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ABSTRACT 
 
In this paper, we propose a method for the generalization of some generic fundamental, abstract differential 
equations into generalized systems. We hypothesize that these generalized systems are fit to model some real-
life phenomena, which can be of practical interest. We confirm our hypothesis by considering examples that 
are known to be confirmed with the experiment as well as examples that are still to be discovered.  
 

Introduction 
 
Several scientific principles and more generally real-life situations are concerned with the relationships be-
tween varying quantities. Because derivatives are used to illustrate rates of change in mathematics, such prin-
ciples are frequently characterized in terms of linear and non-linear differential equations (Ming). In order to 
describe real-life situations by differential equations we must first identify the problem that needs to be 
solved. Then, by applying a number of assumptions we convert the real-life problem into a set of differential 
equations (Trench). Finally, we should be able to solve them analytically, or even numerically, although the 
special attention is often paid specifically to integrable cases (Newell). 

Therefore, alongside the goal of finding the solutions to known mathematical models, we could also 
consider another objective (in a certain sense an inverse to the previous one) of finding the equations that are 
known to have a specific kind of solutions. This is the essence of our approach, which we suggest in this pa-
per. 

From a practical point of view, the latter may even be more interesting. Let's give an example of such 
a problem: suppose we have a model equation describing free oscillations or the propagation of an impulse of 
a desired spectral quality in a medium without attenuation or distortion of its shape. As a rule, such an equa-
tion (which we will call “generic”) is a fairly simple autonomous integrable ordinary differential equations 
(ODE). From a practical point of view, for example, to create electrical or sound generators of corresponding 
oscillations or impulses it is necessary to have some form of “generalized” model, which includes the effects 
of dissipation and driving process. Specific examples of the application of our proposed approach are dis-
cussed in the following sections. Other interpretations of the “generalized” model are possible as well, for 
example, as synchronized state in coupled oscillator systems (Joshi, Sen and Kar). Similar problems have also 
been considered in the feedback theory (Boulite, Hadd and and Maniar). However, although the approaches 
used there are universal, they are also complex as well. Often, it is impossible to obtain the exact solutions 
using the feedback theory, so it is necessary to apply other methods such as the perturbation theory (Bender 
and Orszag). Although our proposed approach is perhaps less universal, it doesn’t require the approach of 
perturbation theory, and it is possible to obtain exact solutions with it (meaning integrable).  
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Thus, our proposed approach can be mathematically formulated as solution preserving generalization 
of integrable autonomous ODE. We hypothesize that sets of differential equations built with such an approach 
are fit to model some real-life phenomena (including undiscovered yet), the examples to which are given in 
the following sections.  
 
 
 

Mathematical Model 
 
In this section, our approach is considered for the third order of autonomous ODE. However, such approach is 
valid for arbitrary order of autonomous ODE as well and all the statements made in this section are relevant to 
autonomous ODE of arbitrary order. Autonomous system of ODE of third order can be represented as: 

    �
�̇�𝑥1 = 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)
�̇�𝑥2 = 𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)
�̇�𝑥3 = 𝑓𝑓3(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)

    (1) 

where {𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3} are known functions of 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3; 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖(𝑡𝑡) (𝑖𝑖 = 1,2,3) are sought-for functions of 𝑡𝑡. �̇�𝑥𝑖𝑖 
represents the derivative with respect to time. The system (1) is autonomous since its right-hand side does not 
depend on time explicitly. The solutions of the system (1) are the set of functions 𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), 𝑥𝑥3(𝑡𝑡), which 
upon substituting turn each equation in the system (1) to the true equality.  
 A scalar function 𝑈𝑈(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) is known to be integral of the system (1) if it is not an identical 
constant, but becomes a constant at each solution of system (1). The equality: 
  

𝑈𝑈(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = 𝑐𝑐,    (c = const)          (2) 
 

is known as the first integral of the system (1). 
Along with system (1), we consider an autonomous system of third-order ODE: 
 

�
�̇�𝑥1 = 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) + 𝑔𝑔1(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)
�̇�𝑥2 = 𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) + 𝑔𝑔2(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)
�̇�𝑥3 = 𝑓𝑓3(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) + 𝑔𝑔3(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)

    (3) 

where  {𝑔𝑔1,𝑔𝑔2,𝑔𝑔3} are known functions of 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3; 
Let the set {𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30} be a partial solution to the system (1), and 

𝑈𝑈(𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30) = с     (4) 
Then a necessary and sufficient condition that the set of functions {𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30} will be simultane-

ously the solution of system (1) and (2) is be the ability to represent system (3) in the form: 

�
�̇�𝑥1 = 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) + 𝐹𝐹1(𝑈𝑈(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) − 𝑐𝑐)
�̇�𝑥2 = 𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) + 𝐹𝐹2(𝑈𝑈(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) − 𝑐𝑐)
�̇�𝑥3 = 𝑓𝑓3(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) + 𝐹𝐹3(𝑈𝑈(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) − 𝑐𝑐)

   (5) 

where {𝐹𝐹1,𝐹𝐹2,𝐹𝐹3} are well-behaved functions, which meet the condition: 
                                                          𝐹𝐹𝑖𝑖(0) = 0, where 𝑖𝑖 = 1, 2, 3   (6) 

Let us now show it. Substituting {𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30} into the system (5) and using (4) results in: 

�
�̇�𝑥10 = 𝑓𝑓1(𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30) + 𝐹𝐹1(𝑈𝑈(𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30) − 𝑐𝑐)
�̇�𝑥20 = 𝑓𝑓2(𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30) + 𝐹𝐹2(𝑈𝑈(𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30) − 𝑐𝑐)
�̇�𝑥30 = 𝑓𝑓3(𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30) + 𝐹𝐹3(𝑈𝑈(𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30) − 𝑐𝑐)

 

Since the set {𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30} is a partial solution of the system (1), we get: 

�
𝐹𝐹1(𝑈𝑈(𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30) − 𝑐𝑐) = 0
𝐹𝐹2(𝑈𝑈(𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30) − 𝑐𝑐) = 0
𝐹𝐹3(𝑈𝑈(𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30) − 𝑐𝑐) = 0
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Or 

�
𝐹𝐹1(0) = 0
𝐹𝐹2(0) = 0
𝐹𝐹3(0) = 0

 

by assumption (6) the last equality is true. 
Let’s apply this approach to a well-known linear undamped oscillator ODE (Zill). 

                                                  � �̇�𝑥1 = 𝑥𝑥2,
�̇�𝑥2 = −𝑥𝑥1,                     (7)  

Then, one of the corresponding generalized system can be represented in the form: 

                                                  �
�̇�𝑥1 = 𝑥𝑥2,

�̇�𝑥2 = −𝑥𝑥1 − 𝑥𝑥2 ∙ �
𝑥𝑥1
2

2
+ 𝑥𝑥2

2

2
− 1�      (8)               

Where 𝑥𝑥1
2

2
+ 𝑥𝑥2

2

2
 is the first integral of the system (integral of motion of linear undamped oscillator), 1 

– some specific value of this integral, the term −𝑥𝑥2 ∙ �
𝑥𝑥1
2

2
+ 𝑥𝑥2

2

2
− 1� in the second equation of the system is a 

function 𝐹𝐹, satisfying the condition that 𝐹𝐹(0) = 0. As it can be easily seen, the added term �𝑥𝑥1
2

2
+ 𝑥𝑥2

2

2
− 1� in 

the second equation of the system vanishes on the phase trajectory corresponding to the integral of motion 
equaling to 1. Thus, generic system (7) and generalized system (8) have a common solution corresponding to 
the integral of motion equaling to 1. This is illustrated with phase diagram representing phase spaces for ge-
neric and generalized systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Phase trajectory of generic system (7) corresponding to the value of the first integral equaling to 1. 
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Figure 2. Phase trajectory corresponding to the stable limit cycle is phase space of the generalized system (8). 
 

As can be seen, phase trajectories for these systems are generally different excluding the trajectory 
corresponding to the value of integral of motion equaling to 1. The closed trajectory of the generalized system 
corresponds to the limit cycle in the phase space. For the chosen specific function 𝐹𝐹, this limit cycle is stable. 
System (8) can be considered as a specific case to the known Rayleigh-van der Pol harmonic oscillator equa-
tion system , introduced in (AMOS). In the work (Buldakov, Samochetova and Sitnikov), such type of equa-
tions is used as a mathematical model for the organized behavior in the cardiovascular system. 

The right hand side of the second equation of the system (8) includes a generalizing term −𝑥𝑥2 ∙

�𝑥𝑥1
2

2
+ 𝑥𝑥2

2

2
− 1�, which can be interpreted as a combination of terms representing “damping” and “driving” 

forces. Moreover, “damping” force is non-linear and depends on the coordinate as well as velocity. This leads 
to the question: is it possible for a generalization procedure, in which the generalization term (in particular 
“damping” force) has a simpler and conventional form? 
For that, let’s consider the special case of an autonomous ODE of third-order: 
 

   �
�̇�𝑥1 = 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) + 𝑔𝑔1(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3),

�̇�𝑥2 = 𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3),
�̇�𝑥3 = 𝑓𝑓3(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3),

    (9) 

Where, in general, 𝑔𝑔1(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)  does not have to be identical to 𝐹𝐹1(𝑈𝑈(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) − 𝑐𝑐), as it was 
necessary for (5). 
Let’s find the condition for the system (1) and (9) to have a common solution for the dependent varia-
ble 𝑥𝑥1(𝑡𝑡). For that, suppose that by substituting variables in system (9) as: 

     
𝑥𝑥1 → 𝑥𝑥1
𝑥𝑥2 → 𝑋𝑋2
𝑥𝑥3 → 𝑋𝑋3,

,                                                         (10) 

we are able to transform (9) to the form: 

                                            �
 �̇�𝑥1 = 𝐹𝐹1(𝑥𝑥1,𝑋𝑋2,𝑋𝑋3),
�̇�𝑋2 = 𝐹𝐹2(𝑥𝑥1,𝑋𝑋2,𝑋𝑋3),

�̇�𝑋3 = 𝐹𝐹3(𝑥𝑥1,𝑋𝑋2,𝑋𝑋3) + 𝐺𝐺1(𝑈𝑈(𝑥𝑥1,𝑋𝑋2,𝑋𝑋3) − 𝑐𝑐),
                  (11) 

Then, if 𝐺𝐺1(0) = 0, systems (1) and (9) would have a common solution for the dependent variable 
𝑥𝑥1(𝑡𝑡).        
 

Results and Applications 
 
Application 1: Dumped and Driven Self-Induced Transparency Equations 
 
The effects of highly energetic ultra-fast pulses propagating through a resonant medium are not adequately 
explained by the linear dispersion theory. In such extreme situation, the interaction between the propagating 
pulses and the resonant medium is very efficient that the system evolves into a self-consistent state. Then 
after, light propagates into the resonant medium with no major modification in their shapes. This is the self-
induced transparency (SIT) regime, also known as the McCall-Hahn soliton regime (McCall and Hahn). The 
physics of SIT can be understood by taking into account the dynamics of a pulse's interaction with the medi-
um. If the pulse energy is high all the particles of the medium are found in the upper state. Thus, the medium 
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is completely inverted. The remaining pulse leads the fully inverted particles to release stimulated light, re-
turning energy to the propagating field. The excited particles are rapidly relaxed to the lower state in this 
manner. Under these conditions, a pulse can propagate through an absorbing media with no losses, constantly 
wasting and recovering its energy. The standard approach to describe the interaction between ultra-fast pulses 
with a two levels system is based on the slowly varying envelope approximation (SVEA) (Allen and Eberly).  

Bullough et al. (Bullough, Caudrey and Eilbeck) derived a set of equations describing resonant inter-
action of pulses with a two-levels medium. These SIT equations that describe normalized real magnitudes of 
electric field 𝐸𝐸, polarization 𝑃𝑃 and population inversion 𝑁𝑁 with for short pulses are 
                                                                     𝐾𝐾 �̇�𝐸 = 𝑃𝑃                                                 (12) 
                                                                    �̇�𝑃 = 𝐸𝐸 𝑁𝑁                                                  (13) 
                                                                   �̇�𝑁 = −𝐸𝐸 𝑃𝑃                                                (14) 
Where the dot denotes differentiation with respect to time (𝑡𝑡 − 𝑧𝑧

𝑢𝑢
) and 𝑢𝑢 has the dimension of velocity. The 

pulse is considered to propagate in the positive z direction with a phase velocity 𝑢𝑢. 𝐾𝐾 is defined as 𝑐𝑐−1
𝑢𝑢

 where 
c is the speed of light in vacuum. 
From equations (12) and (14): 

                                                      �̇�𝑁 = −𝐸𝐸 𝐾𝐾 �̇�𝐸 = −𝐾𝐾
2

(𝐸𝐸2)̇     (15)                            
The integral of equation (15) gives: 

                                                           𝑁𝑁 = −  𝐾𝐾
2

 𝐸𝐸2 + 𝐶𝐶1    (16)           
Since initially, at time 𝑡𝑡 = 0,  the boundary conditions for a partial case of single soliton solutions 

are: 

                                        𝐸𝐸(0) = 0
                               𝑁𝑁(0) = −1                               (17)              

By replacing the initial conditions in equation (16) we obtain the value of the integration constant 𝐶𝐶1: 
                                       𝑁𝑁(0) = −𝐾𝐾

2
𝐸𝐸2(0) + 𝐶𝐶1    (18)                           

Hence the integration constant 𝐶𝐶1 is equal to −1. 
Substituting equation (16) into (13) gives: 
                                                     �̇�𝑃 = −𝐾𝐾

2
𝐸𝐸3 − 𝐸𝐸    (19) 

Differentiating equation with respect to time (12) gives: 
                                         𝐾𝐾 ∙ �̈�𝐸 = �̇�𝑃     (20) 

Substituting (19) into (20), a first integral of SIT equations system Eq.12 – Eq.14 can be found in the 
form of undamped and unforced Duffing equation (Bender and Orszag). 
                                       �̈�𝐸 + 1

𝐾𝐾
∙ 𝐸𝐸 + 1

2
∙ 𝐸𝐸3 = 0   (21) 

Equation (21) has a soliton-like solution describing pulses with area under envelope of  𝐸𝐸 equal to 
2𝜋𝜋 (so-called 2𝜋𝜋 − pulse). Pulses whose areas are multiples of 2π propagate in a two-level medium with no 
changes in their envelopes (the soliton propagation regime). The solution of the electric field is: 
                                       𝐸𝐸 = 2

√−𝐾𝐾
∙ 𝑠𝑠𝑠𝑠𝑐𝑐ℎ � 𝑡𝑡

√−𝐾𝐾
�                         (22) 

Now let us consider a perturbed SIT equations system. To obtain that, one should also add to (12) – 
(14) a term 𝑃𝑃′ representing a loss and a driving force: 
                                                                        𝐾𝐾 �̇�𝐸 = 𝑃𝑃 + 𝑃𝑃′                                                  (23) 
                                                                        �̇�𝑃 = 𝐸𝐸 𝑁𝑁                                                            (24) 
                                                                        �̇�𝑁 = −𝐸𝐸 𝑃𝑃                                                        (25) 
 

Introducing new variable with tilde: 
                                                                  𝑃𝑃� =  𝑃𝑃 + 𝑃𝑃′    (26) 
                                                                  𝑃𝑃 =  𝑃𝑃� − 𝑃𝑃′                                                        (27)   

Substituting equation (27) into (24) we obtain: 
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                                                                  𝑃𝑃�̇ − 𝑃𝑃′̇ = 𝐸𝐸 𝑁𝑁                                                     (28)  
Substituting equation (27) into (25) we obtain: 

                                                                  �̇�𝑁 = −𝐸𝐸 𝑃𝑃� + 𝐸𝐸 𝑃𝑃′                                            (29)  
From equation (23): 

                                                                  𝐾𝐾 �̇�𝐸 = 𝑃𝑃�                                                              (30)  
From equation (28): 

                                                                  𝑃𝑃�̇ = 𝐸𝐸 𝑁𝑁 + 𝑃𝑃′̇                                                      (31)  
Introducing new variable with tilde and looking for solution at non-zero 𝐸𝐸: 

                                                                  𝐸𝐸 𝑁𝑁 + 𝑃𝑃′̇ = 𝐸𝐸 ∙ 𝑁𝑁�                                        (32) 

                                                                  𝑁𝑁� = 𝑁𝑁 + 𝑃𝑃′̇

𝐸𝐸
                                                         (33)        

                                                                  𝑁𝑁�̇ = �̇�𝑁 + 𝑑𝑑
𝑑𝑑𝑡𝑡
�𝑃𝑃

′̇

𝐸𝐸
�                                                 (34) 

Substituting from (28): 

                                                                  𝑁𝑁�̇ = −𝐸𝐸 ∙ 𝑃𝑃� + 𝑑𝑑
𝑑𝑑𝑡𝑡
�𝑃𝑃

′̇

𝐸𝐸
� + 𝐸𝐸 ∙ 𝑃𝑃′                            (35) 

Then the perturbed RMB (23) – (25) can be re-written as: 
            𝐾𝐾 ∙ �̇�𝐸 = 𝑃𝑃�                                                    (36) 
                                                               𝑃𝑃�̇ = 𝐸𝐸 ∙ 𝐷𝐷�                                                       (37) 

                                                                  𝐷𝐷�̇ = −𝐸𝐸 ∙ 𝑃𝑃� + 𝑑𝑑
𝑑𝑑𝑡𝑡
�𝑃𝑃

′̇

𝐸𝐸
� + 𝐸𝐸 ∙ 𝑃𝑃′                     (38) 

where full derivative with respect to 𝑡𝑡 is denoted as 𝑑𝑑
𝑑𝑑𝑡𝑡

 . Obtained equations system (36) – (38) constitutes the 
(11) condition in a general form. 
Let’s consider a special case by assuming the 𝑃𝑃′ as a non-linear loss and constant driving force  

𝑃𝑃′ = −(𝐴𝐴 ∙ 𝐸𝐸) ∙ 𝐸𝐸 + 𝑔𝑔        (39) 
where 𝐴𝐴 and 𝑔𝑔 are constants. 
Then the (36) – (38) can be re-written as: 
                                                      𝐾𝐾 �̇�𝐸 = 𝑃𝑃�                                                      (40) 
                                                        𝑃𝑃�̇ = 𝐸𝐸 ∙ 𝑁𝑁�                                                     (41) 
                                                   𝑁𝑁�̇ = −𝐸𝐸 ∙ 𝑃𝑃� + (2 ∙ 𝐴𝐴 ∙ �̈�𝐸 + 𝐴𝐴 ∙ 𝐸𝐸3 + 𝑔𝑔 ∙ 𝐸𝐸)   (42) 
i.e., it is the form of (11), if: 
                                                     𝐾𝐾 = −2∙𝐴𝐴

𝑔𝑔
                                                                 (43) 

 with boundary conditions 𝐸𝐸(−∞) = 0, �̇�𝐸(−∞) = 0                                             (44) 
It can be concluded that the perturbed SIT equations system (23) – (25) with boundary conditions (44) still 
describes a soliton-like pulse with area under envelope of 𝐸𝐸 equal to 2𝜋𝜋 ( 2𝜋𝜋 − pulse), velocity and ampli-
tude and duration of which are dependent on parameters of non-linear loss and a driving force (38); the latter 
can be realized by an external continuous wave with second harmonic generation at low conversion (Boyd). 
As far as we know, dumped and driven RMB equations system was not considered previously. 
 

 
Application 2: Generalization of The Developed Approach to a Dumped and Driven Re-
duced Sine-Gordon Equations 
 
As it is noted in Bullough et al. (Bullough, Caudrey and Eilbeck), the RMB equations system can be trans-
formed to reduced sine-Gordon (RSG) equations system by replacing 𝑃𝑃 and 𝑁𝑁 in (12)-(14) by: 
     𝑃𝑃 = 𝑠𝑠𝑖𝑖𝑠𝑠 (𝜑𝜑) and  𝑁𝑁 = 𝑐𝑐𝑐𝑐𝑠𝑠(𝜑𝜑)    (45) 

The results obtained earlier for RMB equations system are relevant also to RSG equations system. 
Analytical solutions with a partial approach, when the loss and the driven force terms are pre-assumed from 
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start in the form of equation (39) are reported in (Costabile and Parmentier) and (Pedersen and Saermark) in 
the case of Josephson junction.  

The assumptions for the specific boundary conditions considered above to simplify the solution are 
not crucial. Thus, the analysis can be extended to more general case. For instance, the analysis can be extend-
ed to the case when the loss term in (39) has a more general form. Also, it is of interest to find the conditions 
when nonlinear dissipation is obtained in the case of the reduced Maxwell-Bloch equations. Additionally, our 
developed approach can be applied, for example, to the flutter-like behavior of planar bodies falling in liquids 
where such nonlinear loss term in form of (39) are observed (Belmonte, Eisenberg and Moses).  
 

 

Discussion 
 
In this paper, we introduced an approach for finding differential equations that are known to be solvable 
(meaning integrable). We have showed how a generalized set of differential equations can be constructed 
based on simple generic equation with solution preserving condition. The reasoning for such condition is its 
practical applicability, which was shown in the following sections. Three examples were selected, Rayleigh-
van der Pol equation, the reduced Maxwell Bloch and the reduced Sine Gordon equations, to show the ap-
plicability and efficiency of this approach. It may be stated that this approach is very effective in finding solu-
tions for wide classes of problems encountered in real life. Obviously, practical applicability of solutions 
requires its stability. In our considered examples, the example in Section 2 (“Mathematical Model”) seems to 
be stable by the definition, while the example considered in application 2 of Section 3 (“Results and Applica-
tions”) seems to be stable as it is reported to be observed in the experiment. The stability of the solution con-
sidered in the application 1 of the Section 3 requires further analysis. 

It is interesting to notice that during the procedure of generalizing, we impose the condition of invar-
iance of the solution (at least for one variable) of the system under transformations of the coordinates, in par-
ticular, the global transformations of the coordinates (26). The requirements to satisfy these imposed condi-
tions leads to the necessity for introduction of additional terms, which can be interpreted in our application 
examples as damping forces, in generally non-linear. Such procedure looks like the known approach used in 
Gauge field theory (Bailin and Love), in which the dynamics of the system is invariant under transformations 
of coordinates (Gauge transformation). The Gauge transformations require the introduction of new terms, 
called the compensation terms.  
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