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ABSTRACT 

Machine learning is the field of computer science that uses data to make predictions and decisions. The problem we 
consider in this article belongs to the class known as supervised learning and the technique we use is logistic regres-
sion. After explaining supervised learning and logistic regression, we use a data set to develop a computational model 
able to give a diabetes diagnosis to patients. We discuss the accuracy of the model developed.  

Introduction 

Machine learning, also known as artificial intelligence, is a field of computer science that uses data to make predictions 
and decisions [1,2,3,4]. Machine learning has found applications in numerous fields. Examples include applications 
in the medical field, where machine learning is used for the diagnosis of diseases, such as heart disease, diabetes and 
pneumonia; applications in the banking business, where machine learning is used to make decisions on loan applica-
tions; applications to the real estate business, where machine learning is used to price real estate; applications to self-
driving cars, where machine learning is at the core of the software used by self-driving cars; machines experts in 
playing chess; robots that can carry out numerous tasks.  

Diabetes is a serious and debilitating chronic disease. It is becoming very common in the developed world. 
Thus, the efficient and early diagnosis of diabetes is very important, as changes in lifestyle, that includes changes in 
diet, increase of exercise, and use of medication when appropriate, can have an impact on the outcome of patients with 
diabetes, especially if these adjustments in lifestyle are implemented early, in the onset of the disease.  

In this article, we use machine learning to develop a computational model to diagnose diabetes. The compu-
tational model is built using a data set that we obtained from the website Kaggle [5]. This is a website that has a large 
collection of data sets, available to the public, that can be used to develop machine learning models. 

This article is organized as follows. We first explain what supervised learning is. This is a class of problems 
within the larger class of problems of machine learning. Our diabetes example belongs to this category of supervised 
learning. We explain the structure of the data sets in supervised learning problems, and explain the concept of exam-
ples, features and labels. We explain these concepts in general, as well as in our diabetes data set. Next, we explain 
what logistic regression models are. This is the class of models we use to diagnose diabetes. We explain the notion of 
parameters, training set, error on a set of examples, and how the parameters are selected by minimizing the error on 
the training set. We finish this article illustrating the concepts explained by developing a model to diagnose diabetes 
and we discuss the accuracy of the model on a set of examples that are not part of the training set. This set is called 
the validation set. We finish the article with a small discussion.   

Methods 

Supervised learning and the data set 
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The specific problem we address is the diagnosis of diabetes. Our data set consists of information about several pa-
tients. The information about each patient is: if the patient has high blood pressure or not; if the patient has high 
cholesterol or not; the body mass index of the patient; if the patient is a smoker or not; if the patient has heart disease 
or not; if the patient is physically active or not; if the patient eats fruits or not; if the patient eats vegetables or not; if 
the patient consumes a large amount of alcohol or not; the general health of the patient (a number between 1 and 5); 
the sex of the patient; the age of the patient; as well as whether the patient has diabetes or not. Part of this data set is 
illustrated in Table 1. The entries in the first row are abbreviations of the information in that column. They have the 
following meaning:  
 

1. The entry in the column HBP has a 1 if the patient has high blood pressure and a 0 if the patient does not 
have high blood pressure. 

2. The entry in the column HCH has a 1 if the patient has high cholesterol and a 0 if the patient does not have 
high cholesterol. 

3. The entry in the column BMI has the body mass index of the patient. 
4. The entry in the column Smo has a 1 if the patient smokes and a 0 otherwise. 
5. The entry in the column HD has a 1 if the patient has heart disease and a 0 otherwise. 
6. The entry in the column PA has a 1 if the patient is physically active and a 0 otherwise. 
7. The entry in the column EF has a 1 if the patient eats at least one fruit per day and has a 0 otherwise. 
8. The entry in the column EV has a 1 if the patient eats at least one serving of vegetables per day and has a 0 

otherwise. 
9. The entry in the column Alc has a 1 if the patient consumes at least 14 glasses of alcohol per week and a 0 

otherwise. 
10. The entry in the column Hea rates the general health of the patient from 1 = poor to 5 = excellent. 
11. The entry in the column Sex has a 1 if the patient is male and a 0 is the patient is a female. 
12. The entry in the column Age has the age transformed to a number between 1 and 13, where 1 means the age 

of the patient is between 18 and 24, 9 means the age of the patient is between 60 and 64 and 13 means the 
patient is 80 years old or older. 

13. The entry in the column Dia is 1 if the patient has diabetes or 0 if the patient does not have diabetes.  
 
In Table 1 we show the information about only two patients, but our dataset contains information about 70692 patients. 
  
 

HBP HCH BMI Smo HD PA EF EV Alc Hea Sex Age Dia 

1 0 26 0 0 1 0 1 0 3 1 4 0 

1 1 25 0 1 1 1 0 0 2 0 9 1 

 
Table 1. Data of two of the examples in our data set. 
 

The problem we consider in this article belongs to the class of problems known as supervised learning. A 
first characteristic of this class of problems is that the data set consists of information about a collection of units. In 
our data set, the units are the patients. In the language of machine learning, the units are called examples. Thus, the 
examples are the patients in our data set. 
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A second characteristic about supervised learning problems is that the information the data set contains about 
each example is of two types: the label or target variable, and the features. The label is what we eventually want to 
predict for examples that are not in our data set. In the data set we consider; this information is whether the patient 
has diabetes or not. The rest of the information about each example are called features. Thus, in our data set, the 
features are the information stored in the columns HBP, HCH, BMI, Smo, HD, PA, EF, EV, Alc, Hea, Sex and Age.  

The objective of the rest of this article is to use the data set of the patients to develop a computational model 
that can predict if a new patient, not in the data set we use to develop the model, has diabetes. To make its prediction, 
we need to provide the model with the features of the patient. In the rest of the article we will explain the theory behind 
the development of the model as well as the results we obtain. 
 
Binary Classification Problem 
 
Each patient either has diabetes or not. In other words, the label takes one of two values: 1 if the patient has diabetes 
and 0 otherwise. Problems where the label takes one of two possible values are known as binary classification prob-
lems. We say that each example belongs to one of two categories, according to the value of its label. One of the 
categories is identified with the number 0 and the other with the number 1. We call the categories category 0 and 
category 1, respectively.  In our case, 1 means the patient has diabetes and 0 means the patient does not have diabetes.  

A model for binary classification problems is a function that takes as input the features of an example and 
gives as output a number between 0 and 1. As is the common practice, we denoted this number by 𝑦𝑦�. As it will be 
explained soon, 𝑦𝑦� is a prediction of the label of the example. Note that  𝑦𝑦� is a function of the features of the example. 
In our case, each example has 12 features. We denote these features by 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥12 and the meaning of the features 
are as in the columns of Table 1. Thus, given a patient, 𝑥𝑥1 = 1 if the patient has high blood pressure, but 𝑥𝑥1 = 0 if the 
patient does not have high blood pressure. Similarly, 𝑥𝑥2 = 1 if the patient has high cholesterol, but 𝑥𝑥2 = 0 if the 
patient does not have high cholesterol. The meaning of the other features, 𝑥𝑥3, . . . , 𝑥𝑥12 , is explained similarly from 
Table 1. Since  𝑦𝑦� is a function of the features, we write 𝑦𝑦� = 𝑦𝑦�(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥12). The prediction of the model is that the 
example with features 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥12 belongs to the category 1 if 𝑦𝑦�(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥12) > 0.5 or to the category 0 if 
𝑦𝑦�(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥12) < 0.5.  
 

We have not explained how the function 𝑦𝑦�(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥12) is selected. We will do so in subsequent sections. For 
now, consider the following example. Assume that a patient has the following features:   
 

1. 𝑥𝑥1 = 1 (the patient has high blood pressure)  
2. 𝑥𝑥2 = 0 (the patient does not have high cholesterol) 
3. 𝑥𝑥3 = 24 (the patient has a body mass index of 24) 
4. 𝑥𝑥4 = 0 (the patient does not smoke) 
5. 𝑥𝑥5 = 0 (the patient does not have heart disease) 
6.  𝑥𝑥6 = 1 (the patient is physically active) 
7. 𝑥𝑥7 = 0 (the patient does not eat a fruit per day) 
8. 𝑥𝑥8 = 1 (the patient eats at least one serving of vegetable per day) 
9. 𝑥𝑥9 = 0 (the patient does not consume 14 glasses of alcohol per week) 
10.  𝑥𝑥10 = 5 (the patient is in excellent health) 
11. 𝑥𝑥11 = 0 (the patient is female)  
12. 𝑥𝑥12 = 13 (the patient is older than 80 years old)  

Assume that when feed to the model these features, the output is 0.2, i.e. 𝑦𝑦�(1,0,24,0,0,1,0,1,0,5,13) = 0.2. This means 
that the model predicts that the patient does not have diabetes. In the next sections, we describe how the function 
𝑦𝑦�(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥12) is constructed. 
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Logistic regression 
 
Logistic regression is a machine learning technique that is used to develop models in binary classification problems. 
This is the technique that we use in this article and we explain in this section. We first need to explain what the sigmoid 
function is. 
 
The sigmoid function is the function  
 

𝜎𝜎(𝑥𝑥)  =  
1

1 + 𝑒𝑒−𝑥𝑥
. 

 
The graph of the sigmoid function is displayed in Figure 1. 
 

 
                                                        Figure 1. Plot of the graph of the sigmoid function. 
 
The important properties of the sigmoid function are:  
 

1. 0 < 𝜎𝜎(𝑥𝑥) < 1 for all 𝑥𝑥. 
2. 𝜎𝜎(𝑥𝑥) is an increasing function of 𝑥𝑥. 
3. 𝜎𝜎(𝑥𝑥) becomes arbitrarily close to 0 as 𝑥𝑥 becomes large in absolute value but negative. 
4. 𝜎𝜎(𝑥𝑥) becomes arbitrarily close to 1 as 𝑥𝑥 increases. 
5. 𝜎𝜎(0) = 0.5. 

 
In the rest of this article, we assume that each example has 12 features, even when we talk in general terms, not 

just referring to our diabetes problem. Logistic regression is a machine learning technique that assumes the prediction 
of the label to have the functional form 
 

𝑦𝑦� = 𝑦𝑦�(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥12) = 𝜎𝜎(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2+. . . +𝑤𝑤12𝑥𝑥12 + 𝑏𝑏), 
 

where as before, 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥12 are the features of the examples, but 𝑤𝑤1,𝑤𝑤2, . . . ,𝑤𝑤12, 𝑏𝑏 are some numbers 
known as parameters. Note that we have not explained how the parameters are to be selected. We will get to that in 
subsequent sections. For now, note that the model is determined by the parameters. If we change the parameters, the 
model changes and thus, the predictions made by the model.   
 

As an example, assume that the parameters are:  𝑤𝑤1 = 0.2, 𝑤𝑤2 = 0.1, 𝑤𝑤3 = −0.01, 𝑤𝑤4 = 0.1, 𝑤𝑤5 = 0.02, 
𝑤𝑤6 = −0.1, 𝑤𝑤7 = 0, 𝑤𝑤8 = −0.2, 𝑤𝑤9 = 0, 𝑤𝑤10 = −0.02, 𝑤𝑤11 = 0, 𝑤𝑤12 = 0 and 𝑏𝑏 = 0;  and the features are 𝑥𝑥1 = 1, 

Volume 11 Issue 1 (2022) 

ISSN: 2167-1907 www.JSR.org 4



𝑥𝑥2 = 0, 𝑥𝑥3 = 24,  𝑥𝑥4 = 0, 𝑥𝑥5 = 0, 𝑥𝑥6 = 1, 𝑥𝑥7 = 0, 𝑥𝑥8 = 1, 𝑥𝑥9 = 0, 𝑥𝑥10 = 5, 𝑥𝑥11 = 0 and  𝑥𝑥12 = 13. The model 
predicts  
 

𝑦𝑦� = 𝜎𝜎(0.2(1) + 0.1(0) − 0.01(24) + 0.1(0) + 0.02(0) − 0.1(1) + 0(0) − 0.2(1) + 0(0) 
       −0.2(1) + 0(0) − 0.02(5) + 0(0) + 0(13) + 0)  = 0.39 
 
and thus, the model predicts that this patient does not have diabetes. In the next section we explain how the parameters 
𝑤𝑤1,𝑤𝑤2, . . . ,𝑤𝑤12, 𝑏𝑏 are selected. 
 
Binary cross entropy error 
 
Assume that the features of an example are 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥12. Assume that we know the label of that example and this 
label is 𝑦𝑦. Note that 𝑦𝑦 is either 1 or 0. On the other hand, our model predicts the label of this example to be 𝑦𝑦�. Note 
that 0 < 𝑦𝑦� < 1. The binary cross entropy error on this example is defined to be  
 

 𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦, 𝑦𝑦�) =  −(𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙 ( 𝑦𝑦�) + (1 − 𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 (1 −  𝑦𝑦�)) 
 

While we will not go into the details of the binary cross entropy error, we list here its properties that are most 
relevant to us: 
 

1. 𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦, 𝑦𝑦�) ≥ 0. 
2. If  𝑦𝑦� = 𝑦𝑦, then 𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦,𝑦𝑦�) = 0. 
3. The closer  𝑦𝑦� is to 𝑦𝑦, the smaller 𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦,𝑦𝑦�) is. 

 
For the reasons listed above, 𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦,𝑦𝑦�) is a measure of the difference between 𝑦𝑦 and  𝑦𝑦�. Thus, 𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦,𝑦𝑦�)  can 

be considered as a measure of the error the model makes in predicting the label of the example. For example, assume 
that 𝑦𝑦 = 1 and  𝑦𝑦� = 0.7, then  
 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦,𝑦𝑦�) =  𝐵𝐵𝐵𝐵𝐵𝐵(1, 0.7) =  − 𝑙𝑙𝑙𝑙𝑙𝑙 (0.7) = 0.15.  
 
On the other hand, if 𝑦𝑦 = 1 and  𝑦𝑦� = 0.9, then  
 
𝐵𝐵𝐵𝐵𝐸𝐸(𝑦𝑦, 𝑦𝑦�) = 𝐵𝐵𝐵𝐵𝐵𝐵(1, 0.9) =  − 𝑙𝑙𝑙𝑙𝑙𝑙 (0.9) = 0.05. 
 
We see that the better prediction of  𝑦𝑦� = 0.9 gave the smaller cross entropy error. 
 

The mean binary cross entropy error on a set of examples, is the average of the binary cross entropy errors 
on the examples in the set. We illustrate this with the help of Table 2, where we display the labels 𝑦𝑦, the predicted 
labels 𝑦𝑦� and the binary cross entropy errors 𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦, 𝑦𝑦�) of three examples. We also show the average of those errors, 
which is the mean binary cross entropy error on this set of three examples. 
 

𝑦𝑦  𝑦𝑦� 𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦, 𝑦𝑦�) 

1 0.9 0.05 

0 0.2 0.1 
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0 0.1 0.05 

Mean 𝐵𝐵𝐵𝐵𝐵𝐵(𝑦𝑦, 𝑦𝑦�)  0.67 

 
Table 2. Binary cross entropy errors of three examples and the mean binary cross entropy error on the set of these 
three examples together. 
 
Training and validation set  
 
The examples on the data set given to us to develop the model are split into two sets: the set of training examples, or 
the training set, and the set of validation examples, or the validation set. As is common practice, our training set will 
contain 75% of the examples and thus, our validation set will contain 25% of the examples. This split is done randomly. 
In other words, given an example in our original data set, the probability that this example will belong to the training 
set after the split is 75%. Note that we have both the features and the labels of the examples in both the training and 
the validation set. The reason for this split is described in later sections. 
 

Results 
 
Selection of the parameters 
 
Note that this binary cross entropy error on the training set depends not only on the values of the features and labels 
of the examples in the training set, but also on the parameters 𝑤𝑤1,𝑤𝑤2, . . . ,𝑤𝑤12, 𝑏𝑏. If we change those parameters (keep-
ing the training set the same), the binary cross entropy error also changes.  

In logistic regression, the parameters that are selected are those that make the mean binary cross entropy error 
on the training set as small as possible. We will not go into any details on the algorithms used to find those parameters. 
In practice, these parameters are usually found using software libraries that are available to be used by the public at 
no cost. 

To illustrate the above discussion, consider Table 3, where we show a training set with only six training 
examples. Each example has only one feature, so this Table is unrelated to the diabetes data set we consider in this 
paper, where each example has 12 features. In that table, MBCE means the mean binary cross entropy error. Note that, 
with the parameters 𝑤𝑤 = 1 and 𝑏𝑏 = 0, the mean binary cross entropy error is 4.56. On the other hand, with the param-
eters 𝑤𝑤 = 3.83 and 𝑏𝑏 = −0.89, the mean binary cross entropy error is 0.33. This means that the model with the 
parameters 𝑤𝑤 = 3.83 and 𝑏𝑏 = −0.89 is better than the model with the parameters 𝑤𝑤 = 1 and 𝑏𝑏 = 0. This is evident 
by looking at the column with the predictions 𝑦𝑦� from each model. In fact, the parameters 𝑤𝑤 = 3.83 and 𝑏𝑏 = −0.89 
gives the smallest mean binary cross entropy error, i.e. a model with other parameters gives a larger mean binary cross 
entropy error. Note also that we have not, and will not, explained how these optimal parameters, 𝑤𝑤 = 3.83 and 𝑏𝑏 =
−0.89 are found. We only mention that we use the library Keras to find these optimal parameters. 
 

𝑥𝑥 = feature 𝑦𝑦 = feature  𝑦𝑦� = predicted label with  𝑤𝑤 = 1 
and  𝑏𝑏 = 0 

 𝑦𝑦� = predicted label with  𝑤𝑤 = 3.83 and 
 𝑏𝑏 = −0.89 

-1 0 0.27 0.01 

-0.8 0 0.31 0.02 
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0.2 1 0.55 0.47 

0.4 0 0.60 0.66 

0.8 1 0.69 0.90 

1 1 0.73 0.95 

MBCE  4.56 0.33 

  
Table 3. Example that illustrates that the parameters that lead to the smallest possible mean cross entropy error leads 
to better predictions. 

We now go back to our diabetes data set. We used the corresponding training set to find the optimal param-
eters, i.e. the parameters that minimize the mean binary cross entropy error on the training set. We find the optimal 
parameters to be the ones that we list in Table 4 
 

𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12 𝑏𝑏 

0.76 0.60 0.08 0.02 0.31 -0.06 -0.06 -0.12 -0.81 0.60 0.20 0.17 -6.18 

  
Table 4. Optimal parameters  
 
Validation set and accuracy 
 
The validation set is used to evaluate how good the model is. The validation set was not used in the development of 
the model; thus, the validation set gives an accurate prediction of how well the model will work on new examples, 
these are examples where the label is not known. The accuracy of the model is defined as the number of correct pre-
dictions of the model on the examples in the validation set, divided by the number of examples in the validation set. 
This number gives the expected percentage of times that our model will give the right prediction. We obtained: 
 
Accuracy on the validation set =  0.74. 
 
Thus, our model is expected to give the correct diagnoses 74% of the time. 
 

Discussion 
 
In this article we gave an overview of supervised learning and logistic regression. We applied these concepts and 
techniques to a data set of patients and we developed a model to diagnose diabetes. We find that our model is %74, 
which is certainly much better than just guessing, which would be %50, but not satisfactory enough for the model to 
be the sole diagnosis tool. To improve the accuracy of the model we propose to explore more complex types of models, 
such as neural networks, and/or include more features. These research directions will be pursued in the future and 
reported in a future article.  
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Conclusion 
 
In conclusion, we can say that machine learning techniques can be used to diagnose or predict the risk of patients of 
developing diseases such as diabetes. This promises to be a very valuable tool that can help in the prevention of 
diseases and in lowering the cost of health care. 

 
Limitations 
 
While promising, the calculations in this article have their limitations. These limitations are likely to be due to the fact 
that we have used logistic regression instead of the more complex technique on neural networks.  
 
Acknowledgements 
 
I would like to thank my mentor, Guillermo H. Goldsztein, Ph. D., Professor, School of Mathematics, Georgia Institute 
of Technology, for his guidance with this project.  
 
 

References 
 
[1] Ethem Alpaydin. 2010. Introduction to Machine Learning (2nd ed.). MIT Press. 

 

[2] Andreas C. Müller, Sarah Guido, 2016. Introduction to Machine Learning with Python. O'Reilly Media, Inc. 

 

[3] Mehryar Mohri, Afshin Rostamizadeh and Ameet Talwalkar, 2018, Foundations of Machine Learning (2nd ed.).  

MIT Press. 

 

[4] Kevin P. Murphy, 2012, Machine Learning A Probabilistic Perspective, MIT Press. 

 

[5]https://www.kaggle.com/alexteboul/diabetes-health-indicators-

dataset?select=diabetes_binary_5050split_health_indicators_BRFSS2015.csv 

 
 

Volume 11 Issue 1 (2022) 

ISSN: 2167-1907 www.JSR.org 8




