from one community to 
another. 
 
Phase 3: Repetition 
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< Figure 14> < Figure 15> 

The method is done several times until the graph cannot be split into any more communities (in this case, a 
graph with two nodes in Figure 15). The modularity of the partition can then be calculated feasibly. The com-
plexity of a graph can also be seen by the number of times a "pass" (perform partition and aggregation) must 
be done.  
 

Results 
 
The two methods I have chosen balance time complexity and accuracy well: Closeness centrality with com-
munity detection and Katz centrality with bridge detection. Under "Centrality Score Comparison," we can 
see that nodes G, F, and C were chosen to be the most influential three nodes (in that order) by both closeness 
centrality and Katz centrality. These two methods also had the lowest time complexities in Figure 19.  
 
Time Complexity of Centralities 
 
Density 

Node Edge Ratio Degree Close Betw. Katz Eig. 

400 400 1:1 0.0001 0.189 0.461 0.019 0.116 

400 480 1:1.2 0.0002 0.252 0.644 0.024 0.074 

400 560 1:1.4 0.0002 0.298 0.659 0.029 0.036 

400 640 1:1.6 0.0001 0.308 0.710 0.038 0.033 

400 720 1:1.8 0.0002 0.361 0.806 0.043 0.050 

400 800 1:2 0.0003 0.381 0.907 0.051 0.031 

< Table 7>  
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I wanted to test the 1:1.6 ratio in the evaluation because it had the least time-to-ratio proportion (as shown in 
Table 7), which meant it was most efficient in the first test. I managed to achieve similar results in the second 
experiment. 
 

 
Blue = Degree, Red = Close, Yellow = Between, Green = Katz, Orange = Eig 

< Figure 17> 

 Figure 17 shows the graph of the time complexities of graphs with a constant number of nodes and an 
increasing ratio of nodes-to-edges. Therefore, this experiment is based on increasing density. The closeness and 
betweenness centralities increased the most as the density of the graph increased. The degree and Page Rank 
centralities stayed constant through the increasing density. The Katz centrality increased by a small amount. 
Interestingly, the eigenvector centrality first decreased, then gradually increased at the same rate as the Katz 
centrality.  
 
Node 

Node Edge Ratio Degree Close Betw. Katz Eig. 

50 80 1.6 0.000 0.004 0.011 0.005 0.005 

100 160 1.6 0.000 0.020 0.046 0.009 0.008 

150 240 1.6 0.000 0.050 0.079 0.013 0.014 

200 320 1.6 0.000 0.078 0.190 0.017 0.027 

250 400 1.6 0.000 0.129 0.307 0.022 0.038 

300 480 1.6 0.001 0.177 0.380 0.030 0.047 

350 560 1.6 0.001 0.197 0.444 0.034 0.059 
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< Table 8>  

 

 
Blue = Degree, Red = Close, Yellow = Between, Green = Katz, Orange = Eig 

< Figure 18> 

 
 

Figure 18 shows the graph of the time complexities of graphs with constant node-to-edge ratios (date from 
Table 8). Therefore, this experiment is based on the number of nodes in a graph. The duration of the between-
ness and closeness centralities increase rapidly. Hence, these centralities can be said to have exponentially 
increasing time complexities. The Page Rank centrality is linear. The eigenvector centrality is constant, and 
while the Katz centrality appears to have taken longer than the eigenvector centrality, this is negligible as the 
Katz centrality is merely a variation of the eigenvector centrality. Therefore, we can still say the Katz centrality 
is constant. Lastly, although the degree centrality looks to be constant, it increases in a very slight amount. 
Compare the time complexity of the degree centralities of two graphs: one of 2 nodes, and one of 1000 nodes. 
By intuition, one can know that the graph with 1000 nodes will take longer to calculate its degree centrality. So 
the degree centrality time complexity is linear nonetheless. 
 
Time Complexities of Bridge and Community Detection 
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< Figure 19> 

 

 

< Figure 20>  

 
Figure 19 shows a comparison between the time complexities of node centralities measured with a synthetic 
graph, a synthetic graph with bridge detection, and a synthetic graph with community detection. Figure 20 
shows a closer look at the time complexities of the degree centrality, which is too small to be seen effectively 
in Figure 19. 
 
Discussion  
 
In the Katz centrality, bridge detection served moderately useful compared to the synthetic time, but the time 
complexity of the community detection graph clearly worsened. This can be explained because Katz centrality 
aims to count the number of paths that must be taken between two nodes to find their centralities. Bridge de-
tection helps to count the number of "walks" it takes because it counts paths in the process of finding bridges. 
On the other hand, Katz centrality does not require community detection, and therefore, its time complexity 
increases. In the betweenness and closeness centralities, distances are being compared. Bridge detection and 
community detection allow a graph to be split into clusters, and thus, it is easier to find the closest paths. Usu-
ally, the time complexities become exponential (they multiply) as we check each node's distance, but with these 
methods, only each subgraph has to be checked to result in a much smaller time complexity (because we only 
have to add the subgraph time complexities). The time complexities were all nearly identical for the eigenvector 
centrality because eigenvector centrality is found using adjacency matrices, which do not need bridges or com-
munities for them to be created. The only thing that must be counted for degree centrality is the number of 
edges connected to a node. Bridges and communities are not required for this task, so they merely hinder the 
time complexity. This is why the bridge detection and community detection time complexities for degree cen-
trality are higher than the synthetic graph without any advanced method. 
 
Conclusion 
 
Graphs are very effective tools for engineering analysis of the real world. In this paper, the centrality score was 
selected to measure the influence of each node in the graph. As the method of calculating this score becomes 
more complex, accuracy is guaranteed, but time complexity increases simultaneously. In particular, when the 
score is a case where the relationship between nodes is important, the time complexity increases. Graphs rep-
resenting the real world have a lot of nodes and edges in many cases, and experiments have found that if applied 
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as they are, the time efficiency will be extremely low. To compensate for this point, bridge detection and com-
munity detection, a method of dividing a large graph into several subgraphs at a low level, were applied to 
change the nested loop operation to a simple sum of operations in series. Furthermore, a model, which is the 
most appropriate combination, was proposed and experimentally proved in consideration of trade-offs. The 
reason for selecting the ratio of node and edge numbers to increase the experiment's credibility was also de-
scribed. 

In this study, synthetic data was generated and experimented with, but more realistic experimental 
results can be obtained because random characteristics become stronger when tested with actual data. Since this 
leads to a better methodology proposal, my future work is to experiment with real data and propose a more 
appropriate model. 
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