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Wavelet Transform Subband Combinations 
 
ABSTRACT 
 
The 3-D wavelet transform has been used with machine learning techniques to help identify Alzheimer’s Disease 
(AD) and Mild Cognitive Impairment (MCI) through magnetic resonance imaging (MRI). Although this approach 
resulted in high accuracy, a large number of subband permutations were obtained due to the usage of the 3-D 
wavelet transform, which causes redundancy and computational inefficiency during classification. To address this 
issue, this study discovers the combination with the minimum subbands giving a comparable accuracy with the 
original approach that used all subbands. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was used to 
gain de-identified MRI scans for classification with 75% training and 25% test scans. The scans were standardized 
by pre-processing through skull stripping, segmentation, and smoothing using the MATLAB toolboxes Statistical 
Parametric Mapping 12 (SPM 12) and Computation Anatomy Toolbox 12 (CAT 12). Feature extraction was then 
completed through different 3-D wavelet transform subband combinations. Support vector machine (SVM) 
classification was used with radial basis function kernels (RBF) to screen patients for AD, MCI, or cognitively 
normal (CN) status 3 times per subband combination. The mean and standard deviation of the test accuracy for each 
combination were recorded. Among the tested combinations, the maximum mean test accuracy was 95.3%. To 
prevent overfitting, five-fold cross-validation was performed on the top 40% subband combinations based on the 
mean test accuracy. The maximum cross-validation accuracy is 97.3%. Therefore, this study shows the potential of 
using less 3-D wavelet transform subbands to help screen patients for AD or MCI in the future. 
 
Introduction 
 
Alzheimer’s Disease (AD) is a progressive neurodegenerative condition that leads to brain mass loss and 
significantly affects the quality of life for patients and their families (National Institute on Aging, 2019). It is 
classified as the most common dementia that manifests in humans (National Institute on Aging, 2019), and its 
prevalence in the United States of America is expected to more than double by 2050 unless any breakthrough 
regarding prevention or cure happens (Alzheimer’s Association, 2021). Mild Cognitive Impairment (MCI) is a 
transitional stage in cognitive function from natural cognitive decline to AD (Henderson, n.d.). Patients with MCI 
are at high risk for conversion to AD and the progression of further cognitive decline (National Institute on Aging, 
2019). Diagnosis of MCI and AD has primarily centered on cognitive tests administered by a physician or through 
brain scans, such as MRI scans (National Institute of Neurological Disorders and Stroke, 2022).  

In addition to conventional methods, machine learning techniques including support vector machine 
(SVM), artificial neural network (ANN), deep learning (DL), and ensemble methods have shown promise 
identifying AD and MCI (Tanveer et al., 2020). Among them, SVM classification is one of the most excellent 
methods (Zhang et al., 2015) because it is able to produce high levels of classification accuracy without knowledge 
about the geometry and distribution of the given dataset (Cortes & Vapnik, 1995). SVM selects and optimizes a 
hyperplane to separate data (Bhasin & Agrawal, 2020) by maximizing the margin, or the distance from the 
hyperplane to the closest data points. SVM functions that separate the data (called kernels) can either be linear or 
non-linear (Cortes & Vapnik, 1995). However, researchers stated that SVM methods that use non-linear kernels 
perform well on non-linear data such as MRI scans (Zhang et al., 2015). In SVM and other machine learning 
classifiers, cross-validation is a procedure used to test the predictive power of a classifier on data that has not been 
used in the classifier before (Wang et al., 2014). In essence, it tests to make sure a classifier can generalize well and 
does not overfit a dataset. In 𝑘𝑘-fold cross-validation, the data set is broken into 𝑘𝑘 folds, with 𝑘𝑘 − 1 folds being used 
as training data and then iterating the process 

While cross-validation validates SVM results, robust SVM classification itself relies on effective feature 
extraction. One type of feature extraction that has been used with SVMs in identifying AD and MCI is the wavelet 
transform, a type of transform that allows for the capture of both frequency and temporal information from a signal 
(Mallat, 1989). Past studies using the wavelet transform have produced promising results (Bhasin & Agrawal, 2020; 
Wang et al., 2014; Mishra and Deepthi, 2020; Jha et al., 2017). For example, (Bhasin & Agrawal, 2020) was able to 
achieve 88.34% classification accuracy for identifying MCI against cognitively normal (CN) scans. However, these 
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studies suffered from only using a few 2-D slices of MRI scans to reduce run time and then applied the 2-D wavelet 
transform to those slices, which may result in missing foci of AD (Jha et al., 2017). In addition to the 2-D wavelet 
transform applications, applications of the 3-D wavelet transform have been performed, such as (Mishra & Deepthi, 
2020), where they combined several different types of the wavelet transform such as the dual tree M-band wavelet 
transform or the stationary wavelet transform and then classified the data with an SVM classifier. Researchers also 
used the wavelet transform on 3D MRI scans followed by principal component analysis and feature fusion before 
final SVM classification (Ayaz et al., 2017). However, these procedures use all wavelet transform subbands, 
inevitably adding time to feature extraction. Subbands are created because the wavelet transform applies a low-pass 
(approximation coefficient creating) and high-pass (detail coefficient creating) filter in each dimension (Kai, n.d.). 
Figure 1 displays how subbands are created from a 3-D MRI scan. To be more specific, there are two subbands for a 
1-D signal, four for a 2-D image, and eight for a 3-D image. These subbands differ in what filters have been applied 
in each dimension, meaning the data encoded in them is different and each subband will act different in an SVM 
classifier. Although the studies have demonstrated the potential of using all the subbands in AD and MCI 
identification, the efficacy of just using some subbands for classification is a question that needs to be answered.  
 

 
Figure 1. As high-pass and low-pass filters are applied to each dimension, a 3-D MRI scan gets divided into eight 
different subbands. 
 

This study presents a machine learning solution based on selecting 3-D wavelet subband combinations of 
two and using a SVM method for classifying MRI scans as AD, MCI, or CN. By only using two subbands, the run 
time was significantly reduced while a comparable accuracy was achieved compared to past studies using all the 
subbands from the 3-D wavelet transform. 
 
Methodology 
 
Data Acquisition 
 
The ADNI database was used in this research, which consists of scans from MRI, positron emission tomography 
(PET), and other data relating to biomarkers of AD (ADNI, 2009). The objective of the database has been to test the 
utility of using these biomarkers to characterize the status and progression of MCI and AD (ADNI, 2009). The 
database has four sections: ADNI-1, ADNI-GO, ADNI-2, and ADNI-3. The ADNI-1 part of the dataset was used 
because it was the easiest to obtain due to it being well-established, with each 3-D scan from the section falling into 
three categories: AD, MCI, and CN. Only 50 scans from each category were selected due to computational 
limitations. As a result, this is a pilot study. The scans were selected by increasing numerical value of the file 
identification. 75% of these scans were used for training while 25% were used for test classification. 

Each of the MRI scans were downloaded in the NIFTI format, which stores them in an accessible manner 
by the computer. A comma separated values (CSV) spreadsheet provided by ADNI was used to move the images 
into folders based on their subject condition (AD, MCI, or CN).  

  
Image Pre-processing 
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Gray matter atrophy has been found to be responsible for MCI and AD progression (Apostolova et al., 2007). Pre-
processing also standardizes the images. (Friston et al., 1994). Thus, pre-processing via segmentation and smoothing 
to capture just the gray matter of the MRI scans is necessary. The MRI scans were segmented using the 
Computational Anatomy Toolbox 12 (CAT 12) (Rajapakse et al., 1997) toolbox of MATLAB. These programs 
segmented the MRI images into grey matter, white matter, and cerebrospinal fluid. Figure 2 shows an unmodified 
MRI and a segmented MRI, which demonstrates the differences between them. After segmentation, the grey matter 
from each MRI scan was smoothed using the Statistical Parametric Mapping 12 (SPM12) (Friston et al, 1994) 
toolbox of MATLAB. These smoothed grey matter images were then sent for feature extraction. 

 
A)                                          B) 

Figure 2. Pre-processing via SPM12 produces an MRI image without the skull and only containing gray matter: 2A) 
An unmodified MRI scan; and 2B) The MRI scan after segmentation. 
 
Feature Extraction 
 
The wavelet transform is a process by which both the frequency and time information of a signal can be captured, 
which applies well for non-stationary signals and images like MRIs (Wang et al., 2014). Types of wavelet 
transforms can be sectioned into two categories based on the orthogonality of the mother wavelet: continuous 
wavelet transform (CWT), which uses non-orthogonal mother wavelets, and discrete wavelet transform (DWT), 
which uses orthogonal mother wavelets. Since MRI scans are discrete, DWT is used in MRI classification (Bhasin & 
Agrawal, 2020). Equation 1 represents the wavelet expansion of a discrete function 𝑓𝑓(𝑥𝑥) 
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To display how the DWT performs on an MRI scan, the 2-D DWT performed on a 2-D slice of a 3-D MRI scan. 
Four subbands were generated by a low-pass or high-pass filter being performed on each of the two dimensions in 2-
D image. Each subband is represented as a two-letter key, representing what subbands are in which dimension. An 
“a” represents an approximation subband produced by a low-pass filter and a “d” represents a detail subband 
produced by a high-pass filter. Figure 2 shows the four resulting subbands after this procedure. 

 
A)                                          B)                                           C)                                        D) 

Figure 2. The visualization of the 2-D DWT performed on a model slice with all four subband patterns: 2A: 
Approximation subbands in both dimensions (aa); 2B: approximation subbands in the horizontal dimension and 
detail subbands in the vertical dimension (ad); 2C: Detail subbands in the horizontal dimension and approximation 
coefficients in the vertical dimension (da); 2D: Detail subbands in both dimensions (dd). 
 
However, the application of the DWT on 2-D slices of MRI scans is prone to missing foci of AD pathology that are 
necessary for accurate classification (Jha et al., 2017).  

The application of the 3-D DWT was the primary focus of this study for its use in feature extraction of the 
entire 3-D MRI while only using certain subband combinations. After pre-processing, each scan was taken and 
resized into a standardized size. From there, the 3-D DWT was executed using the biorthogonal 1.3 wavelet with the 
PyWavelets package (access the PyWavelets documentation at https://pywavelets.readthedocs.io/en/latest/) of 
Python 3.9.6. Different subband combinations were selected and stored for later classification. To get multiple 
information points but limit the amount of computational capacity needed to calculate the classification, each 
subband combination consisted of two of the eight possible subbands at the 3-D level, resulting in a total of 36 
subband combinations. 
 
Classification and Cross-Validation 
 
The classification of the final features in this experiment was done by a SVM classifier. Each subband combination 
was classified three separate times with the SVM. The C value, or regularization parameter, was ten in all trials, and 
the tolerance was 1 × 10−3. Since linear SVMs do not perform well on non-linear data (Zhang et al., 2015), non-
linear radial basis function (RBF) kernels were used. The test classification accuracy was recorded each time the 
subband combination was run through the SVM. The mean and standard deviation (SD) of the test accuracies for 
each subband combination were then calculated. 

The top 40% of the subband combinations by mean test accuracy were selected for cross-validation. Five-
fold cross-validation was used to validate the performance of these combinations. 

 
Results and Discussion 
 
After the 3-D DWT was performed on 150 MRI scans, the feature extracted scans were run through a SVM 
classifier with RBF kernels and C-value of 10 three times per subband combination. The test classification accuracy 
was measured for each of the three runs, and then the mean and SD of the test classification accuracies were 
calculated. Each subband is represented by a three-letter key detailing whether there is an approximation subband 
(produced by a low-pass filter) or a detail subband (produced by a high-pass filter) in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 dimensions. An 
“a” represents an approximation subband and a “d” represents a detail subband. Table 1 shows the mean and SD of 
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the test accuracy for three runs per subband combination. The minimum mean test accuracy was 75.2% and the 
maximum mean test accuracy was 95.7%. 

The top 40% of subband combinations sorted by mean test accuracy were selected for five-fold cross-
validation. Table 2 shows the mean and SD of cross-validation accuracy per subband combination, which are sorted 
by highest mean cross-validation accuracy and lowest SD. Five-fold cross-validation of the selected subband 
combinations yielded a minimum mean accuracy of 91.3% and a maximum of 97.3%. 
 
 
Table 1. The mean and SD of the test accuracy for three runs each, shown as (mean ± SD). The bolded accuracies 
were selected for cross-validation. 
 

aaa 0.855 ± 
0.030 

       

aad 0.872 ± 
0.032 

0.889 ± 
0.030 

      

ada 0.863 ± 
0.015 

0.934 ± 
0.061 

0.923 ± 
0.044 

     

add 0.752 ± 
0.074 

0.940 ± 
0.030 

0.923 ± 
0.026 

0.897 ± 
0.051 

    

daa 0.838 ± 
0.030 

0.906 ± 
0.059 

0.897 ± 
0.068 

0.897 ± 
0.051 

0.855 ± 
0.116 

   

dad 0.812 ± 
0.015 

0.940 ± 
0.015 

0.940 ± 
0.059 

0.889 ± 
0.053 

0.863 ± 
0.097 

0.940 ± 
0.030 

  

dda 0.803 ± 
0.039 

0.949 ± 
0.068 

0.949 ± 
0.026 

0.949 ± 
0.051 

0.915 ± 
0.053 

0.915 ± 
0.015 

0.923 ± 
0.027 

 

ddd 0.863 ± 
0.090 

0.957 ± 
0.053 

0.923 ± 
0.077 

0.915 ± 
0.126 

0.923 ± 
0.051 

0.906 ± 
0.065 

0.897 ± 
0.077 

0.880 ± 
0.074 

 aaa aad ada add daa dad dda ddd  
 
 
Table 2. The mean and SD of cross-validation accuracy for five-fold cross-validation, shown as (mean ± SD). 
 

Subband Combination Mean and SD of Cross-
Validation Accuracy 

aad, add 0.973 ± 0.013 
dda, dda 0.967 ± 1.1 × 10−6 
ada, add 0.960 ± 0.033 
ada, dad 0.960 ± 0.033 
aad, ada 0.953 ± 0.045 
ada, dda 0.953 ± 0.050 
ada, ddd 0.953 ± 0.050 
aad, dad 0.947 ± 0.039 
add, dda 0.947 ± 0.054 
daa, ddd 0.940 ± 0.053 
aad, dda 0.920 ± 0.068 
ada, ada 0.920 ± 0.068 
dad, dad 0.913 ± 0.016 
aad, ddd 0.913 ± 0.039 

 
This study found that the selection of only two subband patterns can still produce accurate classification. 

The maximum cross-validation classification accuracy was 97.3%, compared to the 76.0% accuracy found by Ayaz 
et al. or the 92.8% accuracy found by Sujatha Kumari et al. (Sujatha Kumari et al., 2021). This means that despite 
using less subbands and needing less computational power, this study’s procedure was able to produce better 
classification results than previous proposed methods using the 3-D DWT. These results show that the use of only a 
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few subbands in specific subband combinations may be a viable innovation to increase the efficiency of screening 
patients for AD or MCI via MRI. 

Further research is required to see if the method used in this study is applicable to larger data sets. In 
addition, it is possible the accuracy can be further increased by using a convolutional neural network (CNN) as the 
classifier. 

 
Conclusion 
 
This study finds that the use of only certain subband combinations may be a viable solution to creating a more 
efficient method of 3-D DWT on MRI scans to classify patient cognitive status as AD, MCI, or CN. The maximum 
mean test classification accuracy was 95.7% from the “aad, ddd” subband combination, and the maximum five-fold 
cross-validation accuracy was 97.3% from the “aad, add” subband combination. Despite requiring less computation 
capacity and less steps, these results were better than previous proposed procedures to screen patients for AD or 
MCI based on performing the 3D-DWT on MRI scans. This result shows that using a limited 3D-DWT subband 
method may be able to increase the efficiency of classifying patients for AD or MCI with MRI. However, this 
procedure needs to be validated on larger sample sizes of MRI scans. 
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