

Strategy Optimization in a Robot Race Using PID

Song Yue David Li1 and Jie Li#

1Westlake High School, Austin, TX, USA
#Advisor

ABSTRACT

In this paper, the proportional-integral-derivative (PID) Controller is optimized to complete a robot challenge,
The Race, by the University of Texas at Austin’s Robotics Academy. Optimization is done through three stages:
(A) optimizing the PID coefficients of both wheels; (B) optimizing the constant speed, and (C) setting the
constant speed to its maximum. Finally, the analysis proves that Method C, which yields the fastest time,
approaches the theoretical bound.

Introduction

In 2021, the University of Texas at Austin held a Robotics Academy [1] for high-school students that taught the
basics of C++, Robot Operating System (ROS), and robot movement. There was a sequence of tasks that needed
to be completed before reaching the final challenge called The Race.

The Race, meant to show attendees’ knowledge of C++ and understanding of robot automation,
consisted of a loop that had turns and straight lines. When launching the racetrack on ROS, a timer would also
appear, and when started, would begin moving the robot. The challenge was to navigate the robot on the line
without letting it drift off. The time would appear once it finished a complete lap. The best time that the academy
had recorded on simulation was 20 seconds, but the time they wanted the students to achieve was anywhere
under 30 seconds.

This paper discusses how to optimize the algorithm, tactics, and parameters of the proportional-
integral-derivative (PID) Controller [2], to achieve the fastest possible time. With a limited number of attempts,
the constant speed (𝑆𝑆𝑐𝑐), proportion (𝐾𝐾𝑝𝑝), derivative (𝐾𝐾𝑑𝑑) and integral (𝐾𝐾𝑖𝑖) were developed to achieve the target
of the fastest time in one lap.

The organization of this paper is as follows. The model is introduced in Section II, optimization process
in Section III, analysis in Section IV, and conclusion in Section V.

Model Description

When ROS launches the racetrack from the Texas Robotics Academy repository, this circuit map of the Race
is shown like in Figure 1.

Volume 11 Issue 2 (2022)

ISSN: 2167-1907 www.JSR.org 1

Figure 1. Circuit map of the Race.

As shown above, the robot starts at the center of the simulation and must travel around the track. The
time will be recorded once the robot returns to its starting point. The only tools that are given to the robot are
an array of line detecting sensors. There are a total of eight sensors and these sensors output a number in respect
to if the line is beneath the sensor, as shown in Figure 2.

Figure 2. Analyzing the outputs from line sensors.

At the starting position, the 4th sensor on the robot outputs the highest value, and when the robot is
moved around, the highest number will change between the sensors. Using this information, the location of the

Volume 11 Issue 2 (2022)

ISSN: 2167-1907 www.JSR.org 2

robot relative to the line can be found, in an index of 0 to 7. For the challenge, the index needs to be changed
so that it is within -1 and 1. This can be done through the function, f(index) = (index - 3.5) / 3.5.

Therefore, if the robot has drifted all the way to the right, then the final output will be -1, and when all
the way to the left, will output a 1. Shown in Figure 3.

Figure 3. Scaling the output.

The number on the second line of this LCD screen represents the threshold used to pick out the largest
number in the array of outputs of the sensors, as shown in Figure 4.

Figure 4. Finding the threshold to identify the location of the line.

The goal of this challenge is to make it completely automated. The way the robot moves is by giving
the left and right wheel a speed within -100 and 100. Exceeding the value will result in an error and the robot
will cap the speed at 100.

To call the robot to move, the following declaration should be used:
bot.move(leftSpeed, rightSpeed);

Volume 11 Issue 2 (2022)

ISSN: 2167-1907 www.JSR.org 3

If the speed of the left wheel is the same as the right, then the robot will move forward at a constant
speed. Similarly, if the right moves faster than the left, or vice versa, the robot will turn in an arc. Only when
the wheel speed of one side is the exact negative of the other, will the robot turn in place. An example is shown
in Table 1.
Table 1. Example of robot movement as a function of left and right wheel speeds.

Left Wheel Speed Right Wheel Speed Robot Movement
100 100 Forward at full speed
-100 -100 Backward at full speed
100 0 Turning to the right, while creating the smallest arc
0 100 Turning to the left, while creating the smallest arc
100 -100 Turning in place to the right at full speed
-100 100 Turning to the left at full speed

A PID loop was intended to autonomously move the robot across the track. The declaration looks like

this:
bot.move(𝑆𝑆𝑐𝑐 + (numP * 𝐾𝐾𝑝𝑝+ numI * 𝐾𝐾𝑖𝑖+ numD * 𝐾𝐾𝑑𝑑),
 𝑆𝑆𝑐𝑐 - (numP * 𝐾𝐾𝑝𝑝+ numI * 𝐾𝐾𝑖𝑖 + numD * 𝐾𝐾𝑑𝑑));
where
numP is the error from the robot’s current position;
numI is the total amount of accumulated error;
numD is the difference between the previous and current error, and
𝐾𝐾𝑝𝑝, 𝐾𝐾𝑖𝑖 , and 𝐾𝐾𝑑𝑑 are coefficients that need to be manually adjusted. 𝑆𝑆𝑐𝑐 represents the constant speed that the robot
will move at, and the PID term is either added or subtracted to 𝑆𝑆𝑐𝑐 so that the robot turns on the track.

Optimization Process

Three methods are presented to improve the PID coefficients step by step.

A. Optimize the PID Value to Both Left and Right Wheels

Starting with 𝑆𝑆𝑐𝑐 = 50, the robot moves very slowly, and is therefore very easy to calculate 𝐾𝐾𝑝𝑝, 𝐾𝐾𝑖𝑖, and 𝐾𝐾𝑑𝑑.
To get the PID coefficients, it is best to set 𝐾𝐾𝑖𝑖 and 𝐾𝐾𝑑𝑑 to 0 and adjust 𝐾𝐾𝑝𝑝 until the robot moves without
undulation. Using 50, 25, 0.001, and 5 for 𝑆𝑆𝑐𝑐, 𝐾𝐾𝑝𝑝, 𝐾𝐾𝑖𝑖 , and 𝐾𝐾𝑑𝑑, respectively, the robot successfully moves along
the track with ease. However, these numbers resulted in the time of 36 seconds, which did not get under the
goal time of the challenge. The key factor limiting the speed is 𝑆𝑆𝑐𝑐, so the next step is to increase 𝑆𝑆𝑐𝑐, and repeat
the steps to find 𝐾𝐾𝑝𝑝, 𝐾𝐾𝑖𝑖, and 𝐾𝐾𝑑𝑑. At 𝑆𝑆𝑐𝑐 = 65, the fastest time possible is around 27 seconds and when 𝑆𝑆𝑐𝑐 = 68,
approximately 26 seconds. However, further increasing 𝑆𝑆𝑐𝑐 would cause the robot to drift off the track.
A huge factor affecting the performance is the use of 𝐾𝐾𝑖𝑖. 𝐾𝐾𝑖𝑖 is important in keeping the robot smooth during
straight lines. Since there are 8 sensors on the robot, and they’re scaled to be between -1 and 1, the value of
numP can never be 0, which is the ideal output when the robot is exactly centered on the line. The array of
numP looks like this:
-1.00, -0.71, -0.42, -0.14, 0.14, 0.42, 0.71, 1.00

This means that when the robot is moving on a straight line, numP toggles between -0.14 and 0.14,
which is a major obstacle to a fast time. The integral aspect of PID and 𝐾𝐾𝑖𝑖 help to smooth the trajectory of the
robot and improve the time.

Volume 11 Issue 2 (2022)

ISSN: 2167-1907 www.JSR.org 4

Although this is an impressive feat, but the fastest time recorded was 20 seconds. So, there were further
improvements needed to be made.

B. Optimize the Constant Speed, 𝐒𝐒𝐜𝐜

The problem with Method A is that there is too much momentum when the robot hits a curve, causing it to slide
off the track. To compensate for the momentum, one would naturally increase 𝐾𝐾𝑝𝑝, but this does not work. That
is because the speeds for the left and right wheels cannot exceed 100, which becomes a problem when the robot
is on the peak of the curve and num is equal to -1 or 1. This is shown in Figure 5.

 Coefficient of Proportional, 𝐾𝐾𝑝𝑝
Figure 5. Graph of 𝑆𝑆𝑐𝑐 in relation to 𝐾𝐾𝑝𝑝 .

Given the formulas of the left and right wheel speed as
 𝑆𝑆𝑐𝑐+ (numP * 𝐾𝐾𝑝𝑝 + numI * 𝐾𝐾𝑖𝑖 + numD * 𝐾𝐾𝑑𝑑), and
 𝑆𝑆𝑐𝑐 - (numP * 𝐾𝐾𝑝𝑝 + numI * 𝐾𝐾𝑖𝑖 + numD * 𝐾𝐾𝑑𝑑), respectively,
if 𝐾𝐾𝑝𝑝+ 𝑆𝑆𝑐𝑐 > 100, ROS reports an error, and the robot does not move as intended. This explains why the maximum
𝑆𝑆𝑐𝑐 that works for the method A is around 68 to 70. To compensate for this limitation, 𝑆𝑆𝑐𝑐 should also be changed
according to numP so that 𝐾𝐾𝑝𝑝 is not the only factor changing the wheel speeds. Since there are absolute values
of numP, ignoring the negative or positive, four different values of 𝑆𝑆𝑐𝑐 should be used, relative to its position on
the line. The improved algorithm is indicated as following pseudo-code:

if (numP < 0.2 && numP > -0.2) { 𝑆𝑆𝑐𝑐 =75; 𝐾𝐾𝑝𝑝=28; 𝐾𝐾𝑑𝑑=12; 𝐾𝐾𝑖𝑖=0.002;}
else if (numP < 0.5 && numP > -0.5) { 𝑆𝑆𝑐𝑐 =71; 𝐾𝐾𝑝𝑝=34; 𝐾𝐾𝑑𝑑=17; 𝐾𝐾𝑖𝑖=0.001;}
else if (numP < 1 && numP > -1) { 𝑆𝑆𝑐𝑐 =65; 𝐾𝐾𝑝𝑝=36; 𝐾𝐾𝑑𝑑=20; 𝐾𝐾𝑖𝑖=0.001;}
else { 𝑆𝑆𝑐𝑐 =60; 𝐾𝐾𝑝𝑝=36; 𝐾𝐾𝑑𝑑=24; 𝐾𝐾𝑖𝑖=0.000;}

𝑆𝑆𝑐𝑐 decreases as the |numP|>>0, which allows the robot to slow down on turns, increasing stability and

consistency. Another important observation is that 𝐾𝐾𝑝𝑝 needs to be changed exponentially, while the 𝑆𝑆𝑐𝑐 and
𝐾𝐾𝑑𝑑 need to be changed linearly. 𝐾𝐾𝑝𝑝 is changed exponentially to allow the robot to make smoother turns.
Otherwise, the behavior of the robot seems shaky, and it flies off the track.

Like Method A, increasing 𝑆𝑆𝑐𝑐 at each threshold decreases the accuracy. The time achieved with this
method is 25 seconds, and sometimes even 24 seconds.

C. Optimize by Setting 𝐒𝐒𝐜𝐜 = 100

Co
ns

ta
nt

 sp
ee

d,
 𝑆𝑆
𝑐𝑐

Co

ns
ta

nt
 S

pe
ed

, 𝑆𝑆
𝑐𝑐

Volume 11 Issue 2 (2022)

ISSN: 2167-1907 www.JSR.org 5

The previous two methods have achieved impressive time, but they are still far from the fastest record. The
problem is that the speed of the left and right wheel revolves around 𝑆𝑆𝑐𝑐; one increases and another decreases.
In fact, the robot can turn as long as the two wheels have different speed. To achieve the fastest time, one wheel
must be 100. Therefore, the improved algorithm is as follows:

if (right turn)
bot.move(100, 100 - (numP * 𝐾𝐾𝑝𝑝 + numI * 𝐾𝐾𝑖𝑖 + numD * 𝐾𝐾𝑑𝑑));
else if (left turn)
bot.move(100 + (numP * 𝐾𝐾𝑝𝑝+ numI * 𝐾𝐾𝑖𝑖 + numD * 𝐾𝐾𝑑𝑑), 100));

While 𝐾𝐾𝑝𝑝, 𝐾𝐾𝑖𝑖, and 𝐾𝐾𝑑𝑑 are fixed during the entire race, it would be more efficient to integrate the if-else

statement from Method B to this method. This allows joint optimization for increasing consistency and stability
on turns. The final optimal algorithm is as follows:

Let pid = numP * 𝐾𝐾𝑝𝑝+ numI * 𝐾𝐾𝑖𝑖 + numD * 𝐾𝐾𝑑𝑑;
if (numP < 0.2 && numP > -0.2) {𝐾𝐾𝑝𝑝=30; 𝐾𝐾𝑑𝑑=10; 𝐾𝐾𝑖𝑖 =0.002;
if(numP > 0) bot.move(100, 100 - pid);
else bot.move(100 + pid, 100); }
if (numP < 0.5 && numP > -0.5) { 𝐾𝐾𝑝𝑝=42.5; 𝐾𝐾𝑑𝑑=13; 𝐾𝐾𝑖𝑖 =0.001;
if(numP > 0) bot.move(100, 100 - pid);
else bot.move(100 + pid, 100); }
if (numP < 1 && numP > -1) {𝐾𝐾𝑝𝑝=55.5; 𝐾𝐾𝑑𝑑=15; 𝐾𝐾𝑖𝑖 =0.001;
if(numP > 0) bot.move(100, 100 - pid);
else bot.move(100 + pid, 100); }
else {𝐾𝐾𝑝𝑝=71; 𝐾𝐾𝑑𝑑=18; 𝐾𝐾𝑖𝑖 =0.000;
if(numP > 0) bot.move(100, 100 - pid);
else bot.move(100 + pid, 100); }

Notice that if statements are used rather than if-else statements. By doing this, the turns are smoother

because the 𝐾𝐾𝑝𝑝 values are gradually changed within each while loop.
Finally, the record of 20 seconds was achieved. However, as 𝑆𝑆𝑐𝑐 increases, there are more chances that

the robot is out of the track. Through this observation, it makes sense that the fastest time of 20 seconds is
achieved around 10% of the experiments, 21 seconds is achieved around 20% of the experiments, and the other
experiments are incomplete. The problem is caused by the even number of sensors which makes numP=0
impossible, along with inconsistencies in the simulation.

Results and Discussion

The distance and speed are obtained through the simulation to calculate time. Assume the track is scaled so that
each grid square is exactly one square inch, then the total distance of the track, along with the speed of the robot
can be measured as shown in Figure 6, while assuming that the turns are arcs.

Volume 11 Issue 2 (2022)

ISSN: 2167-1907 www.JSR.org 6

Figure 6. Calculation for optimal time.

It is measured that the robot travels about “1 inch in 1.0 seconds” when the power of the left and right
wheels is at the max speed of 100, excluding its acceleration. There is a total of approximately 17.97 inches of
track. If the track is unraveled into a straight line, and the wheels maintain a constant speed, the robot would
take approximately 18.04 seconds. However, the fastest time achieved in the experiment is 20 seconds. This is
because multiple turns on the track force one of the wheels to slow down and therefore it takes more time to
travel the arc than to travel the straight line.

To calculate the optimal time, 𝑇𝑇𝑜𝑜𝑝𝑝𝑜𝑜 , with the turns (refer to Equation 1), the arc length, 𝐿𝐿�, needs to be
found by measuring the radius and arc degrees, and the relative speed, 𝑉𝑉,��� is averaged from the left and right
wheels.
𝑇𝑇𝑜𝑜𝑝𝑝𝑜𝑜 = 𝐿𝐿�(𝑖𝑖𝑛𝑛) × 1(𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑛𝑛�) × 100

 𝑉𝑉�
 (1)

For example, on arc 1, when the left and right wheel speeds are 100 and 83, it is measured that the
robot completes a 75º arc, with a radius of 2.10 inches, so 𝐿𝐿� = 2.75 𝑖𝑖𝑛𝑛, and 𝑉𝑉� = 91.5. After substituting into
(1), 𝑇𝑇𝑜𝑜𝑝𝑝𝑜𝑜 = 3.0 𝑠𝑠𝑠𝑠𝑠𝑠. The estimated optimal time on all arcs are shown in Table 2.

Table 2. Estimated optimal time on arcs.

Arc
Index

Radius
(Inch)

Speed
(Left/Right)

Arc
Degree

𝑇𝑇𝑜𝑜𝑝𝑝𝑜𝑜 (sec)

1 2.10 100/83 75º 3.00
2 1.25 100/75 75º 1.87
3 0.50 100/45 90º 1.08
4 0.70 100/59 90º 1.38
5&6 0.30 100/29 180º 1.46

Volume 11 Issue 2 (2022)

ISSN: 2167-1907 www.JSR.org 7

Therefore, the total time on the arcs is 10.25 seconds. Adding the time for the straight lines (9.89
seconds), the total estimated time of the track is 20.14 seconds. This number is treated as the theoretical
(calculated) bound of the optimal (fastest) time.

The above analysis proves that the record time is close the optimal time, and that the optimal methods
we proposed for PID controller yields the fastest results in The Race game.

Conclusion

Through lots of experiments and tuning, the goal of getting the record time of The Race game has been achieved
through optimizing the coefficients of the PID controller to achieve the fastest speed. The method is to adjust
only one of the wheels to account for turns. The coefficients for the PID controller, especially 𝐾𝐾𝑖𝑖, have been
specifically optimized step by step to improve the performance. The experiments and analysis prove that the
fastest time of The Race game is about 20 seconds, and this is the fastest time possible to achieve.

Researchers not limited to robotics, who need to fine-tune the PID coefficients to optimize their
performance, can refer to the methods and steps presented in this paper.

Acknowledgments

I would like to express my gratitude to the University of Texas at Austin for their excellent robotics camp and
the student counselors who guided me through the project. I would like to express my upmost appreciation to
Dr. Jie Li, who encouraged my research and taught me PID. His insight and collaboration offered this project
the best results. I would also like to thank my entire family, including my dog, Ryzen, for their sponsorship and
encouragement over the project.

References

[1] University of Texas at Austin Robotics Academy 2021, https://www.cs.utexas.edu/outreach/academies
[2] PID Controller, Wikipedia, https://en.wikipedia.org/wiki/PID_controller

Volume 11 Issue 2 (2022)

ISSN: 2167-1907 www.JSR.org 8

https://www.cs.utexas.edu/outreach/academies
https://en.wikipedia.org/wiki/PID_controller

